Electrochemical evolution of a metal oxyhydroxide surface on two-dimensional layered metal phosphorus trisulfides enables the oxidation of amine to nitrile

Binglan Wu , Karim Harrath , Marshet Getaye Sendeku , Tofik Ahmed Shifa , Yuxin Huang , Jing Tai , Fekadu Tsegaye Dajan , Kassa Belay Ibrahim , Xueying Zhan , Zhenxing Wang , Elisa Moretti , Ying Yang , Fengmei Wang , Alberto Vomiero

Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e672

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e672 DOI: 10.1002/cey2.672
RESEARCH ARTICLE

Electrochemical evolution of a metal oxyhydroxide surface on two-dimensional layered metal phosphorus trisulfides enables the oxidation of amine to nitrile

Author information +
History +
PDF

Abstract

Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds, but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis. Herein, we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides (Ni1−xFexPS3) during the oxidation of benzylamine (BA). In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1−x)FexPS3 undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide (NiFeOOH/Ni1−xFexPS3) heterostructure. Interestingly, the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53% for benzonitrile (BN) synthesis. Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1−xFexPS3 heterostructure could offer optimum free energy for BA adsorption and BN desorption, resulting in promising BN synthesis.

Keywords

2D layered materials / benzylamine oxidation / metal phosphorus trichalcogenides / surface-reconstructed heterostructure

Cite this article

Download citation ▾
Binglan Wu, Karim Harrath, Marshet Getaye Sendeku, Tofik Ahmed Shifa, Yuxin Huang, Jing Tai, Fekadu Tsegaye Dajan, Kassa Belay Ibrahim, Xueying Zhan, Zhenxing Wang, Elisa Moretti, Ying Yang, Fengmei Wang, Alberto Vomiero. Electrochemical evolution of a metal oxyhydroxide surface on two-dimensional layered metal phosphorus trisulfides enables the oxidation of amine to nitrile. Carbon Energy, 2025, 7(3): e672 DOI:10.1002/cey2.672

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akhade, SA, Singh N, Gutiérrez O, OY, et al. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem Rev. 2020; 120(20): 11370-11419.

[2]

Ali T, Wang H, Iqbal W, Bashir T, Shah R, Hu Y. Electro-synthesis of organic compounds with heterogeneous catalysis. Adv Sci. 2023; 10(1): 2205077.

[3]

Sendeku MG, Shifa TA, Dajan FT, et al. Frontiers in photoelectrochemical catalysis: a focus on valuable product synthesis. Adv Mater. 2024; 36(21): 2308101.

[4]

Anbarasan P, Schareina T, Beller M. Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chem Soc Rev. 2011; 40(10): 5049-5067.

[5]

Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew Chem Int Ed. 2011; 50(3): 657-660.

[6]

Wang T, Jiao N. Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage. Acc Chem Res. 2014; 47(4): 1137-1145.

[7]

Flood TC, Bitler SP. Reversible formal alkene insertion into a chelated platinum-alkyl bond. J Am Chem Soc. 1984; 106(20): 6076-6077.

[8]

Huang Y, Chong X, Liu C, Liang Y, Zhang B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew Chem Int Ed. 2018; 57(40): 13163-13166.

[9]

Kim J, Stahl SS. Cu/nitroxyl catalyzed aerobic oxidation of primary amines into nitriles at room temperature. ACS Catal. 2013; 3(7): 1652-1656.

[10]

Ovoshchnikov DS, Donoeva BG, Golovko VB. Visible-light-driven aerobic oxidation of amines to nitriles over hydrous ruthenium oxide supported on TiO2. ACS Catal. 2015; 5(1): 34-38.

[11]

Parshad H, Frydenvang K, Liljefors T, Larsen CS. Correlation of aqueous solubility of salts of benzylamine with experimentally and theoretically derived parameters. A multivariate data analysis approach. Int J Pharm. 2002; 237(1-2): 193-207.

[12]

Ding Y, Miao BQ, Li SN, et al. Benzylamine oxidation boosted electrochemical water-splitting: hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Appl Catal B. 2020; 268: 118393.

[13]

Zeng L, Chen W, Zhang Q, et al. CoSe2 subnanometer belts with se vacancies and ni substitutions for the efficient electrosynthesis of high-value-added nitriles coupled with hydrogen generation. ACS Catal. 2022; 12(18): 11391-11401.

[14]

Sun Y, Shin H, Wang F, et al. Highly selective electrocatalytic oxidation of amines to nitriles assisted by water oxidation on metal-doped α-Ni(OH)2. J Am Chem Soc. 2022; 144(33): 15185-15192.

[15]

Wen Q, Lin Y, Yang Y, et al. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation. ACS Nano. 2022; 16(6): 9572-9582.

