Unleashing high-efficiency proton storage: Innovative design of ladder-type organic molecules

Yujie Cui , Jun Yang , Houxiang Wang , Yueheng Tao , Peipei Zhang , Guangxing Li , Minjie Shi , Edison Huixiang Ang

Carbon Energy ›› 2025, Vol. 7 ›› Issue (4) : e680

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (4) : e680 DOI: 10.1002/cey2.680
RESEARCH ARTICLE

Unleashing high-efficiency proton storage: Innovative design of ladder-type organic molecules

Author information +
History +
PDF

Abstract

The architectural design of redox-active organic molecules and the modulation of their electronic properties significantly influence their application in energy storage systems within aqueous environments. However, these organic molecules often exhibit sluggish reaction kinetics and unsatisfactory utilization of active sites, presenting significant challenges for their practical deployment as electrode materials in aqueous batteries. In this study, we have synthesized a novel organic compound (PTPZ), comprised of a centrally symmetric and fully ladder-type structure, tailored for aqueous proton storage. This unique configuration imparts the PTPZ molecule with high electron delocalization and enhanced structural stability. As an electrode material, PTPZ demonstrates a substantial proton-storage capacity of 311.9 mAh g−1, with an active group utilization efficiency of up to 89% facilitated by an 8-electron transfer process, while maintaining a capacity retention of 92.89% after 8000 charging-discharging cycles. Furthermore, in-situ monitoring technologies and various theoretical analyses have pinpointed the associated electrochemical processes of the PTPZ electrode, revealing exceptional redox activity, rapid proton diffusion, and efficient charge transfer. These attributes confer a significant competitive advantage to PTPZ as an anode material for high-performance proton storage devices. Consequently, this work contributes to the rational design of organic electrode materials for the advancement of rechargeable aqueous batteries.

Keywords

aqueous batteries / electrode material / electron delocalization / proton storage / redox-active organic molecule

Cite this article

Download citation ▾
Yujie Cui, Jun Yang, Houxiang Wang, Yueheng Tao, Peipei Zhang, Guangxing Li, Minjie Shi, Edison Huixiang Ang. Unleashing high-efficiency proton storage: Innovative design of ladder-type organic molecules. Carbon Energy, 2025, 7(4): e680 DOI:10.1002/cey2.680

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liang Y, Yao Y. Designing modern aqueous batteries. Nat Rev Mater. 2023; 8(2): 109-122.

[2]

Liu Y, Lu X, Lai F, et al. Rechargeable aqueous Zn-based energy storage devices. Joule. 2021; 5(11): 2845-2903.

[3]

Zeng Y, Luan D, Lou XW. Recent advances in electrode engineering strategies for aqueous Zn-based batteries. Chem. 2023; 9(5): 1118-1146.

[4]

Zheng S, Bi S, Fu Y, et al. Three-dimensional crown ether covalent organic framework as interphase layer toward high-performance lithium metal batteries. Adv Mater. 2024; 36(21): 2313076.

[5]

Jiang H, Tang L, Fu Y, et al. Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat Sustain. 2023; 6(7): 806-815.

[6]

Chen S, Zhang M, Zou P, Sun B, Tao S. Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ Sci. 2022; 15(5): 1805-1839.

[7]

Xu T, Wang D, Li Z, et al. Electrochemical proton storage: from fundamental understanding to materials to devices. Nano-Micro Lett. 2022; 14(1): 126.

[8]

Su Z, Guo H, Zhao C. Rational design of electrode-electrolyte interphase and electrolytes for rechargeable proton batteries. Nano-Micro Lett. 2023; 15(1): 96.

[9]

Yang X, Wang X, Xiang Y, Ma L, Huang W. Asymmetric electrolytes design for aqueous multivalent metal ion batteries. Nano-Micro Lett. 2024; 16(1): 51.

[10]

Lv Y, Xiao Y, Ma L, Zhi C, Chen S. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv Mater. 2022; 34(4): 2106409.

[11]

Ye L, Fu H, Cao R, Yang J. Optimizing Mn in Prussian blue analogs with double redox active sites to induce boosted Zn2+ storage. J Colloid Interface Sci. 2024; 664: 423-432.

[12]

Yang J, Hou W, Ye L, Hou G, Yan C, Zhang Y. Vanadium hexacyanoferrate Prussian blue analogs for aqueous proton storage: excellent electrochemical properties and mechanism insights. Small. 2024; 20(2): 2305386.

[13]

Wu X, Hong JJ, Shin W, et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat Energy. 2019; 4(2): 123-130.

