Ion transport behaviors in MXenes for electrochemical energy storage and conversion

Ling Fei , Lei Lei , Hui Xu , Xinghua Guo , Bo Chen , Xu Han , Xun Chen , Qing Huang , Degao Wang

Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e678

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e678 DOI: 10.1002/cey2.678
REVIEW

Ion transport behaviors in MXenes for electrochemical energy storage and conversion

Author information +
History +
PDF

Abstract

MXenes, an innovative class of two-dimensional (2D) materials composed of transition-metal carbides and/or nitrides, have garnered significant interest for their potential in energy storage and conversion applications, which is largely attributed to their modifiable surface terminations, exceptional conductivity, and favorable hydrophilic characteristics. MXenes show various ion transport behaviors in applications like electrochemical catalysis, supercapacitors, and batteries, encompassing processes like electrostatic adsorption of surface ions, redox reactions of ions, and interlayer ion shuttle. This review aims to present a summary of advancements in the comprehension of ion transport behaviors of Ti3C2Tx MXenes. First, the composition, properties, and synthesis techniques of MXenes are concisely summarized. Subsequently, the discussion delves into the mechanisms of ion transport in MXenes during CO2 reduction, water splitting, supercapacitor operation, and battery performance, elucidating the factors determining the electrochemical behaviors and efficacy. Furthermore, a compilation of strategies used to optimize ion transport behaviors in MXenes is presented. The article concludes by presenting the challenges and opportunities for these fields to facilitate the continued progress of MXenes in energy-related technologies.

Keywords

CO2 reduction / ion transport / MXenes / storage batteries / supercapacitors / water splitting

Cite this article

Download citation ▾
Ling Fei, Lei Lei, Hui Xu, Xinghua Guo, Bo Chen, Xu Han, Xun Chen, Qing Huang, Degao Wang. Ion transport behaviors in MXenes for electrochemical energy storage and conversion. Carbon Energy, 2025, 7(3): e678 DOI:10.1002/cey2.678

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang X, Peng J, Zhao L, et al. Insights on advanced g-C3N4 in energy storage: applications, challenges, and future. Carbon Energy. 2024; 6(4): e490.

[2]

Tan C, Cao X, Wu XJ, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017; 117(9): 6225-6331.

[3]

Meng W, Liu X, Song H, et al. Advances and challenges in 2D MXenes: from structures to energy storage and conversions. Nano Today. 2021; 40: 101273.

[4]

Mu X, Wang D, Du F, et al. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv Funct Mater. 2019; 29(29): 1902953.

[5]

Ling C, Shi L, Ouyang Y, Wang J. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Mater. 2016; 28(24): 9026-9032.

[6]

Jin P, Han P, Li X, Li K. Titanium carbide MXenes-initiated plasmonic metal-support interaction for effective photocatalysis on uncoated Ag nanoparticles. Appl Surf Sci. 2023; 612: 155850.

[7]

Ran J, Gao G, Li FT, Ma TY, Du A, Qiao SZ. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun. 2017; 8(1): 13907.

[8]

Shahzad A, Rasool K, Miran W, et al. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustainable Chem Eng. 2017; 5(12): 11481-11488.

[9]

Jin P, Tan W, Li X, Fan J, Li K. Methyl orange as a novel colorimetric iodide indicator with in situ generation of H2O2 by etching uncoated Ag-Ti3C2 nanohybrids. Talanta. 2023; 260: 124619.

[10]

Wang Y, Wang S, Dong N, Kang W, Li K, Nie Z. Titanium carbide MXenes mediated in situ reduction allows label-free and visualized nanoplasmonic sensing of silver ions. Anal Chem. 2020; 92(6): 4623-4629.

[11]

Jin P, Wan P, Zhang C, et al. Analyte-perturbed balance between reducibility and fluorescence of Ti3C2 MXene quantum dots for label-free, dual-mode detection of silver ions. Anal Chim Acta. 2024; 1303: 342517.

[12]

Mathis TS, Maleski K, Goad A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano. 2021; 15(4): 6420-6429.

[13]

Zhang C, Anasori B, Seral-Ascaso A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater. 2017; 29(36): 1702678.

[14]

Zou J, Wu J, Wang Y, et al. Additive-mediated intercalation and surface modification of MXenes. Chem Soc Rev. 2022; 51(8): 2972-2990.

[15]

Pang J, Mendes RG, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev. 2019; 48(1): 72-133.

