Template-oriented synthesis of boron/nitrogen-rich carbon nanoflake superstructure for high-performance Zn-ion hybrid capacitors

Chunjiang Jin , Fengjiao Guo , Hongyu Mi , Nianjun Yang , Congcong Yang , Xiaqing Chang , Jieshan Qiu

Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e673

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e673 DOI: 10.1002/cey2.673
RESEARCH ARTICLE

Template-oriented synthesis of boron/nitrogen-rich carbon nanoflake superstructure for high-performance Zn-ion hybrid capacitors

Author information +
History +
PDF

Abstract

The rise of Zn-ion hybrid capacitor (ZHC) has imposed high requirements on carbon cathodes, including reasonable configuration, high specific surface area, multiscale pores, and abundant defects. To achieve this objective, a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure, referred to as BNPC. The hierarchically porous framework of BNPC shares short channels for fast Zn2+ transport, increased adsorption-site accessibility, and structural robustness. Additionally, the boron/nitrogen incorporation effect significantly augments Zn2+ adsorption capability and more distinctive pseudocapacitive nature, notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode. These merits contribute to a high capacity (143.7 mAh g−1 at 0.2 A g−1) and excellent rate capability (84.5 mAh g−1 at 30 A g−1) of BNPC-based aqueous ZHC, and the ZHC still shows an ultrahigh capacity of 108.5 mAh g−1 even under a high BNPC mass loading of 12 mg cm−2. More critically, the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h−1 along with a preeminent energy output of 117.15 Wh kg−1 at a power density of 163.15 W kg−1, favoring a creditable applicability in modern electronics. In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth. The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.

Keywords

active site density / carbon superstructure / heteroatom doping / MOF template / Zn-ion hybrid capacitor

Cite this article

Download citation ▾
Chunjiang Jin, Fengjiao Guo, Hongyu Mi, Nianjun Yang, Congcong Yang, Xiaqing Chang, Jieshan Qiu. Template-oriented synthesis of boron/nitrogen-rich carbon nanoflake superstructure for high-performance Zn-ion hybrid capacitors. Carbon Energy, 2025, 7(3): e673 DOI:10.1002/cey2.673

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu M, Wu F, Feng X, et al. Molecular engineering toward sustainable development of multiple-doped hierarchical porous carbons for superior zinc ion storage. Sci China Mater. 2022; 66(2): 541-555.

[2]

Tang H, Yao J, Zhu Y. Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv Energy Mater. 2021; 11(14): 2003994.

[3]

Liu Y, Wu L. Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy. 2023; 109: 108290.

[4]

Lu Y, Li Z, Bai Z, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy. 2019; 66: 104132.

[5]

Kumar R, Joanni E, Sahoo S, et al. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: from zero to bi-dimensional materials. Carbon. 2022; 193(30): 298-338.

[6]

Song Y, Ji K, Duan H, Shao M. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides. Exploration. 2021; 1(3): 20210050.

[7]

Li X, Li Y, Xie S, Zhou Y, Rong J, Dong L. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem Eng J. 2022; 427(1): 131799.

[8]

Lou G, Pei G, Wu Y, et al. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem Eng J. 2021; 413(1): 127502.

[9]

Chen S, Ma L, Zhang K, Kamruzzaman M, Zhi C, Zapien JA. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J Mater Chem A. 2019; 7(13): 7784-7790.

[10]

Liu Q, Zhang H, Xie J, Liu X, Lu X. Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon Energy. 2020; 2(4): 521-539.

[11]

Zhang Y, Song Z, Miao L, et al. A crystal splitting growth and self-assembly route to carbon superstructures with high energy and superstable Zn-ion storage. Chem Eng J. 2023; 467: 143497.

[12]

Li Y, Xiao K, Huang C, et al. Enhanced potassium-ion storage of the 3D carbon superstructure by manipulating the nitrogen-doped species and morphology. Nano-Micro Lett. 2020; 13(1): 1.