[16]

Wang W, Wang Y, Yang R, et al. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C−N bonds to nitrile C≡N bonds. Angew Chem Int Ed. 2020; 59(39): 16974-16981.

[17]

Wang Y, Xue Y-Y, Yan L-T, et al. Multimetal incorporation into 2D conductive metal-organic framework nanowires enabling excellent electrocatalytic oxidation of benzylamine to benzonitrile. ACS Appl Mater Interfaces. 2020; 12(22): 24786-24795.

[18]

Zeng Y, Zhao M, Huang Z, et al. Surface reconstruction of water splitting electrocatalysts. Adv Energy Mater. 2022; 12(33): 2201713.

[19]

Polo-Garzon F, Bao Z, Zhang X, Huang W, Wu Z. Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catal. 2019; 9(6): 5692-5707.

[20]

Duan Y, Sun S, Sun Y, et al. Mastering surface reconstruction of metastable spinel oxides for better water oxidation. Adv Mater. 2019; 31(12): 1807898.

[21]

Belay Ibrahim, K, Ahmed Shifa, T, Zorzi S, Getaye Sendeku, M, Moretti E Vomiero A. Emerging 2D materials beyond mxenes and TMDs: transition metal carbo-chalcogenides. Prog Mater Sci. 2024; 144: 101287.

[22]

He Z, Ajmal M, Zhang M, et al. Progress in manipulating dynamic surface reconstruction via anion modulation for electrocatalytic water oxidation. Adv Sci. 2023; 10(29): 2304071.

[23]

Sun Y, Wang J, Xi S, et al. Navigating surface reconstruction of spinel oxides for electrochemical water oxidation. Nat Commun. 2023; 14(1): 2467.

[24]

Bender MT, Choi K-S. Electrochemical dehydrogenation pathways of amines to nitriles on NiOOH. JACS Au. 2022; 2(5): 1169-1180.

[25]

Samal R, Sanyal G, Chakraborty B, Rout CS. Two-dimensional transition metal phosphorous trichalcogenides (MPX3): a review on emerging trends, current state and future perspectives. J Mater Chem A. 2021; 9(5): 2560-2591.

[26]

Sendeku MG, Harrath K, Dajan FT, et al. Deciphering in-situ surface reconstruction in two-dimensional CdPS3 nanosheets for efficient biomass hydrogenation. Nat Commun. 2024; 15(1): 5174.

[27]

Gusmão R, Sofer Z, Sedmidubský D, Huber Š, Pumera M. The role of the metal element in layered metal phosphorus triselenides upon their electrochemical sensing and energy applications. ACS Catal. 2017; 7(12): 8159-8170.

[28]

Mukherjee D, Austeria PM, Sampath S. Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide pH range. ACS Energy Lett. 2016; 1(2): 367-372.

[29]

Hao Y, Huang A, Han S, et al. Plasma-treated ultrathin ternary FePSe3 nanosheets as a bifunctional electrocatalyst for efficient zinc-air batteries. ACS Appl Mater Interfaces. 2020; 12(26): 29393-29403.

[30]

Mayorga-Martinez CC, Sofer Z, Sedmidubský D, Huber Š, Eng AYS, Pumera M. Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl Mater Interfaces. 2017; 9(14): 12563-12573.

[31]

Wu B, Zhan X, Yu P, et al. Photocatalytic co-production of hydrogen gas and N-benzylidenebenzylamine over high-quality 2D layered In4/3P2Se6 nanosheets. Nanoscale. 2022; 14(41): 15442-15450.

[32]

Song B, Li K, Yin Y, et al. Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal. 2017; 7(12): 8549-8557.

[33]

Dong B, Li W, Huang X, et al. Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy. 2019; 55: 37-41.

[34]

Zhao B, Liu J, Xu C, et al. Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv Funct Mater. 2021; 31(8): 2008812.

[35]

Wang J, Gao Y, Kong H, et al. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chem Soc Rev. 2020; 49(24): 9154-9196.

[36]

Zheng X, Zhang B, De LunaLuna, P, et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat Chem. 2018; 10(2): 149-154.

[37]

Wang F, Shifa TA, He P, et al. Two-dimensional metal phosphorus trisulfide nanosheet with solar hydrogen-evolving activity. Nano Energy. 2017; 40: 673-680.

[38]

Xue Y, Liu M, Qin Y, et al. Ultrathin NiFeS nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chin Chem Lett. 2022; 33(8): 3916-3920.

[39]

Cheng Z, Shifa TA, Wang F, et al. High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv Mater. 2018; 30(26): 1707433.

[40]

Konkena B, Masa J, Botz AJR, et al. Metallic NiPS3@NiOOH core-shell heterostructures as highly efficient and stable electrocatalyst for the oxygen evolution reaction. ACS Catal. 2017; 7(1): 229-237.