[16]

Kshetri T, Tran DT, Le HT, et al. Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Prog Mater Sci. 2021; 117: 100733.

[17]

Abdinejad M, Subramanian S, Motlagh MK, et al. Insertion of MXene-based materials into Cu-Pd 3D aerogels for electroreduction of CO2 to formate. Adv Energy Mater. 2023; 13(19): 2300402.

[18]

Yu X, Li Y, Pei C, et al. Interfacial design of Ti3C2Tx MXene/graphene heterostructures boosted Ru nanoclusters with high activity toward hydrogen evolution reaction. Adv Sci. 2024; 11(22): 2310013.

[19]

Wang Y, Guo T, Tian Z, Bibi K, Zhang YZ, Alshareef HN. MXenes for energy harvesting. Adv Mater. 2022; 34(21): 2108560.

[20]

Tang Y, Yang C, Xu X, et al. MXene nanoarchitectonics: defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv Energy Mater. 2022; 12(12): 2103867.

[21]

Fang R, Lu C, Chen A, et al. 2D MXene-based energy storage materials: interfacial structure design and functionalization. ChemSusChem. 2020; 13(6): 1409-1419.

[22]

VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021; 372(6547): eabf1581.

[23]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014; 26(7): 992-1005.

[24]

Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale. 2016; 8(22): 11385-11391.

[25]

Khazaei M, Arai M, Sasaki T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater. 2012; 23(17): 2185-2192.

[26]

Li L. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): the effect of Mo substitution. Comput Mater Sci. 2016; 124: 8-14.

[27]

Cai Y, Chen X, Xu Y, et al. Ti3C2Tx MXene/carbon composites for advanced supercapacitors: synthesis, progress, and perspectives. Carbon Energy. 2024; 6(2): e501.

[28]

Bi W, Gao G, Li C, Wu G, Cao G. Synthesis, properties, and applications of MXenes and their composites for electrical energy storage. Prog Mater Sci. 2024; 142: 101227.

[29]

Peng J, Chen X, Ong W-J, Zhao X, Li N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem. 2019; 5(1): 18-50.

[30]

Ba K, Pu D, Yang X, et al. Billiard catalysis at Ti3C2 MXene/MAX heterostructure for efficient nitrogen fixation. Appl Catal B. 2022; 317: 121755.

[31]

Ajmal S, Kumar A, Selvaraj M, et al. MXenes and their interfaces for the taming of carbon dioxide & nitrate: a critical review. Coord Chem Rev. 2023; 483: 215094.

[32]

Halim J, Lukatskaya MR, Cook KM, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater. 2014; 26(7): 2374-2381.

[33]

Hantanasirisakul K, Zhao MQ, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater. 2016; 2(6): 1600050.

[34]

Jiang X, Kuklin AV, Baev A, et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys Rep. 2020; 848: 1-58.

[35]

Berdiyorov GR. Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. AIP Adv. 2016; 6(5): 055105.

[36]

Hu T, Yang J, Wang X. Carbon vacancies in Ti2CT2 MXenes: defects or a new opportunity? Phys Chem Chem Phys. 2017; 19(47): 31773-31780.

[37]

Guo Z, Zhou J, Si C, Sun Z. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys Chem Chem Phys. 2015; 17(23): 15348-15354.

[38]

Wyatt BC, Rosenkranz A, Anasori B. 2D MXenes: tunable mechanical and tribological properties. Adv Mater. 2021; 33(17): 2007973.

[39]

Hu T, Yang J, Li W, Wang X, Li CM. Quantifying the rigidity of 2D carbides (MXenes). Phys Chem Chem Phys. 2020; 22(4): 2115-2121.

[40]

Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011; 23(37): 4248-4253.

[41]

Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012; 6(2): 1322-1331.

[42]

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017; 2(2): 16098.

[43]

Frey NC, Wang J, Vega Bellido GI, Anasori B, Gogotsi Y, Shenoy VB. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano. 2019; 13(3): 3031-3041.

[44]

Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014; 516(7529): 78-81.

[45]

Shein IR, Ivanovskii AL. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability. Comput Mater Sci. 2012; 65: 104-114.

[46]

Sun W, Shah SA, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A. 2017; 5(41): 21663-21668.

[47]

Xiao X, Yu H, Jin H, et al. Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano. 2017; 11(2): 2180-2186.

[48]

Li T, Yao L, Liu Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew Chem Int Ed. 2018; 57(21): 6115-6119.

[49]

Li M, Lu J, Luo K, Lu J, Luo K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019; 141(11): 4730-4737.

