Nanofiber-based polymer electrolyte membranes for fuel cells

Ning Liu , Shuguang Bi , Yi Zhang , Ying Ou , Chunli Gong , Jianhua Ran , Yihuang Chen , Yingkui Yang

Carbon Energy ›› 2025, Vol. 7 ›› Issue (4) : e677

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (4) : e677 DOI: 10.1002/cey2.677
REVIEW

Nanofiber-based polymer electrolyte membranes for fuel cells

Author information +
History +
PDF

Abstract

Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion. Due to the high specific surface area and one-dimensional long-range continuous structure of the nanofiber, ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane, significantly increasing the ion conductivity of the membrane. This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells. Electrospun nanofibers are categorized based on their material properties into two primary groups: (1) ionomer nanofibers, inherently endowed with the ability to conduct H+ (such as perfluorosulfonic acid or sulfonated poly (ether ether ketone)) or OH (e.g., FAA-3), and (2) nonionic polymer nanofibers, comprising inert polymers like polyvinylidene difluoride, polytetrafluoroethylene, and polyacrylonitrile. Notably, the latter often necessitates surface modifications to impart ion transport channels, given their inherent proton inertness. Furthermore, this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals, cellulose nanofibers, and bacterial nanofibers—as crucial elements in polyelectrolyte membranes. The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed. Lastly, the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes, aiming to propel the development of high-performance polymer electrolyte fuel cells.

Keywords

anion exchange membranes / fuel cells / nanofibers / proton exchange membranes

Cite this article

Download citation ▾
Ning Liu, Shuguang Bi, Yi Zhang, Ying Ou, Chunli Gong, Jianhua Ran, Yihuang Chen, Yingkui Yang. Nanofiber-based polymer electrolyte membranes for fuel cells. Carbon Energy, 2025, 7(4): e677 DOI:10.1002/cey2.677

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen N, Lee YM. Anion exchange polyelectrolytes for membranes and ionomers. Prog Polym Sci. 2021; 113: 101345.

[2]

Krishnamoorthy K, Pazhamalai P, Manoharan S, Liyakath Ali NUH, Kim SJ. Recent trends, challenges, and perspectives in piezoelectric-driven self-chargeable electrochemical supercapacitors. Carbon Energy. 2022; 4(5): 833-855.

[3]

Song Z, Li J, Zhang Q, et al. Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells. Carbon Energy. 2023; 5(7): e342.

[4]

Lai Q, Yin B, Dou Y, Zhang Q, Zhu Y, Yang Y. Electrospun carbon nanofiber-supported V2O3 with enriched oxygen vacancies as a free-standing high-rate anode for an all-vanadium-based full battery. Carbon Energy. 2024; 6(9): e517.

[5]

Vijayakumar V, Nam SY. Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells. J Ind Eng Chem. 2019; 70: 70-86.

[6]

Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy. 2011; 88(4): 981-1007.

[7]

Wang Y, Ruiz Diaz DF, Chen KS, Wang Z, Adroher XC. Materials, technological status, and fundamentals of PEM fuel cells—a review. Mater Today. 2020; 32: 178-203.

[8]

Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells. Nature. 2021; 595(7867): 361-369.

[9]

Zhou Y, Wang B, Ling Z, et al. Advances in ionogels for proton-exchange membranes. Sci Total Environ. 2024; 921: 171099.

[10]

Liu G, Tsen W-C, Hu F, et al. Enhanced proton conductivities of chitosan-based membranes by inorganic solid superacid SO42−-TiO2 coated carbon nanotubes. Int J Hydrogen Energy. 2020; 45(53): 29212-29221.

[11]

Wu J, Nie S, Liu H, et al. Design and development of nucleobase modified sulfonated poly(ether ether ketone) membranes for high-performance direct methanol fuel cells. J Mater Chem A. 2022; 10(37): 19914-19924.

[12]

Hyun J, Kim H-T. Powering the hydrogen future: current status and challenges of anion exchange membrane fuel cells. Energy Environ Sci. 2023; 16(12): 5633-5662.

[13]

Berretti E, Osmieri L, Baglio V, et al. Direct alcohol fuel cells: a comparative review of acidic and alkaline systems. Electrochem Energy Rev. 2023; 6(1): 30.

[14]

Zhou J, Cao J, Zhang Y, et al. Overcoming undesired fuel crossover: goals of methanol-resistant modification of polymer electrolyte membranes. Renewable Sustainable Energy Rev. 2021; 138: 110660.

[15]

Wong CY, Wong WY, Ramya K, et al. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: a review. Int J Hydrogen Energy. 2019; 44(12): 6116-6135.

[16]

Wang H, Zhang J, Ning X, Tian M, Long Y, Ramakrishna S. Recent advances in designing and tailoring nanofiber composite electrolyte membranes for high-performance proton exchange membrane fuel cells. Int J Hydrogen Energy. 2021; 46(49): 25225-25251.

[17]

Gong C, Liu H, Zhang B, et al. High level of solid superacid coated poly(vinylidene fluoride) electrospun nanofiber composite polymer electrolyte membranes. J Membr Sci. 2017; 535: 113-121.