[41]

Xue S, Chen L, Liu Z, Cheng H-M, Ren W. NiPS3 nanosheet-graphene composites as highly efficient electrocatalysts for oxygen evolution reaction. ACS Nano. 2018; 12(6): 5297-5305.

[42]

Ge R, Wang Y, Li Z, et al. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew Chem Int Ed. 2022; 61(19): e202200211.

[43]

Mondal I, Hausmann JN, Vijaykumar G, et al. Nanostructured intermetallic nickel silicide (pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv Energy Mater. 2022; 12(25): 2200269.

[44]

Liu D, Liu J-C, Cai W, et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat Commun. 2019; 10(1): 1779.

[45]

Du J, You S, Li X, et al. In situ crystallization of active NiOOH/CoOOH heterostructures with hydroxide ion adsorption sites on velutipes-like CoSe/NiSe nanorods as catalysts for oxygen evolution and cocatalysts for methanol oxidation. ACS Appl Mater Interfaces. 2019; 12(1): 686-697.

[46]

Gallenberger J, Moreno Fernández H, Alkemper A, et al. Stability and decomposition pathways of the NiOOH OER active phase of NiOx electrocatalysts at open circuit potential traced by ex situ and in situ spectroscopies. Catal Sci Technol. 2023; 13(16): 4693-4700.

[47]

Ibrahim KB, Shifa TA, Moras P, Moretti E, Vomiero A. Facile electron transfer in atomically coupled heterointerface for accelerated oxygen evolution. Small. 2023; 19(1): 2204765.

[48]

Solomon G, Landström A, Mazzaro R, et al. NiMoO4@Co3O4 core-shell nanorods: in situ catalyst reconstruction toward high efficiency oxygen evolution reaction. Adv Energy Mater. 2021; 11(32): 2101324.

[49]

Ge X, Chen Y, Liu S, Yang X, Feng, X, Feng K. NaV (SO4)2/C, Na3V(SO4)3/C, and K2VO (SO4)2/C: three Li-free vanadium sulfate cathode materials for lithium-ion batteries. J Solid State Electrochem. 2022; 26(8): 1627-1636.

[50]

Wu B, Gong S, Lin Y, et al. A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water. Adv Mater. 2022; 34(43): 2108619.

[51]

Li Y, Jiao Y, Yan H, et al. Mo−Ni-based heterojunction with fine-customized d-band centers for hydrogen production coupled with benzylamine electrooxidation in low alkaline medium. Angew Chem Int Ed. 2023; 62(39): e202306640.

[52]

Ibrahim KB, Shifa TA, Bordin M, Moretti E, Wu H-L, Vomiero A. Confinement accelerates water oxidation catalysis: evidence from in situ studies. Small Methods. 2023; 7(10): 2300348.

[53]

Hausmann JN, Menezes PW. Effect of surface-adsorbed and intercalated (oxy)anions on the oxygen evolution reaction. Angew Chem Int Ed. 2022; 61(38): e202207279.

[54]

Xiao W, Zhang L, Bukhvalov D, et al. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy. 2020; 70: 104445.

[55]

Xiao W, Yan D, Zhang Y, Yang X, Zhang T. Heterostructured MoSe2/oxygen-terminated Ti3C2 MXene architectures for efficient electrocatalytic hydrogen evolution. Energy Fuels. 2021; 35(5): 4609-4615.

[56]

Liu K, Wang F, He P, et al. The role of active oxide species for electrochemical water oxidation on the surface of 3d-Metal phosphides. Adv Energy Mater. 2018; 8(15): 1703290.

[57]

Song YZ, Zhang W, Chen J, et al. Synthesis of FeS nanoparticles for the catalytic reduction of 2,4-dinitrochlorobenzene. Russ J Phys Chem A. 2020; 94(6): 1184-1189.

[58]

Li X, Hu Y, Dong F, et al. Non-noble-metallic Ni2P nanoparticles modified Ov-BiOBr with boosting photoelectrochemical hydrogen evolution without sacrificial agent. Appl Catal B. 2023; 325: 122341.

[59]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[60]

Version vasp.5.3.5. November, 2023. http://www.vasp.at

[61]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758-1775.

[62]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953-17979.

[63]

Bahri L, Mbarki F, Harrath K. Understanding the direct methane conversion to oxygenates on graphene-supported single 3d metal atom catalysts. Chem Pap. 2023; 77(7): 3759-3767.

[64]

Grimme S. Density functional theory with London dispersion corrections. WIREs Comput Mol Sci. 2011; 1(2): 211-228.

[65]

Grimme S, Antony J, Ehrlich S Krieg H A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010; 132 (15); 154104.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/