[50]

Mei J, Ayoko GA, Hu C, Sun Z. Thermal reduction of sulfur-containing MAX phase for MXene production. Chem Eng J. 2020; 395: 125111.

[51]

Chen N, Duan Z, Cai W, et al. Supercritical etching method for the large-scale manufacturing of MXenes. Nano Energy. 2023; 107: 108147.

[52]

Sun Z, Yuan M, Lin L, et al. Selective lithiation-expansion-microexplosion synthesis of two-dimensional fluoride-free MXene. ACS Mater Lett. 2019; 1(6): 628-632.

[53]

Wang D, Zhou C, Filatov AS, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science. 2023; 379(6638): 1242-1247.

[54]

Choi C, Ashby DS, Butts DM, et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater. 2019; 5(1): 5-19.

[55]

Schütter C, Pohlmann S, Balducci A. Industrial requirements of materials for electrical double layer capacitors: impact on current and future applications. Adv Energy Mater. 2019; 9(25): 1900334.

[56]

Qi Y, Sarang K, Lutkenhaus J, Oh E-S. Electronically conductive MXene clay-polymer composite binders for electrochemical double-layer capacitor electrodes. J Power Sources. 2021; 506: 230138.

[57]

Ding B, Wang J, Wang Y, et al. A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors. Nanoscale. 2016; 8(21): 11136-11142.

[58]

Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013; 12(6): 518-522.

[59]

Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci. 2018; 11(10): 2696-2767.

[60]

Koppenol WH, Rush JD. Reduction potential of the carbon dioxide carbon dioxide radical anion a comparison with other C1 radicals. J Phys Chem. 1987; 91(16): 4429-4430.

[61]

Handoko AD, Chen H, Lum Y, Zhang Q, Anasori B, Seh ZW. Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. iScience. 2020; 23(6): 101181.

[62]

Chen H, Handoko AD, Xiao J, et al. Catalytic effect on CO2 electroreduction by hydroxyl-terminated two-dimensional MXenes. ACS Appl Mater Interfaces. 2019; 11(40): 36571-36579.

[63]

Lei L, Guo X, Han X, Fei L, Guo X, Wang D. From synthesis to mechanisms: in-depth exploration of the dual-atom catalytic mechanisms toward oxygen electrocatalysis. Adv Mater. 2024; 36(37): 2311434.

[64]

Fei L, Guo X, Liang D, Lei L, Wang D. A dye sensitized photosynthesis cell for stable water oxidation mediated by photo-generated bromine. Chem Commun. 2024; 60(10): 1297-1300.

[65]

Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta. 2002; 47(22-23): 3571-3594.

[66]

Qiao J, Kong L, Xu S, et al. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Mater. 2021; 43: 509-530.

[67]

Morales-Guio CG, Stern LA, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev. 2014; 43(18): 6555-6569.

[68]

Wang H, Fu W, Yang X, et al. Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis. J Mater Chem A. 2020; 8(15): 6926-6956.

[69]

Li S, Tuo P, Xie J, et al. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy. 2018; 47: 512-518.

[70]

Li M, Wang Y, Li T, et al. Hierarchical few-layer fluorine-free Ti3C2Tx (T = O, OH)/MoS2 hybrid for efficient electrocatalytic hydrogen evolution. J Mater Chem A. 2021; 9(2): 922-927.

[71]

Kuznetsov DA, Han B, Yu Y, et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule. 2018; 2(2): 225-244.

[72]

Ma TY, Cao JL, Jaroniec M, Qiao SZ. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew Chem Int Ed. 2016; 55(3): 1138-1142.

[73]

Yu M, Zhou S, Wang Z, Zhao J, Qiu J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy. 2018; 44: 181-190.

[74]

Saquib M, Srivastava N, Arora P, Bhosale AC. NiMoSe/Ti3C2Tx MXene@CC as a highly operative bifunctional electrocatalyst for hydrogen and oxygen evolution reactions in an alkaline medium. Int J Hydrogen Energy. 2024; 59: 1132-1142.

[75]

Sharma V, Dhiman R, Mahajan A. Ti2+ and Ti4+ species enriched MXene electrocatalyst for highly efficient hydrogen evolution and oxygen evolution reaction kinetics. Appl Surf Sci. 2023; 612: 155883.

[76]

Zhao X, Zheng X, Lu Q, et al. Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat. 2022; 5(2): e12293.