[18]

Hu Y, Tsen W-C, Chuang F-S, et al. Glycine betaine intercalated layered double hydroxide modified quaternized chitosan/polyvinyl alcohol composite membranes for alkaline direct methanol fuel cells. Carbohydrate Polym. 2019; 213: 320-328.

[19]

Zhao S, Tsen W-C, Gong C. 3D nanoflower-like layered double hydroxide modified quaternized chitosan/polyvinyl alcohol composite anion conductive membranes for fuel cells. Carbohydrate Polym. 2021; 256: 117439.

[20]

Gong C, Zhao S, Tsen W-C, et al. Hierarchical layered double hydroxide coated carbon nanotube modified quaternized chitosan/polyvinyl alcohol for alkaline direct methanol fuel cells. J Power Sources. 2019; 441: 227176.

[21]

Wu J, Wang F, Fan X, et al. Phosphoric acid-doped Gemini quaternary ammonium-grafted SPEEK membranes with superhigh proton conductivity and mechanical strength for direct methanol fuel cells. J Membr Sci. 2023; 672: 121431.

[22]

Li W, Yang F, Lin Z, et al. Semi-crystalline sulfonated poly(ether ketone) proton exchange membranes: the trade-off of facile synthesis and performance. J Colloid Interface Sci. 2023; 645: 493-501.

[23]

Li X, He B, Li P, Tang S. In situ-doped sulfonated Schiff-Base networks in SPEEK composite membranes with enhanced proton conductivity. ACS Appl Mater Interfaces. 2023; 15(21): 25584-25593.

[24]

Mustain WE, Chatenet M, Page M, Kim YS. Durability challenges of anion exchange membrane fuel cells. Energy Environ Sci. 2020; 13(9): 2805-2838.

[25]

You W, Noonan KJT, Coates GW. Alkaline-stable anion exchange membranes: A review of synthetic approaches. Prog Polym Sci. 2020; 100: 101177.

[26]

Bai Y, Yuan Y, Miao L, C. Functionalized rGO as covalent crosslinkers for constructing chemically stable polysulfone-based anion exchange membranes with enhanced ion conductivity. J Membr Sci. 2019; 570-571: 481-493.

[27]

Ding H, Sun P, Wang Y, et al. Efficient and stable proton conduction achieved by accommodation of the membrane-wide cross-linking and branching strategies. J Membr Sci. 2023; 685: 121911.

[28]

Guo T, Wang Y, Ju Q, et al. Crosslinked polybenzimidazole high temperature-proton exchange membranes with a polymers of intrinsic microporosity (PIM) macromolecular crosslinker. J Membr Sci. 2023; 675: 121528.

[29]

Xu Z, Wilke V, Chmielarz JJ, et al. Novel piperidinium-functionalized crosslinked anion exchange membrane with flexible spacers for water electrolysis. J Membr Sci. 2023; 670: 121302.

[30]

Wang JJ, Gao WT, Choo YSL, et al. Highly conductive branched poly(aryl piperidinium) anion exchange membranes with robust chemical stability. J Colloid Interface Sci. 2023; 629: 377-387.

[31]

Liu G, Wang A, Ji W, et al. In-situ crosslinked, side chain polybenzimidazole-based anion exchange membranes for alkaline direct methanol fuel cells. Chem Eng J. 2023; 454: 140046.

[32]

Wijaya F, Woo S, Lee H, Nugraha AF, Shin D, Bae B. Sulfonated poly(phenylene-co-arylene ether sulfone) multiblock membranes for application in high-performance fuel cells. J Membr Sci. 2022; 645: 120203.

[33]

Xu F, Chen Y, Li J, Han Y, Lin B, Ding J. Robust poly(alkyl-fluorene isatin) proton exchange membranes grafted with pendant sulfonate groups for proton exchange membrane fuel cells. J Membr Sci. 2022; 664: 121045.

[34]

Chu X, Miao S, Zhou A, Liu S, Liu L, Li N. A strategy to design quaternized poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes by atom transfer radical coupling. J Membr Sci. 2022; 649: 120397.

[35]

Song W, Liang X, Zhang H, et al. Ultrathin anion exchange membranes with an improved OH transfer rate for high-performance AEMFCs. J Mater Chem A. 2022; 10(40): 21503-21511.

[36]

Liu G, Wang A, Ji W, et al. Soluble ultra-high molecular weight poly(4,4′-diphenylether-5,5′-bibenzimidazole) based membranes with remarkable mechanical strength and specific proton conductivity for high temperature proton exchange membrane fuel cells. J Membr Sci. 2024; 693: 122348.

[37]

Xiao Y, Shen X, Sun R, et al. Enhanced proton conductivity and stability of polybenzimidazole membranes at low phosphoric acid doping levels via constructing efficient proton transport pathways with ionic liquids and carbon nanotubes. J Power Sources. 2022; 543: 231802.

[38]

Wang P, Lin J, Wu Y, Wang L. Construction of high-density proton transport channels in phosphoric acid doped polybenzimidazole membranes using ionic liquids and metal-organic frameworks. J Power Sources. 2023; 560: 232665.

[39]

Tang H, Geng K, Wu L, et al. Fuel cells with an operational range of -20°C to 200°C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat Energy. 2022; 7(2): 153-162.