[13]

Li B, Yu M, Li Z, Yu C, Wang H, Li Q. Constructing flexible all-solid-state supercapacitors from 3D nanosheets active bricks via 3D manufacturing technology: a perspective review. Adv Funct Mater. 2022; 32(29): 2201166.

[14]

Wang Z, Zhang M, Ma W, Zhu J, Song W. Application of carbon materials in aqueous zinc ion energy storage devices. Small. 2021; 17(19): 2100219.

[15]

Li Z, Mi H, Bai Z, et al. Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors. J Power Sources. 2019; 418(1): 112-121.

[16]

Li Y, Wang G, Wei T, Fan Z, Yan P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy. 2016; 19: 165-175.

[17]

Lu SY, Jin M, Zhang Y, Niu YB, Gao JC, Li CM. Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv Energy Mater. 2018; 8(11): 1702545.

[18]

Wang C, Yan B, Zheng J, et al. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv Powder Mater. 2022; 1(2): 100018.

[19]

Du R, Wu Y, Yang Y, et al. Porosity engineering of MOF-based materials for electrochemical energy storage. Adv Energy Mater. 2021; 11(20): 2100154.

[20]

Deng X, Li J, Zhu S, Ma L, Zhao N. Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Stor Mater. 2019; 23: 491-498.

[21]

Wang L, Jiao Y, Yao S, Li P, Wang R, Chen G. MOF-derived NiO/Ni architecture encapsulated into N-doped carbon nanotubes for advanced asymmetric supercapacitors. Inorg Chem Front. 2019; 6(6): 1553-1560.

[22]

Kshetri T, Khumujam DD, Singh TI, Lee YS, Kim NH, Lee JH. Co-MOF@MXene-carbon nanofiber-based freestanding electrodes for a flexible and wearable quasi-solid-state supercapacitor. Chem Eng J. 2022; 437: 135338.

[23]

Wang H, Chen Q, Xiao P, Cao L. Unlocking zinc-ion energy storage performance of onion-like carbon by promoting heteroatom doping strategy. ACS Appl Mater Interfaces. 2022; 14(7): 9013-9023.

[24]

Ghosh S, Barg S, Jeong SM, Ostrikov K. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater. 2020; 10(32): 2001239.

[25]

Li J, Zhang J, Yu L, et al. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors. Energy Stor Mater. 2021; 42: 705-714.

[26]

Song Z, Miao L, Ruhlmann L, et al. Self-assembled carbon superstructures achieving ultra-stable and fast proton-coupled charge storage kinetics. Adv Mater. 2021; 33(49): 2104148.

[27]

Yang M, Bai Q. Flower-like hierarchical Ni-Zn MOF microspheres: efficient adsorbents for dye removal. Colloids Surf A. 2019; 582: 123795.

[28]

Arul P, John SA. Organic solvent free in situ growth of flower like Co-ZIF microstructures on nickel foam for glucose sensing and supercapacitor applications. Electrochim Acta. 2019; 306: 254-263.

[29]

Li M, Tang M, Xue P, Dai H, He T, Wang Z. A binder-free, well-integrated metal-organic frameworks@polypyrrole nanofilm electrocatalyst for highly efficient and selective reduction of carbon dioxide. Mater Today Energy. 2022; 30: 101140.

[30]

Qin Z, Xu Y, Liu L, et al. Ni-MOF composite polypyrrole applied to supercapacitor energy storage. RSC Adv. 2022; 12(45): 29177-29186.

[31]

Majidi R, Farhadi A, Danaee I, Panah NB, Zarei D, Nikmanesh S. Investigation of synthesized planar Cu-MOF and spherical Ni-MOF nanofillers for improving the anti-corrosion performance of epoxy coatings. Prog Org Coat. 2023; 183: 107803.

[32]

Jafarinejad-Farsangi S, Ansari-Asl Z, Rostamzadeh F, Neisi Z. Polypyrrole/Ni (II) metal-organic frameworks nanocomposites: fabrication, characterization, and biocompatibility investigations. Mater Today Commun. 2021; 28: 102559.