[77]

Sharma P, Kainth S, Pandey OP, Mahajan R. Customized synthesis of 2D Ti3C2 MXene for improved overall water splitting. ACS Appl Nano Mater. 2023; 6(23): 21788-21802.

[78]

Jiang J, Sun R, Huang X, et al. In-situ derived Mo-doped NiCoP and MXene to form mott-schottky heterojunction with tunable surface electron density to promote overall water splitting. Compos Part B. 2023; 263: 110834.

[79]

Chen X, Li M, Hou J, et al. Molten salt method synthesis of multivalent cobalt and oxygen vacancy modified nitrogen-doped MXene as highly efficient hydrogen and oxygen evolution reaction electrocatalysts. J Colloid Interface Sci. 2022; 615: 831-839.

[80]

Zhang B, Du Z, Sun R, et al. Tremella-like Ni-NiO with O-vacancy heterostructure nanosheets grown in situ on MXenes for highly efficient hydrogen and oxygen evolution. ACS Appl Mater Interfaces. 2022; 14(42): 47529-47541.

[81]

Vikraman D, Hussain S, Hailiang L, et al. Spinel-structured metal oxide-embedded MXene nanocomposites for efficient water splitting reactions. Inorg Chem Front. 2022; 9(22): 5903-5916.

[82]

Bao W, Shuck CE, Zhang W, Guo X, Gogotsi Y, Wang G. Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano. 2019; 13(10): 11500-11509.

[83]

Ashraf I, Ahmad S, Nazir F, et al. Hydrothermal synthesis and water splitting application of d-Ti3C2 MXene/V2O5 hybrid nanostructures as an efficient bifunctional catalyst. Int J Hydrogen Energy. 2022; 47(64): 27383-27396.

[84]

Zahra SA, Waqas Hakim M, Adil Mansoor M, Rizwan S. Two-dimensional double transition metal carbides as superior bifunctional electrocatalysts for overall water splitting. Electrochim Acta. 2022; 434: 141257.

[85]

Lv Z, Ma W, Dang J, et al. Induction of Co2P growth on a MXene (Ti3C2Tx)-modified self-supporting electrode for efficient overall water splitting. J Phys Chem Lett. 2021; 12(20): 4841-4848.

[86]

Chen X, Zhai X, Hou J, et al. Tunable nitrogen-doped delaminated 2D MXene obtained by NH3/Ar plasma treatment as highly efficient hydrogen and oxygen evolution reaction electrocatalyst. Chem Eng J. 2021; 420: 129832.

[87]

Yan L, Zhang B. Rose-like, ruthenium-modified cobalt nitride nanoflowers grown in situ on an MXene matrix for efficient and stable water electrolysis. J Mater Chem A. 2021; 9(36): 20758-20765.

[88]

Yan L, Chen X, Liu X, Chen L, Zhang B. In situ formed VOOH nanosheet arrays anchored on a Ti3C2Tx MXene as a highly efficient and robust synergistic electrocatalyst for boosting water oxidation and reduction. J Mater Chem A. 2020; 8(44): 23637-23644.

[89]

Yan L, Zhang B, Wu S, Yu J. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. J Mater Chem A. 2020; 8(28): 14234-14242.

[90]

Zhao X, Li WP, Cao Y, et al. Dual-Atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2Tx MXene enables efficient hydrogen and oxygen evolution reactions. ACS Nano. 2024; 18(5): 4256-4268.

[91]

Le TA, Tran NQ, Hong Y, Kim M, Lee H. Porosity-engineering of MXene as a support material for a highly efficient electrocatalyst toward overall water splitting. ChemSusChem. 2020; 13(5): 945-955.

[92]

Yu M, Wang Z, Liu J, Sun F, Yang P, Qiu J. A hierarchically porous and hydrophilic 3D nickel-iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy. 2019; 63: 103880.

[93]

Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc. 2012; 134(40): 16909-16916.

[94]

Xie Y, Naguib M, Mochalin VN, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc. 2014; 136(17): 6385-6394.

[95]

Naguib M, Come J, Dyatkin B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun. 2012; 16(1): 61-64.

[96]

Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013; 341(6153): 1502-1505.

[97]

Wang D, Choi D, Yang Z, et al. Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem Mater. 2008; 20(10): 3435-3442.

[98]

Kavan L, Kalbáč M, Zukalová M, et al. Lithium storage in nanostructured TiO2 made by hydrothermal growth. Chem Mater. 2004; 16(3): 477-485.

[99]

Baudrin E, Cassaignon S, Koelsch M, Jolivet J, Dupont L, Tarascon J. Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature. Electrochem Commun. 2007; 9(2): 337-342.