[40]

Liu Q, Luo Y, Yang S, et al. Transfer-free in-situ synthesis of high-performance polybenzimidazole grafted graphene oxide-based proton exchange membrane for high-temperature proton exchange membrane fuel cells. J Power Sources. 2023; 559: 232666.

[41]

Ou Y, Qu T, Cheng F, et al. Dual reinforced composite membranes from in-situ ionic crosslinked quaternized chitosan filled quaternized polyvinylidene fluoride nanofiber for alkaline direct methanol fuel cell. Carbohydrate Polym. 2023; 322: 121363.

[42]

Qu E, Cheng G, Xiao M, et al. Composite membranes consisting of acidic carboxyl-containing polyimide and basic polybenzimidazole for high-temperature proton exchange membrane fuel cells. J Mater Chem A. 2023; 11(24): 12885-12895.

[43]

Fan X, Ou Y, Yang H, et al. Composite proton exchange membrane for fuel cells based on chitosan modified by acid-base amphoteric nanoparticles. Int J Biol Macromol. 2023; 254: 127796.

[44]

Fu J, Ni J, Wang J, et al. Highly proton conductive and mechanically robust SPEEK composite membranes incorporated with hierarchical metal-organic framework/carbon nanotubes compound. J Mater Res Technol. 2023; 22: 2660-2672.

[45]

Sood R, Cavaliere S, Jones DJ, Rozière J. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy. 2016; 26: 729-745.

[46]

Kallem P, Yanar N, Choi H. Nanofiber-based proton exchange membranes: development of aligned electrospun nanofibers for polymer electrolyte fuel cell applications. ACS Sustainable Chem Eng. 2019; 7(2): 1808-1825.

[47]

Vilela C, Silvestre AJD, Figueiredo FML, Freire CSR. Nanocellulose-based materials as components of polymer electrolyte fuel cells. J Mater Chem A. 2019; 7(35): 20045-20074.

[48]

Yusoff YN, Shaari N. An overview on the development of nanofiber-based as polymer electrolyte membrane and electrocatalyst in fuel cell application. Int J Energy Res. 2021; 45(13): 18441-18472.

[49]

Zhao G, Zhao H, Zhuang X, et al. Nanofiber hybrid membranes: progress and application in proton exchange membranes. J Mater Chem A. 2021; 9(7): 3729-3766.

[50]

Zeng L, Lu X, Yuan C, et al. Self-enhancement of perfluorinated sulfonic acid proton exchange membrane with its own nanofibers. Adv Mater. 2024; 36(15): 2305711.

[51]

Wang S, Wang Z, Xu J, et al. Construction of N-spirocyclic cationic three-dimensional highly stable transport channels by electrospinning for anion exchange membrane fuel cells. J Membr Sci. 2022; 660: 120852.

[52]

Liu G, Tsen W-C, Wen S. Sulfonated silica coated polyvinylidene fluoride electrospun nanofiber-based composite membranes for direct methanol fuel cells. Mater Des. 2020; 193: 108806.

[53]

Zhu B, Sui Y, Wei P, et al. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane. J Membr Sci. 2021; 628: 119214.

[54]

Zhang J, Liu H, Ma Y, et al. Construction of dual-interface proton channels based on γ-polyglutamic acid@cellulose whisker/PVDF nanofibers for proton exchange membranes. J Power Sources. 2022; 548: 231981.

[55]

Zhao G, Xu X, Di Y, et al. Amino acid clusters supported by cellulose nanofibers for proton exchange membranes. J Power Sources. 2019; 438: 227035.

[56]

Ni J, Wang J, Zhao S, et al. LDH nanosheets anchored on bacterial cellulose-based composite anion exchange membranes for significantly enhanced strength and ionic conductivity. Appl Clay Sci. 2022; 217: 106391.

[57]

Ding Y, Hou H, Zhao Y, Zhu Z, Fong H. Electrospun polyimide nanofibers and their applications. Prog Polym Sci. 2016; 61: 67-103.

[58]

Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019; 119(8): 5298-5415.

[59]

Liu J-H, Wang P, Gao Z, et al. Review on electrospinning anode and separators for lithium ion batteries. Renew Sustain Energy Rev. 2024; 189: 113939.

[60]

Wu Y, He G, Wu X, et al. Confinement of functionalized graphene oxide in sulfonated poly (ether ether ketone) nanofibers by coaxial electrospinning for polymer electrolyte membranes. Int J Hydrogen Energy. 2019; 44(14): 7494-7504.

[61]

Yuan Q, Fu Z, Wang Y, et al. Coaxial electrospun sulfonated poly (ether ether ketone) proton exchange membrane for conductivity-strength balance. J Membr Sci. 2020; 595: 117516.

[62]

Wei P, Sui Y, Li X, et al. Sandwich-structure PI/SPEEK/PI proton exchange membrane developed for achieving the high durability on excellent proton conductivity and stability. J Membr Sci. 2022; 644: 120116.

[63]

Li L, Liu X, Guo Y, Ma Y, Zhuang X, Kang W. Reasonable construction of proton conducting channel via biomimetic caterpillar-like alumina fiber to improve the properties of its composite proton exchange membrane. Int J Hydrogen Energy. 2022; 47(69): 29915-29924.

