High performance CO reduction at electrolyzer stack level through system optimization

Mohd Monis Ayyub , Tamás Fődi , Balázs Endrődi , Csaba Janáky

Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e674

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e674 DOI: 10.1002/cey2.674
RESEARCH ARTICLE

High performance CO reduction at electrolyzer stack level through system optimization

Author information +
History +
PDF

Abstract

This study demonstrates the electrochemical reduction of carbon monoxide (COR) at high current densities in a zero-gap electrolyzer cell and cell stack. By systematically optimizing both the commercially available membrane electrode assembly components (including binder content and gas diffusion layer) and the operating conditions, we could perform COR at current densities up to 1.4 A cm−2 with a maximum C2+ selectivity of 90%. We demonstrated the scale-up to a 3 × 100 cm2 electrolyzer stack that can sustain stable operation at 1 A cm−2 for several hours without significant performance decay and with a total C2+ selectivity of ~80% and an ethylene selectivity of ~40%. We provide critical insights into the holistic optimization of key system parameters, without using special catalysts or surface additives, which can pave the way for scalable and industrially viable COR processes.

Keywords

CO reduction / electrolysis / membrane electrode assembly / scale-up

Cite this article

Download citation ▾
Mohd Monis Ayyub, Tamás Fődi, Balázs Endrődi, Csaba Janáky. High performance CO reduction at electrolyzer stack level through system optimization. Carbon Energy, 2025, 7(3): e674 DOI:10.1002/cey2.674

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science. 2019; 364(6438): eaav3506.

[2]

Kuhl KP, Cave ER, Abram DN, Jaramillo TF. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci. 2012; 5(5): 7050.

[3]

Li CW, Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc. 2012; 134(17): 7231-7234.

[4]

Dinh CT, Burdyny T, Kibria MG, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science. 2018; 360(6390): 783-787.

[5]

O'Brien CP, Miao RK, Shayesteh Zeraati A, Lee G, Sargent EH, Sinton D. CO2 electrolyzers. Chem Rev. 2024; 124(7): 3648-3693.

[6]

Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao SZ. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc. 2019; 141(19): 7646-7659.

[7]

Jouny M, Hutchings GS, Jiao F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat Catal. 2019; 2(12): 1062-1070.

[8]

Larrazábal GO, Strøm-Hansen P, Heli JP, et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl Mater Interfaces. 2019; 11(44): 41281-41288.

[9]

El-Nagar GA, Haun F, Gupta S, Stojkovikj S, Mayer MT. Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers. Nat Commun. 2023; 14(1): 2062.

[10]

Schellekens MP, Raaijman SJ, T. M. Koper M, Corbett PJ. Temperature-dependent selectivity for CO electroreduction on copper-based gas-diffusion electrodes at high current densities. Chem Eng J. 2024; 483: 149105.

[11]

Ozden A, Wang Y, Li F, et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule. 2021; 5(3): 706-719.

[12]

Overa S, Feric TG, Park AHA, Jiao F. Tandem and hybrid processes for carbon dioxide utilization. Joule. 2021; 5(1): 8-13.

[13]

Möller T, Filippi M, Brückner S, Ju W, Strasser P. A CO2 electrolyzer tandem cell system for CO2-CO co-feed valorization in a Ni-N-C/Cu-catalyzed reaction cascade. Nat Commun. 2023; 14(1): 5680.

[14]

Alkayyali T, Zargartalebi M, Ozden A, et al. Pathways to reduce the energy cost of carbon monoxide electroreduction to ethylene. Joule. 2024; 8(5): 1478-1500.

[15]

Kim JYT, Sellers C, Hao S, Senftle TP, Wang H. Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nat Catal. 2023; 6(12): 1115-1124.

[16]

Jouny M, Luc W, Jiao F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat Catal. 2018; 1(10): 748-755.

[17]

Wei P, Gao D, Liu T, et al. Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nat Nanotechnol. 2023; 18(3): 299-306.

[18]

Xu Q, Garg S, Moss AB, et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat Catal. 2023; 6(11): 1042-1051.

[19]

Li J, Wang Z, McCallum C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat Catal. 2019; 2(12): 1124-1131.

[20]

Watkins NB, Schiffer ZJ, Lai Y, et al. Hydrodynamics change tafel slopes in electrochemical CO2 reduction on copper. ACS Energy Lett. 2023; 8(5): 2185-2192.

[21]

Ma W, Xie S, Zhang B, et al. Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates. Chem. 2023; 9(8): 2161-2177.

[22]

Wang X, Chen Y, Li F, et al. Site-selective protonation enables efficient carbon monoxide electroreduction to acetate. Nat Commun. 2024; 15(1): 616.

[23]

Dorakhan R, Grigioni I, Lee BH, et al. A silver-copper oxide catalyst for acetate electrosynthesis from carbon monoxide. Nat Synth. 2023; 2(5): 448-457.

[24]

Yao K, Li J, Ozden A, et al. In situ copper faceting enables efficient CO2/CO electrolysis. Nat Commun. 2024; 15(1): 1749.

[25]

Henckel D, Saha P, Intia F, et al. Elucidation of critical catalyst layer phenomena toward high production rates for the electrochemical conversion of CO to ethylene. ACS Appl Mater Interfaces. 2024; 16(3): 3243-3252.

[26]

Monis Ayyub M, Kormányos A, Endrődi B, Janáky C. Electrochemical carbon monoxide reduction at high current density: cell configuration matters. Chem Eng J. 2024; 490: 151698.

[27]

Li H, Wei P, Liu T, et al. CO electrolysis to multicarbon products over grain boundary-rich Cu nanoparticles in membrane electrode assembly electrolyzers. Nat Commun. 2024; 15(1): 4603.

[28]

Crandall BS, Ko BH, Overa S, et al. Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production. Nat Chem Eng. 2024; 1(6): 421-429.

[29]

Xu Q, Liu S, Longhin F, Kastlunger G, Chorkendorff I, Seger B. Impact of anodic oxidation reactions in the performance evaluation of high-rate CO2/CO electrolysis. Adv Mater. 2024; 36(2): 2306741.

[30]

Nesbitt NT, Burdyny T, Simonson H, et al. Liquid-solid boundaries dominate activity of CO2 reduction on gas-diffusion electrodes. ACS Catal. 2020; 10(23): 14093-14106.

[31]

Moore T, Xia X, Baker SE, Duoss EB, Beck VA. Elucidating mass transport regimes in gas diffusion electrodes for CO2 electroreduction. ACS Energy Lett. 2021; 6(10): 3600-3606.

[32]

Kormányos A, Endrődi B, Zhang Z, et al. Local hydrophobicity allows high-performance electrochemical carbon monoxide reduction to C2+ products. EES Catal. 2023; 1(3): 263-273.

[33]

Endrődi B, Kecsenovity E, Samu A, et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ Sci. 2020; 13(11): 4098-4105.

[34]

Samu AA, Szenti I, Kukovecz Á, Endrődi B, Janáky C. Systematic screening of gas diffusion layers for high performance CO2 electrolysis. Commun Chem. 2023; 6(1): 41.

[35]

Etzi M, Dangbegnon J, Chiodoni A, Pirri CF. Impact of gas diffusion layer architecture on the performances of Cu-based electrodes for CO2 electroreduction to ethylene in flow reactors. J CO2 Util. 2024; 83: 102772.

[36]

Endrődi B, Kecsenovity E, Samu A, et al. Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency. ACS Energy Lett. 2019; 4(7): 1770-1777.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/