[100]

Fang YZ, Hu R, Zhu K, et al. Aggregation-resistant 3D Ti3C2Tx MXene with enhanced kinetics for potassium ion hybrid capacitors. Adv Funct Mater. 2020; 30(50): 202005663.

[101]

Peng M, Wang L, Li L, et al. Manipulating the interlayer spacing of 3D MXenes with improved stability and zinc-ion storage capability. Adv Funct Mater. 2021; 32(7): 2109524.

[102]

Wang C, Chen S, Song L. Tuning 2D MXenes by surface controlling and interlayer engineering: methods, properties, and synchrotron radiation characterizations. Adv Funct Mater. 2020; 30(47): 2000869.

[103]

Mashtalir O, Naguib M, Mochalin VN, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013; 4(1): 1716.

[104]

Levi MD, Lukatskaya MR, Sigalov S, et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv Energy Mater. 2014; 5(1): 201400815.

[105]

Come J, Black JM, Lukatskaya MR, et al. Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy. 2015; 17: 27-35.

[106]

Xiang M, Shen Z, Zheng J, et al. Gas-phase synthesis of Ti2CCl2 enables an efficient catalyst for lithium-sulfur batteries. Innovation. 2024; 5(1): 100540.

[107]

Fang M, Han J, He S, Ren JC, Li S, Liu W. Effective screening descriptor for MXenes to enhance sulfur reduction in lithium-sulfur batteries. J Am Chem Soc. 2023; 145(23): 12601-12608.

[108]

Wang D, Li F, Lian R, et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano. 2019; 13(10): 11078-11086.

[109]

Kan D, Wang D, Zhang X, et al. Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb2CT2 MXene by first-principles calculations. J Mater Chem A. 2020; 8(6): 3097-3108.

[110]

Guo D, Pan Q, Vietor T, Lu W, Gao Y. MXene based non-noble metal catalyst for overall water splitting in alkaline conditions. J Energy Chem. 2023; 87: 518-539.

[111]

Zhang X, Zhang Z, Li J, Zhao X, Wu D, Zhou Z. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. J Mater Chem A. 2017; 5(25): 12899-12903.

[112]

Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017; 2(8): 17105.

[113]

Lotfi R, Naguib M, Yilmaz DE, Nanda J, van Duin ACT. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A. 2018; 6(26): 12733-12743.

[114]

Brouillette D, Perron G, Desnoyers JE. Effect of viscosity and volume on the specific conductivity of lithium salts in solvent mixtures. Electrochim Acta. 1999; 44(26): 4721-4742.

[115]

Wang X, Mathis TS, Li K, et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat Energy. 2019; 4(3): 241-248.

[116]

Mao K, Shi J, Zhang Q, et al. High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors. Nano Energy. 2022; 103: 107791.

[117]

Zhou Z, Hong X, Ouyang H, et al. Enhanced ion transport in nanochannels of MXenes by Mg2+ pre-intercalation. Phys Chem Chem Phys. 2022; 24(31): 18824-18829.

[118]

Liu M, Qu X, Wang Y, et al. Inspired by philosophizing of “point to area”: ion pre-intercalation induces the reconstitution of interlayer environment of MXene for lithium storage. Chem Eng J. 2023; 451: 139015.

[119]

Liang K, Matsumoto RA, Zhao W, et al. Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid. Adv Funct Mater. 2021; 31(33): 2104007.

[120]

Dey A, Varagnolo S, Power NP, et al. Doped MXenes—a new paradigm in 2D systems: synthesis, properties and applications. Prog Mater Sci. 2023; 139: 101166.

[121]

Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev. 2020; 49(18): 6666-6693.

[122]

Tang Y, Yang C, Sheng M, et al. Phosphorus-doped molybdenum carbide/MXene hybrid architectures for upgraded hydrogen evolution reaction performance over a wide pH range. Chem Eng J. 2021; 423: 130183.

[123]

Cheng Y-W, Dai J-H, Zhang Y-M, Song Y. Transition metal modification and carbon vacancy promoted Cr2CO2 (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction. J Mater Chem A. 2018; 6(42): 20956-20965.

[124]

Zhang J, Zhao Y, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal. 2018; 1(12): 985-992.

[125]

Wang X, Ding J, Song W, et al. Cation vacancy clusters in Ti3C2Tx MXene induce ultra-strong interaction with noble metal clusters for efficient electrocatalytic hydrogen evolution. Adv Energy Mater. 2023; 13(23): 2300148.