[64]

Sood R, Giancola S, Donnadio A, et al. Active electrospun nanofibers as an effective reinforcement for highly conducting and durable proton exchange membranes. J Membr Sci. 2021; 622: 119037.

[65]

Qian P, Wang H, Sheng J, Zhou Y, Shi H. Ultrahigh proton conductive nanofibrous composite membrane with an interpenetrating framework and enhanced acid-base interfacial layers for vanadium redox flow battery. J Membr Sci. 2022; 647: 120327.

[66]

Dong B, Gwee L, Salas-de la Cruz D, Winey KI, Elabd YA. Super proton conductive high-purity nafion nanofibers. Nano Lett. 2010; 10(9): 3785-3790.

[67]

Imaizumi S, Matsumoto H, Ashizawa M, Minagawa M, Tanioka A. Nanosize effects of sulfonated carbon nanofiber fabrics for high capacity ion-exchanger. RSC Adv. 2012; 2(7): 3109-3114.

[68]

Laforgue A, Robitaille L, Mokrini A, Ajji A. Fabrication and characterization of ionic conducting nanofibers. Macromol Mater Eng. 2007; 292(12): 1229-1236.

[69]

Bajon R, Balaji S, Guo SM. Electrospun nafion nanofiber for proton exchange membrane fuel cell application. J Fuel Cell Sci Technol. 2009; 6(3): 031004.

[70]

Wang J, Li P, Zhang Y, Liu Y, Wu W, Liu J. Porous Nafion nanofiber composite membrane with vertical pathways for efficient through-plane proton conduction. J Membr Sci. 2019; 585: 157-165.

[71]

Woo Park J, Wycisk R, Lin G, et al. Electrospun Nafion/PVDF single-fiber blended membranes for regenerative H2/Br2 fuel cells. J Membr Sci. 2017; 541: 85-92.

[72]

Wang M, Ma W, Yang C, Xia Z, Wang S, Sun G. Study on fiber-reinforced proton exchange membrane using high-surface-energy substrate. J Membr Sci. 2022; 647: 119940.

[73]

Powers D, Wycisk R, Pintauro PN. Electrospun tri-layer membranes for H2/air fuel cells. J Membr Sci. 2019; 573: 107-116.

[74]

Boaretti C, Pasquini L, Sood R, et al. Mechanically stable nanofibrous sPEEK/Aquivion® composite membranes for fuel cell applications. J Membr Sci. 2018; 545: 66-74.

[75]

Wang J, He Y, Zhao L, et al. Enhanced proton conductivities of nanofibrous composite membranes enabled by acid-base pairs under hydrated and anhydrous conditions. J Membr Sci. 2015; 482: 1-12.

[76]

Zhang H, He Y, Zhang J, Ma L, Li Y, Wang J. Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. J Membr Sci. 2016; 505: 108-118.

[77]

Tamura T, Kawakami H. Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 2010; 10(4): 1324-1328.

[78]

Takemori R, Ito G, Tanaka M, Kawakami H. Ultra-high proton conduction in electrospun sulfonated polyimide nanofibers. RSC Adv. 2014; 4(38): 20005-20009.

[79]

Wang L, Deng N, Liang Y, Ju J, Cheng B, Kang W. Metal-organic framework anchored sulfonated poly(ether sulfone) nanofibers as highly conductive channels for hybrid proton exchange membranes. J Power Sources. 2020; 450: 227592.

[80]

Hu W, Yang X, Hou X, et al. Novel nanocomposite PEM membranes with continuous proton transportation channel and reinforcing network formed by electrospinning solution casting method. Macromol Mater Eng. 2020; 305(6): 1900388.

[81]

Seino F, Konosu Y, Ashizawa M, Kakihana Y, Higa M, Matsumoto H. Polyelectrolyte composite membranes containing electrospun ion-exchange nanofibers: effect of nanofiber surface charges on ionic transport. Langmuir. 2018; 34(43): 13035-13040.

[82]

Zhou X, Zhu B, Zhu X, Miao J, Sun X, Zhou Q. Novel nanofiber-enhanced SPEEK proton-exchange membranes with high conductivity and stability. Polymer. 2020; 210: 123016.

[83]

Park AM, Pintauro PN. Alkaline fuel cell membranes from electrospun fiber mats. Electrochem Solid-State Lett. 2012; 15(3): B27-B30.

[84]

Roddecha S, Dong Z, Wu Y, Anthamatten M. Mechanical properties and ionic conductivity of electrospun quaternary ammonium ionomers. J Membr Sci. 2012; 389: 478-485.

[85]

Park AM, Turley FE, Wycisk RJ, Pintauro PN. Electrospun and cross-linked nanofiber composite anion exchange membranes. Macromolecules. 2013; 47(1): 227-235.

[86]

Park A, Turley F, Wycisk R, Pintauro P. Diol-crosslinked electrospun composite anion exchange membranes. J Electrochem Soc. 2015; 162(6): F560-F566.

[87]

Sailaja GS, Zhang P, Anilkumar GM, Yamaguchi T. Aniosotropically organized LDH on PVDF: a geometrically templated electrospun substrate for advanced anion conducting membranes. ACS Appl Mater Interfaces. 2015; 7(12): 6397-6401.