[14]

Jiang H, Shin W, Ma L, et al. A high-rate aqueous proton battery delivering power below− 78°C via an unfrozen phosphoric acid. Adv Energy Mater. 2020; 10(28): 2000968.

[15]

Yue F, Tie Z, Deng S, Wang S, Yang M, Niu Z. An ultralow temperature aqueous battery with proton chemistry. Angew Chem Int Ed. 2021; 60(25): 13882-13886.

[16]

Yang J, Jin J, Zhang P, et al. A dual redox-active and robust polymer enables ultrafast and durable proton-storage capability. J Energy Chem. 2024; 98: 237-243.

[17]

Ma H, Yang M, Li R, et al. An organic acid-alkali coordinately regulated liquid electrolyte enables stable cycling of high-voltage proton battery. Chem Eng J. 2024; 486: 150102.

[18]

Wang C, Zhao S, Song X, et al. Suppressed dissolution and enhanced desolvation in core-shell MoO3@ TiO2 nanorods as a high-rate and long-life anode material for proton batteries. Adv Energy Mater. 2022; 12(19): 2200157.

[19]

Yang M, Zhao Q, Ma H, et al. Integrated uniformly microporous C4N/multi-walled carbon nanotubes composite toward ultra-stable and ultralow-temperature proton batteries. Small. 2023; 19(16): 2207487.

[20]

Li J, Wang H, Xiao X. Intercalation in two-dimensional transition metal carbides and nitrides (MXenes) toward electrochemical capacitor and beyond. Energy & Environ Mater. 2020; 3(3): 306-322.

[21]

Zhao Y, Fang X, Chen L, Zhu J, Zheng Y. Improved proton adsorption and charge separation on cadmium sulfides for photocatalytic hydrogen production. Energy Technol. 2022; 10(12): 2200300.

[22]

Dhilip Kumar, R, Nagarani S, Sethuraman V, Andra S, Dhinakaran V. Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review. Chem Pap. 2022; 76(6): 3371-3385.

[23]

Huang J, Dong X, Guo Z, Wang Y. Progress of organic electrodes in aqueous electrolyte for energy storage and conversion. Angew Chem Int Ed. 2020; 132(42): 18478-18489.

[24]

Chen X, Feng X, Ren B, et al. High rate and long lifespan sodium-organic batteries using pseudocapacitive porphyrin complexes-based cathode. Nano-Micro Lett. 2021; 13(1): 71.

[25]

Li M, Hicks RP, Chen Z, et al. Electrolytes in organic batteries. Chem Rev. 2023; 123(4): 1712-1773.

[26]

Zhu Y, Jin W, Gao H, et al. C3-symmetric trimeric imidazole naphthoquinone derivative with dual redox-active sites for high-performance cathodic lithium storage. Chem Eng J. 2023; 462: 142229.

[27]

Yu J, Chen X, Wang H, Gao B, Han D, Si Z. Conjugated ladder-type polymers with multielectron reactions as high-capacity organic anode materials for lithium-ion batteries. Sci China Mater. 2022; 65(9): 2354-2362.

[28]

Zhang H, Huang Q, Xia X, et al. Aqueous organic redox-targeting flow battery based on Nernstian-potential-driven anodic redox-targeting reactions. J Mater Chem A. 2022; 10(12): 6740-6747.

[29]

Wang J, Liu Z, Wang H, Cui F, Zhu G. Integrated pyrazine-based porous aromatic frameworks/carbon nanotube composite as cathode materials for aqueous zinc ion batteries. Chem Eng J. 2022; 450: 138051.

[30]

Feng X, Wu X, Chen X, et al. A bipolar organic molecule toward a universal pseudocapacitive cathode for stable dual ion charge storage. Energy Storage Mater. 2021; 42: 454-463.

[31]

Sun T, Liu C, Xu X, et al. Insights into the hydronium-ion storage of alloxazine in mild electrolyte. J Mater Chem A. 2020; 8(42): 21983-21987.

[32]

Wang R, Shi M, Li L, Zhao Y, Zhao L, Yan C. In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem Eng J. 2023; 451: 138652.

[33]

Lu Y, Zhang Q, Li L, Niu Z, Chen J. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem. 2018; 4(12): 2786-2813.

[34]

Liang Y, Chen Z, Jing Y, Rong Y, Facchetti A, Yao Y. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J Am Chem Soc. 2015; 137(15): 4956-4959.

[35]

Amin K, Ashraf N, Mao L, Faul CFJ, Wei Z. Conjugated microporous polymers for energy storage: recent progress and challenges. Nano Energy. 2021; 85: 105958.