[126]

Tang Y, Yang C, Tian Y, Luo Y, Yin X, Que W. The effect of in situ nitrogen doping on the oxygen evolution reaction of MXenes. Nanoscale Adv. 2020; 2(3): 1187-1194.

[127]

Liu Z, Tian Y, Li S, et al. Revealing high-rate and high volumetric pseudo-intercalation charge storage from boron-vacancy doped MXenes. Adv Funct Mater. 2023; 33(40): 2301994.

[128]

Alli U, McCarthy K, Baragau I-A, et al. In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes. Chem Eng J. 2022; 430: 132976.

[129]

Li J, Yan D, Hou S, et al. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J Mater Chem A. 2018; 6(3): 1234-1243.

[130]

Gupta N, Sahu RK, Mishra T, Bhattacharya P. Microwave-assisted rapid synthesis of titanium phosphate free phosphorus doped Ti3C2 MXene with boosted pseudocapacitance. J Mater Chem A. 2022; 10(29): 15794-15810.

[131]

Li H, Fan K, Xiong P, et al. Selective grafting of phosphorus onto Ti3C2Tx MXene enables a two-proton process and enhanced charge storage. J Mater Chem A. 2024; 12(6): 3449-3459.

[132]

Guo K, Fan D, Bao J, Li Y, Xu D. Atomic-level phosphorus-doped ultrathin Pt nanodendrites as efficient electrocatalysts. Adv Funct Mater. 2022; 32(47): 2208057.

[133]

Hou H, Shao L, Zhang Y, Zou G, Chen J, Ji X. Large-area carbon nanosheets doped with phosphorus: a high-performance anode material for sodium-ion batteries. Adv Sci. 2017; 4(1): 1600243.

[134]

Jiang H, Yan L, Zhang S, et al. Electrochemical surface restructuring of phosphorus-doped carbon@MoP electrocatalysts for hydrogen evolution. Nano-Micro Lett. 2021; 13(1): 215.

[135]

Wen Y, Li R, Liu J, et al. A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance. J Colloid Interface Sci. 2021; 604: 239-247.

[136]

Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum MW. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem Mater. 2016; 28(10): 3507-3514.

[137]

Ghidiu M, Kota S, Halim J, et al. Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem Mater. 2017; 29(3): 1099-1106.

[138]

Gao Q, Sun W, Ilani-Kashkouli P, et al. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ Sci. 2020; 13(8): 2549-2558.

[139]

Lounasvuori M, Zhang T, Gogotsi Y, Petit T. Tuning the microenvironment of water confined in Ti3C2Tx MXene by cation intercalation. J Phys Chem C. 2024; 128(7): 2803-2813.

[140]

Pandey P, Saini VK. Pillared interlayered clays: sustainable materials for pollution abatement. Environ Chem Lett. 2018; 17(2): 721-727.

[141]

Huang Q, Zuo S, Zhou R. Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing VOCs. Appl Catal B. 2010; 95(3-4): 327-334.

[142]

Gil A, Assis FCC, Albeniz S, Korili SA. Removal of dyes from wastewaters by adsorption on pillared clays. Chem Eng J. 2011; 168(3): 1032-1040.

[143]

Cheng J, Ming Yu S, Zuo P. Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Res. 2006; 40(2): 283-290.

[144]

Luo J, Zhang W, Yuan H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano. 2017; 11(3): 2459-2469.

[145]

Hao Y, Hu F, Zhu S, et al. MXene-regulated metal-oxide interfaces with modified intermediate configurations realizing nearly 100% CO2 electrocatalytic conversion. Angew Chem Int Ed. 2023; 62(35): e202304179.

[146]

Ling Z, Ren CE, Zhao MQ, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci U S A. 2014; 111(47): 16676-16681.

[147]

Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater. 2016; 28(7): 1517-1522.

[148]

Cao Z, Zhu YB, Chen K, et al. Super-stretchable and high-energy micro-pseudocapacitors based on MXene embedded Ag nanoparticles. Adv Mater. 2024; 36(26): 2401271.

[149]

Siddique S, Waheed A, Iftikhar M, et al. Fluorine-free MXenes via molten salt lewis acidic etching: applications, challenges, and future outlook. Prog Mater Sci. 2023; 139: 101183.

[150]

Fan Y, Li L, Zhang Y, Zhang X, Geng D, Hu W. Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals. Adv Funct Mater. 2022; 32(16): 2111357.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/