[88]

Park AM, Wycisk RJ, Ren X, Turley FE, Pintauro PN. Crosslinked poly(phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells. J Mater Chem A. 2016; 4(1): 132-141.

[89]

Abouzari-lotf E, Ghassemi H, Nasef MM, et al. Phase separated nanofibrous anion exchange membranes with polycationic side chains. J Mater Chem A. 2017; 5(29): 15326-15341.

[90]

Mann-Lahav M, Halabi M, Shter GE, et al Electrospun ionomeric fibers with anion conducting properties. Adv Funct Mater. 2019; 30(18): 1901733.

[91]

Duan H, Cheng X, Zeng L, Liao Q, Wang J, Wei Z. Achieving high conductivity at low ion exchange capacity for anion exchange membranes with electrospun polyelectrolyte nanofibers. ACS Appl Energy Mater. 2020; 3(11): 10660-10668.

[92]

Zhou Y, Bao R-Y, Liu Z, Yang M-B, Yang W. Electrospun modified polyketone-based anion exchange membranes with high ionic conductivity and robust mechanical properties. ACS Appl Energy Mater. 2021; 4(5): 5187-5200.

[93]

Zhou Y-C, Zhang Z-M, Zhou L, et al. Imidazole-functionalized polyketone-based polyelectrolytes with efficient ionic channels and superwettability for alkaline polyelectrolyte fuel cells and multiple liquid purification. J Mater Chem A. 2021; 9(26): 14827-14840.

[94]

Gong X, Dai Y, Yan X, et al. Electrospun imidazolium functionalized multiwalled carbon nanotube/polysulfone inorganic-organic nanofibers for reinforced anion exchange membranes. Int J Hydrogen Energy. 2018; 43(46): 21547-21559.

[95]

Wang L, Dou L, Yang Z. Electrospun and cross-linked nanofiber composite poly(aryl ether sulfone) for anion exchange membranes. J Polym Res. 2021; 28(8): 276.

[96]

Zhang Y, Chen W, Li T, et al. Tuning hydrogen bond and flexibility of N-spirocyclic cationic spacer for high performance anion exchange membranes. J Membr Sci. 2020; 613: 118507.

[97]

Hu C, Park JH, Kim HM, et al. Elucidating the role of alkyl chain in poly(aryl piperidinium) copolymers for anion exchange membrane fuel cells. J Membr Sci. 2022; 647: 120341.

[98]

Xue B, Zhu M-Z, Fu S-Q, Huang P-P, Qian H, Liu P-N. Facile synthesis of sulfonated poly(phenyl-alkane)s for proton exchange membrane fuel cells. J Membr Sci. 2023; 673: 121263.

[99]

Zhao S, Wang R, Tian T, Liu H, Zhang H, Tang H. Self-assembly-cooperating in situ construction of MXene-CeO2 as hybrid membrane coating for durable and high-performance proton exchange membrane fuel cell. ACS Sustainable Chem Eng. 2022; 10(13): 4269-4278.

[100]

Lee KA, Yoon KR, Kwon SH, et al. Post-assembly modification of polymeric composite membranes using spin drying for fuel cell applications. J Mater Chem A. 2019; 7(13): 7380-7388.

[101]

Xu Z, Wan L, Liao Y, Wang P, Liu K, Wang B. Anisotropic anion exchange membranes with extremely high water uptake for water electrolysis and fuel cells. J Mater Chem A. 2021; 9(41): 23485-23496.

[102]

Li Y, Hui J, Kawchuk J, O'Brien A, Jiang Z, Hoorfar M. Composite membranes of PVDF nanofibers impregnated with nafion for increased fuel concentrations in direct methanol fuel cells. Fuel Cells. 2019; 19(1): 43-50.

[103]

Wang S-H, Lin H-L. Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells. J Power Sources. 2014; 257: 254-263.

[104]

Lin H-L, Wang S-H, Chiu C-K, et al. Preparation of Nafion/poly(vinyl alcohol) electro-spun fiber composite membranes for direct methanol fuel cells. J Membr Sci. 2010; 365(1-2): 114-122.

[105]

Li H-Y, Lee Y-Y, Lai J-Y, Liu Y-L. Composite membranes of Nafion and poly(styrene sulfonic acid)-grafted poly(vinylidene fluoride) electrospun nanofiber mats for fuel cells. J Membr Sci. 2014; 466: 238-245.

[106]

Yao Y, Li J, Lu H, Gou J, Hui D. Investigation into hybrid configuration in electrospun nafion/silica nanofiber. Composites Part B. 2015; 69: 478-483.

[107]

Li H-Y, Liu Y-L. Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J Mater Chem A. 2014; 2(11): 3783-3793.

[108]

Liu G, Tsen W-C, Jang S-C, et al. Mechanically robust and highly methanol-resistant sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) nanofiber composite membranes for direct methanol fuel cells. J Membr Sci. 2019; 591: 117321.

[109]

Hwang C-K, Lee KA, Lee J, et al. Perpendicularly stacked array of PTFE nanofibers as a reinforcement for highly durable composite membrane in proton exchange membrane fuel cells. Nano Energy. 2022; 101: 107581.