[36]

Zhang Z, Liao M, Lou H, Hu Y, Sun X, Peng H. Conjugated polymers for flexible energy harvesting and storage. Adv Mater. 2018; 30(13): 1704261.

[37]

Shi M, Wang R, Li L, et al. Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv Funct Mater. 2023; 33(1): 2209777.

[38]

Gao Y, Li G, Wang F, et al. A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 2021; 40: 31-40.

[39]

He J, Zhao Y, Yan C, Jing R, Wang R, Shi M. Highly redox-active polymer with extensive electron delocalization and optimized molecular orbitals for extraordinary proton storage. Chem Eng J. 2023; 470: 144204.

[40]

Ma Y, Meng X, Li K, et al. Scrutinizing synergy and active site of nitrogen and selenium dual-doped porous carbon for efficient triiodide reduction. ACS Catal. 2023; 13(2): 1290-1298.

[41]

Xiao X, Li J, Meng X, Qiu J. Sulfur-doped carbon-coated Fe0.95S1.05 nanospheres as anodes for High-Performance sodium storage. Acta Phys Chim Sin. 2024; 40(6): 2307006.

[42]

Zhao Y, He J, Hu L, Yang J, Yan C, Shi M. Carboxyl-substituted organic molecule assembled with MXene nanosheets for boosting aqueous Na+ storage. Small. 2023; 19(47): 2304182.

[43]

Yang X, Gong L, Liu X, et al. Mesoporous polyimide-linked covalent organic framework with multiple redox-active sites for high-performance cathodic Li storage. Angew Chem Int Ed. 2022; 134(31): e202207043.

[44]

Zhu M, Zhao L, Ran Q, et al. Bioinspired catechol-grafting PEDOT cathode for an all-polymer aqueous proton battery with high voltage and outstanding rate capacity. Adv Sci. 2022; 9(4): 2103896.

[45]

Qiao J, Qin M, Shen YM, Cao J, Chen Z, Xu J. A rechargeable aqueous proton battery based on a dipyridophenazine anode and an indium hexacyanoferrate cathode. Chem Commun. 2021; 57(35): 4307-4310.

[46]

Emanuelsson R, Sterby M, Strømme M, Sjödin M. An all-organic proton battery. J Am Chem Soc. 2017; 139(13): 4828-4834.

[47]

Li Z, Tan J, Zhu X, et al. High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 2022; 51: 294-305.

[48]

Wang X, Zhou J, Tang W. Poly (dithieno [3, 2-b: 2′, 3′-d] pyrrole) twisting redox pendants enabling high current durability in all-organic proton battery. Energy Storage Mater. 2021; 36: 1-9.

[49]

Lakshmi KCS, Vedhanarayanan B, Cheng HY, Ji X, Shen HH, Lin TW. Molecularly engineered organic copolymers as high capacity cathode materials for aqueous proton battery operating at sub-zero temperatures. J Colloid Interface Sci. 2022; 619: 123-131.

[50]

Sun T, Du H, Zheng S, et al. Bipolar organic polymer for high performance symmetric aqueous proton battery. Small Methods. 2021; 5(8): 2100367.

[51]

Liu C, Ni Y, Lu X, Li G, Wu J. Global aromaticity in macrocyclic polyradicaloids: Hückel's rule or Baird's rule? Acc Chem Res. 2019; 52(8): 2309-2321.

[52]

Wang R, He J, Yan C, et al. A long-range planar polymer with efficient π-electron delocalization for superior proton storage. Adv Mater. 2023; 36(36): 2402681.

[53]

Liang Y, Xia Y, Wang X, Zhou J. An imine-rich polymer with enlarged π-conjugated planes for aqueous zinc-ion batteries. Chem Commun. 2023; 59(86): 12927-12930.

[54]

Venkatesha A, Gomes R, Nair AS, Mukherjee S, Bagchi B, Bhattacharyya AJ. A redox-active 2-D covalent organic framework as a cathode in an aqueous mixed-ion electrolyte Zn-ion battery: experimental and theoretical investigations. ACS Sustainable Chem Eng. 2022; 10(19): 6205-6216.

[55]

Strietzel C, Sterby M, Huang H, Strømme M, Emanuelsson R, Sjödin M. An aqueous conducting redox-polymer-based proton battery that can withstand rapid constant-voltage charging and sub-zero temperatures. Angew Chem Int Ed. 2020; 59(24): 9631-9638.

[56]

Hernández G, Casado N, Zamarayeva AM, et al. Perylene polyimide-polyether anodes for aqueous all-organic polymer batteries. ACS Appl Energy Mater. 2018; 1(12): 7199-7205.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/