[33]

Cai W, Chen J, Liu L, Yang Y, Wang H. Tuning the structural stability of LiBH4 through boron-based compounds towards superior dehydrogenation. J Mater Chem A. 2018; 6(3): 1171-1180.

[34]

Yao Y, Huang G, Liu Y, et al. Facile synthesis of B/N co-doped porous carbon nanosheets with high heteroatom content and electrical conductivity for excellent-performance supercapacitors. Appl Surf Sci. 2022; 580: 152236.

[35]

Wang Y, Yang J, Liu S, et al. 3D graphene-like oxygen and sulfur-doped porous carbon nanosheets with multilevel ion channels for high-performance aqueous Zn-ion storage. Carbon. 2023; 201: 624-632.

[36]

Chen X, Ye P, Wang H, Huang H, Zhong Y, Hu Y. Discriminating active B-N sites in coralloidal B, N dual-doped carbon nano-bundles for boosted zn-ion storage capability. Adv Funct Mater. 2023; 33(12): 2212915.

[37]

Yuan M, Wang Z, Rao Y, et al. Laser direct writing O/N/S Co-doped hierarchically porous graphene on carboxymethyl chitosan/lignin-reinforced wood for boosted microsupercapacitor. Carbon. 2023; 202: 296-304.

[38]

Xu J, Li Z, Sun P, et al. Effective incorporation of nitrogen and boron in worm-like carbon foam for confining polysulfides. Carbon. 2019; 155: 379-385.

[39]

Wang B, Gu L, Yuan F, et al. Edge-enrich N-doped graphitic carbon: boosting rate capability and cyclability for potassium ion battery. Chem Eng J. 2022; 432: 134321.

[40]

Leng C, Fedoseeva YV, Zhao Z, et al. Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities. J Power Sources. 2022; 536: 231484.

[41]

Yang L, Cao Z, Chen D, et al. Boron enriched edge-nitrogen defective carbon network toward high-capacity capacitive deionization. Chem Eng J. 2024; 489: 151214.

[42]

Zhang Z, Ouyang D, Chen D, Yang L, Zhu H, Yin J. Tuning nitrogen species in 3D porous carbon via boron doping for boosted Zn-ion storage capability. J Mater Chem A. 2024; 12(5): 3026-3033.

[43]

Dahal B, Mukhiya T, Ojha GP, et al. In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors. Electrochim Acta. 2019; 301: 209-219.

[44]

Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev. 2014; 43(20): 7067-7098.

[45]

Zhu T, Li S, Ren B, Zhang L, Dong L, Tan L. Plasma-induced synthesis of boron and nitrogen co-doped reduced graphene oxide for super-capacitors. J Mater Sci. 2019; 54(13): 9632-9642.

[46]

Cançado LG, Jorio A, Ferreira EHM, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011; 11(8): 3190-3196.

[47]

Liu C, Chang X, Mi H, Guo F, Ji C, Qiu J. Modulating pore nanostructure coupled with N/O doping towards competitive coal tar pitch-based carbon cathode for aqueous Zn-ion storage. Carbon. 2024; 216: 118523.

[48]

Zhang X, Jiang C, Li H, et al. Rational design of activated graphitic carbon spheres with optimized ion and electron transfer channels for zinc-ion hybrid capacitors. J Colloid Interface Sci. 2023; 651: 211-220.

[49]

Chen X, Ye P, Wang H, Huang H, Zhong Y, Hu Y. Discriminating active B N sites in coralloidal B, N dual-doped carbon nano-bundles for boosted Zn-ion storage capability. Adv Funct Mater. 2023; 33(12): 2212915.

[50]

Xu H, He W, Li Z, et al. Revisiting charge storage mechanism of reduced graphene oxide in zinc ion hybrid capacitor beyond the contribution of oxygen-containing groups. Adv Funct Mater. 2022; 32(16): 2111131.