[110]

Wang S, Shi L, Zhang S, et al. Proton-conducting amino acid-modified chitosan nanofibers for nanocomposite proton exchange membranes. Eur Polym J. 2019; 119: 327-334.

[111]

Cheng G, Li Z, Ren S, et al. A robust composite proton exchange membrane of sulfonated poly (fluorenyl ether ketone) with an electrospun polyimide mat for direct methanol fuel cells application. Polymers. 2021; 13(4): 523.

[112]

Bai Y, Han D, Xiao M, et al. New anhydrous proton exchange membranes based on polypyrrolone (PPy) for high-temperature polymer electrolyte fuel cells. J Power Sources. 2023; 563: 232823.

[113]

Duan Y, Ru C, Pang Y, Li J, Liu B, Zhao C. Crosslinked PAEK-based nanofiber reinforced Nafion membrane with ion-paired interfaces towards high-concentration DMFC. J Membr Sci. 2022; 655: 120589.

[114]

Jang S, Yoon YG, Lee YS, Choi YW. One-step fabrication and characterization of reinforced microcomposite membranes for polymer electrolyte membrane fuel cells. J Membr Sci. 2018; 563: 896-902.

[115]

Mohammadi M, Mehdipour-Ataei S. Preparation and properties of composite membranes of fully fluorinated nanofibrous electrospun mat impregnated with highly sulfonated polysulfone: effect of thermal treatment on the mat and the membranes thereof. Int J Hydrogen Energy. 2022; 47(39): 17313-17328.

[116]

Zhao G, Xu X, Shi L, Cheng B, Zhuang X. Bio-analogue l-lysine lined arrangement on nanofibers with superior proton-conduction for proton exchange membrane. Solid State Ionics. 2020; 348: 115289.

[117]

Liu G, Tsen W-C, Jang S-C, et al. Composite membranes from quaternized chitosan reinforced with surface-functionalized PVDF electrospun nanofibers for alkaline direct methanol fuel cells. J Membr Sci. 2020; 611: 118242.

[118]

Wang H, Zhang G, Li X, Zhuang X, Cheng B. Preparation and characterization of proton exchange membranes with through-membrane proton conducting channels. Ionics. 2017; 23(9): 2359-2366.

[119]

Wang H, Li X, Zhuang X, et al. Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. J Power Sources. 2017; 340: 201-209.

[120]

Lee C, Park J, Jeon Y, et al. Phosphate-modified TiO2/ZrO2 nanofibrous web composite membrane for enhanced performance and durability of high-temperature proton exchange membrane fuel cells. Energy Fuels. 2017; 31(7): 7645-7652.

[121]

Zhao G, Xu X, Shi L, Cheng B, Zhuang X, Yin Y. Biofunctionalized nanofiber hybrid proton exchange membrane based on acid-base ion-nanochannels with superior proton conductivity. J Power Sources. 2020; 452: 227839.

[122]

Peng R, Zhang S, Yao Y, et al. MOFs meet electrospinning: new opportunities for water treatment. Chem Eng J. 2023; 453: 139669.

[123]

Chen W, Chen M, Zhen D, et al. SO42−/SnO2 solid superacid granular stacked one-dimensional hollow nanofiber for a highly conductive proton-exchange membrane. ACS Appl Mater Interfaces. 2020; 12(36): 40740-40748.

[124]

Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater. 2020; 33(28): 2000619.

[125]

Xu T, Du H, Liu H, et al. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater. 2021; 33(48): 2101368.

[126]

Shi Z, Zhang Y, Phillips GO, Yang G. Utilization of bacterial cellulose in food. Food Hydrocolloids. 2014; 35: 539-545.

[127]

Huang C, Zhao G, Song Y, Xie C, Zhang S, Li X. Preparation of novel biodegradable cellulose nanocrystal proton exchange membranes for direct methanol fuel-cell applications. ACS Sustainable Chem Eng. 2022; 10(17): 5559-5568.

[128]

Mazega A, Signori-Iamin G, Aguado RJ, Tarrés Q, Ramos LP, Delgado-Aguilar M. Enzymatic pretreatment for cellulose nanofiber production: understanding morphological changes and predicting reducing sugar concentration. Int J Biol Macromol. 2023; 253: 127054.

[129]

Liu W, Liu K, Du H, et al. Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 2022; 14(1): 104.

[130]

Chen L, Abdalkarim SYH, Yu H, et al. Nanocellulose-based functional materials for advanced energy and sensor applications. Nano Res. 2022; 15(8): 7432-7452.

[131]

Lv P, Lu X, Wang L, Feng W. Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage. Adv Funct Mater. 2021; 31(45): 2104991.

[132]

Gadim TDO, Figueiredo AGPR, Rosero-Navarro NC, et al. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. ACS Appl Mater Interfaces. 2014; 6(10): 7864-7875.

[133]

Jiang G, Zhang J, Qiao J, et al. Bacterial nanocellulose/nafion composite membranes for low temperature polymer electrolyte fuel cells. J Power Sources. 2015; 273: 697-706.

[134]

Hasani-Sadrabadi MM, Dashtimoghadam E, Nasseri R, et al. Cellulose nanowhiskers to regulate the microstructure of perfluorosulfonate ionomers for high-performance fuel cells. J Mater Chem A. 2014; 2(29): 11334-11340.

[135]

Guccini V, Carlson A, Yu S, Lindbergh G, Lindström RW, Salazar-Alvarez G. Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells. J Mater Chem A. 2019; 7(43): 25032-25039.

[136]

Samaniego AJ, Espiritu R. Prospects on utilization of biopolymer materials for ion exchange membranes in fuel cells. Green Chem Lett Rev. 2022; 15(1): 253-275.

[137]

Thangarasu S, Oh TH. Recent developments on bioinspired cellulose containing polymer nanocomposite cation and anion exchange membranes for fuel cells (PEMFC and AFC). Polymers. 2022; 14(23): 5248.

[138]

Li L, Liu L, Qing Y, et al. Stretchable alkaline poly(acrylic acid) electrolyte with high ionic conductivity enhanced by cellulose nanofibrils. Electrochim Acta. 2018; 270: 302-309.

[139]

Wei Y, Shang Y, Ni C, et al. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes. Appl Surf Sci. 2017; 416: 996-1006.

[140]

Li J, Wei X, Wang Q, et al. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydrate Polym. 2012; 90(4): 1609-1613.

[141]

Kaushik M, Li AY, Hudson R, Masnadi M, Li C-J, Moores A. Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts. Green Chem. 2016; 18(1): 129-133.

[142]

Bayer T, Cunning BV, Selyanchyn R, et al. High temperature proton conduction in nanocellulose membranes: paper fuel cells. Chem Mater. 2016; 28(13): 4805-4814.

[143]

Ni C, Wei Y, Hu Q, et al. Nanocystalline cellulose reinforced sulfonated fluorenyl-containing polyaryletherketones for proton exchange membranes. Solid State Ionics. 2016; 297: 29-35.

[144]

Hou X, Liu Z, Wei Y, et al. Proton conducting nanocomposite membranes of nanocellulose reinforced poly(arylene ether ketone)s containing sulfonic/carboxylic groups. Solid State Ionics. 2017; 311: 31-40.

[145]

Ni C, Wang H, Zhao Q, et al. Crosslinking effect in nanocrystalline cellulose reinforced sulfonated poly(aryl ether ketone) proton exchange membranes. Solid State Ionics. 2018; 323: 5-15.

[146]

Ni C, Wei Y, Zhao Q, et al. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose. Appl Surf Sci. 2018; 434: 163-175.

[147]

Xu X, Zhao G, Wang H, et al. Bio-inspired amino-acid-functionalized cellulose whiskers incorporated into sulfonated polysulfone for proton exchange membrane. J Power Sources. 2019; 409: 123-131.

[148]

Bano S, Negi YS, Illathvalappil R, Kurungot S, Ramya K. Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes. Electrochim Acta. 2019; 293: 260-272.

[149]

Zhao Q, Wei Y, Ni C, et al. Effect of aminated nanocrystal cellulose on proton conductivity and dimensional stability of proton exchange membranes. Appl Surf Sci. 2019; 466: 691-702.

[150]

Wang L, Zuo X, Raut A, et al. Operation of proton exchange membrane (PEM) fuel cells using natural cellulose fiber membranes. Sustainable Energy Fuels. 2019; 3(10): 2725-2732.

[151]

Lu Y, Armentrout AA, Li J, Tekinalp HL, Nanda J, Ozcan S. A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes. J Mater Chem A. 2015; 3(25): 13350-13356.

[152]

Cheng X, Wang J, Liao Y, Li C, Wei Z. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal. ACS Appl Mater Interfaces. 2018; 10(28): 23774-23782.

[153]

Lee CM, Kafle K, Park YB, Kim SH. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys. 2014; 16(22): 10844-10853.

[154]

Sehaqui H, Zhou Q, Ikkala O, Berglund LA. Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules. 2011; 12(10): 3638-3644.

[155]

Zhao Y, Moser C, Lindström ME, Henriksson G, Li J. Cellulose nanofibers from softwood, hardwood, and tunicate: preparation-structure-film performance interrelation. ACS Appl Mater Interfaces. 2017; 9(15): 13508-13519.

[156]

Xu X, Li R, Tang C, et al. Cellulose nanofiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells. Carbohydrate Polym. 2018; 184: 299-306.

[157]

Cai Z, Li R, Xu X, et al. Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane. Polymer. 2018; 156: 179-185.

[158]

Jia W, Wu P. Stable functionalized graphene oxide-cellulose nanofiber solid electrolytes with long-range 1D/2D ionic nanochannels. J Mater Chem A. 2019; 7(36): 20871-20877.

[159]

Ram F, Velayutham P, Sahu AK, Lele AK, Shanmuganathan K. Enhancing thermomechanical and chemical stability of polymer electrolyte membranes using polydopamine coated nanocellulose. ACS Appl Energy Mater. 2020; 3(2): 1988-1999.

[160]

Wang S, Lin Y, Yang J, et al. UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane. Int J Hydrogen Energy. 2021; 46(36): 19106-19115.

[161]

Das G, Park BJ, Yoon HH. A bionanocomposite based on 1,4-diazabicyclo-[2.2.2]-octane cellulose nanofiber cross-linked-quaternary polysulfone as an anion conducting membrane. J Mater Chem A. 2016; 4(40): 15554-15564.