[51]

Gao Y, Li G, Wang F, et al. A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 2021; 40: 31-40.

[52]

Zhang H, Chen Z, Zhang Y, et al. Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. J Mater Chem A. 2021; 9(30): 16565-16574.

[53]

Deng X, Li J, Shan Z, Sha J, Ma L, Zhao N. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J Mater Chem A. 2020; 8(23): 11617-11625.

[54]

Liu P, Gao Y, Tan Y, et al. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019; 12(11): 2835-2841.

[55]

Ali A, Shen PK. Nonprecious metal's graphene-supported electrocatalysts for hydrogen evolution reaction: fundamentals to applications. Carbon Energy. 2020; 2(1): 99-121.

[56]

Chang X, Zhu Q, Zhao Q, et al. 3D porous Co3O4/MXene foam fabricated via a sulfur template strategy for enhanced Li/K-ion storage. ACS Appl Mater Interfaces. 2023; 15(6): 7999-8009.

[57]

Lu Y, Liang J, Deng S, et al. Hypercrosslinked polymers enabled micropore-dominant N,S Co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy. 2019; 65: 103993.

[58]

Javed MS, Najam T, Hussain I, et al Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors. Adv Energy Mater. 2022; 13(3): 2202303.

[59]

Yang Q, Huang Z, Li X, et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano. 2019; 13(7): 8275-8283.

[60]

García-Cruz L, Ratajczak P, Iniesta J, Montiel V, Béguin F. Self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte. Electrochim Acta. 2016; 202: 66-72.

[61]

Jiang Y, Ba D, Li Y, Liu J. Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn-Mn batteries with superior performance. Adv Sci. 2020; 7(6): 1902795.

[62]

Yoo HD, Han SD, Bayliss RD, et al. Rocking-chair”-type metal hybrid supercapacitors. ACS Appl Mater Interfaces. 2016; 8(45): 30853-30862.

[63]

Li Y, Yang W, Yang W, et al. Towards high-energy and anti-self-discharge Zn-Ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 2021; 13(1): 95.

[64]

El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun. 2013; 4(1): 1475.

[65]

Yang Z, Chang X, Mi H, et al. Oxygen-enriched pitch-derived hierarchically porous carbon toward boosted zinc-ion storage performance. J Colloid Interface Sci. 2024; 658: 506-517.

[66]

Li X, Li Y, Zhao X, Kang F, Dong L. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 2022; 53: 505-513.

[67]

Yuan R, Wang H, Shang L, et al. Revealing the self-doping defects in carbon materials for the compact capacitive energy storage of Zn-Ion capacitors. ACS Appl Mater Interfaces. 2023; 15(2): 3006-3016.

[68]

Wang L, Peng M, Chen J, Hu T, Yuan K, Chen Y. Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-Ion storage capability. Adv Mater. 2022; 34(39): 2203744.

[69]

Peng Z, Bannov AG, Li S, et al. Coupling uniform pore size and multi-chemisorption sites: hierarchically ordered porous carbon for ultra-fast and large zinc ion storage. Adv Funct Mater. 2023; 33(40): 2303205.

[70]

Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020; 28: 307-314.

[71]

Yang J, Cao Y, Zhang S, et al. Interstitial hydrogen atom to boost intrinsic catalytic activity of tungsten oxide for hydrogen evolution reaction. Small. 2023; 19(29): 2207295.

[72]

Sun Y, Ding S, Xia B, Duan J, Antonietti M, Chen S. Biomimetic FeMo (Se, Te) as joint electron pool promoting nitrogen electrofixation. Angew Chem Int Ed. 2022; 61(16): e202115198.

[73]

Song Z, Miao L, Ruhlmann L, et al. Lewis pair interaction self-assembly of carbon superstructures harvesting high-energy and ultralong-life zinc-ion storage. Adv Funct Mater. 2022; 32(48): 2208049.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/