[162]

Peng Y, Wang Y, Wei X, et al. Sulfonated nanobamboo fiber-reinforced quaternary ammonia poly(ether ether ketone) membranes for alkaline polymer electrolyte fuel cells. ACS Appl Mater Interfaces. 2018; 10(39): 33581-33588.

[163]

Cao M, Chu J, Fan X, et al. Poly (ionic liquid) filled and cross-linked bacterial cellulose-based organic-inorganic composite anion exchange membrane with significantly improved ionic conductivity and mechanical strength. J Membr Sci. 2023; 675: 121558.

[164]

Yu Z, Tsen W-C, Qu T, et al. Highly ion-conductive anion exchange membranes with superior mechanical properties based on polymeric ionic liquid filled functionalized bacterial cellulose for alkaline fuel cells. J Mater Res Technol. 2023; 23: 6187-6199.

[165]

Cao M, Nie S, Wang J, et al. Biomass-based anion exchange membranes using poly (Ionic liquid) filled bacterial cellulose with superior ionic conductivity and significantly improved strength. J Nat Fibers. 2023; 20(1): 2181272.

[166]

Vilela C, Gadim TDO, Silvestre AJD, Freire CSR, Figueiredo FML. Nanocellulose/poly(methacryloyloxyethyl phosphate) composites as proton separator materials. Cellulose. 2016; 23(6): 3677-3689.

[167]

Gadim TDO, Loureiro FJA, Vilela C, et al. Protonic conductivity and fuel cell tests of nanocomposite membranes based on bacterial cellulose. Electrochim Acta. 2017; 233: 52-61.

[168]

Wang J, Liu Y, Dang J, et al. Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J Membr Sci. 2020; 602: 117978.

[169]

Kartika Sari A, Mohamad Yunus R, Majlan EH, et al. Nata de cassava type of bacterial cellulose doped with phosphoric acid as a proton exchange membrane. Membranes. 2022; 13(1): 43.

[170]

Zou Q, Guo X, Gao L, Hong F, Qiao J. Fabrication of bacterial cellulose membrane-based alkaline-exchange membrane for application in electrochemical reduction of CO2. Sep Purif Technol. 2021; 272: 118910.

[171]

Wu H, Guo X, Gao L, et al. Structural-enhanced bacterial cellulose based alkaline exchange membranes for highly selective CO2 electrochemical reduction and excellent conductive performance in flexible zinc-air batteries. Chem Eng J. 2023; 454: 139807.

[172]

Wang M, Wang L, Deng N, et al. Electrospun multi-scale nanofiber network: hierarchical proton-conducting channels in Nafion composite proton exchange membranes. Cellulose. 2021; 28(10): 6567-6585.

[173]

Li Z, Xu Y, Fan L, Kang W, Cheng B. Fabrication of polyvinylidene fluoride tree-like nanofiber via one-step electrospinning. Mater Des. 2016; 92: 95-101.

[174]

Zhao H, Kang W, Ma X, Deng N, Li Z, Cheng B. Fabrication and catalytic behavior of hierarchically-structured nylon 6 nanofiber membrane decorated with silver nanoparticles. Chin J Catal. 2017; 38(1): 73-82.

[175]

Gao L, Li J, Ju J, Cheng B, Kang W, Deng N. High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery. J Energy Chem. 2021; 54: 644-654.

[176]

Zhao H, Yan J, Deng N, Kang W, Cheng B. A versatile nano-TiO2 decorated gel separator with derived multi-scale nanofibers towards dendrite-blocking and polysulfide-inhibiting lithium-metal batteries. J Energy Chem. 2021; 55: 190-201.

[177]

Gong X, He G, Wu Y, et al. Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly (phthalazinone ether sulfone ketone) proton exchange membranes. J Power Sources. 2017; 358: 134-141.

[178]

Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM. Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe2O3 nanoparticles for direct methanol fuel cell application. Int J Hydrogen Energy. 2011; 36(23): 15323-15332.

[179]

Tang J, Yuan W, Wang J, Tang J, Li H, Zhang Y. Perfluorosulfonate ionomer membranes with improved through-plane proton conductivity fabricated under magnetic field. J Membr Sci. 2012; 423-424: 267-274.

[180]

Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM. Nafion-based magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ionics. 2013; 232: 58-67.

[181]

Li P, Dang J, Wu W, et al. Nanofiber composite membrane using quantum dot hybridized SPEEK nanofiber for efficient through-plane proton conduction. J Membr Sci. 2020; 609: 118198.

[182]

Odess A, Cohen M, Li J, Dantus M, Zussman E, Freger V. Electrospun ion-conducting composite membrane with buckling-induced anisotropic through-plane conductivity. ACS Appl Mater Interfaces. 2021; 13(30): 35700-35708.

[183]

Zhang Y, Zhang X, Li P, et al. Porous nanofiber composite membrane with 3D interpenetrating networks towards ultrafast and isotropic proton conduction. J Mater Chem A. 2020; 8(10): 5128-5137.

[184]

Park JW, Wycisk R, Pintauro PN. Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells. J Membr Sci. 2015; 490: 103-112.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/