A biomimetic host from a poultry bone structure enables dendrite-free lithium deposition

Feiyang Yang , Feng Wu , Zhaolin Gou , Lijun Zheng , Junce Wang , Ziyi Chen , Cunzhong Zhang , Yuefeng Su , Jun Lu , Ying Yao

Carbon Energy ›› 2025, Vol. 7 ›› Issue (7) : e671

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (7) :e671 DOI: 10.1002/cey2.671
RESEARCH ARTICLE

A biomimetic host from a poultry bone structure enables dendrite-free lithium deposition

Author information +
History +
PDF

Abstract

Lithium metal anode is one of the ideal anode materials for the next generation of high-energy-density battery systems. Unfortunately, the uneven nucleation of Li leads to dendrite growth and volume changes during cycling, resulting in poor electrochemical performance and potential safety hazards, which hinder its practical application. In this work, a low-cost chicken-bone-derived carbon material (CBC) with a biomimetic structure was designed and synthesized using a simple one-step carbonization method. Combining theoretical calculations and experimental results, the self-doped N and S heteroatoms in CBC are demonstrated to effectively reduce the binding energy with Li atoms and lower the nucleation overpotential. After uniform nucleation, the Li metal grows in a spherical shape without dendrites, which is related to the reduction of the local current density inside the biomimetic crosslinking structure of CBC. Benefiting from this favorable Li growth behavior, the Li@CBC electrode achieves ultra-low nucleation overpotential (15.5 mV at 0.1 mA cm−2) and superdense lithium deposition (zero volume expansion rate at a capacity of 2 mAh cm−2) without introducing additional lithiophilic sites. The CBC retains a high Coulombic efficiency of over 98% in 479 cycles (1 mA cm−2 and 1 mAh cm−2) when applied in a half-cell with Li, and shows an excellent rate and cycling performance when applied in a full cell with LiFePO4 as the cathode.

Keywords

biocarbon / biomimetic structure / carbon host / lithium dendrite-free / lithium metal anode

Cite this article

Download citation ▾
Feiyang Yang, Feng Wu, Zhaolin Gou, Lijun Zheng, Junce Wang, Ziyi Chen, Cunzhong Zhang, Yuefeng Su, Jun Lu, Ying Yao. A biomimetic host from a poultry bone structure enables dendrite-free lithium deposition. Carbon Energy, 2025, 7(7): e671 DOI:10.1002/cey2.671

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev. 2020; 49(5): 1569-1614.

[2]

Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010; 22(3): 587-603.

[3]

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017; 12(3): 194-206.

[4]

Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017; 117(15): 10403-10473.

[5]

Liu X, Li G, Wu F, Zhang C. Effect of support salts on apparent performance of Li metal anode in ethylene carbonate/ethyl methyl carbonate solvent and dynamic mechanism analysis. Electrochim Acta. 2023; 457: 142493.

[6]

Zhu Y, Li X, Si Y, Zhang X, Sang P, Fu Y. Regulating dissolution chemistry of nitrates in carbonate electrolyte for high-stable lithium metal batteries. J Energy Chem. 2022; 73: 422-428.

[7]

Liang JL, Sun SY, Yao N, et al. Regulating the electrolyte solvation structure by weakening the solvating power of solvents for stable lithium metal batteries. Sci China Chem. 2023; 66(12): 3620-3627.

[8]

Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021; 40(2): 409-416.

[9]

Wang Q, Wang H, Wu J, Zhou M, Liu W, Zhou H. Advanced electrolyte design for stable lithium metal anode: from liquid to solid. Nano Energy. 2021; 80: 105516.

[10]

Liu Y, Lin D, Yuen PY, et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater. 2017; 29(10): 1605531.

[11]

Fan L, Zhuang HL, Gao L, Lu Y, Archer LA. Regulating Li deposition at artificial solid electrolyte interphases. J Mater Chem A. 2017; 5(7): 3483-3492.

[12]

Zhang R, Chen X-R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017; 56(27): 7764-7768.

[13]

Park S, Jin HJ, Yun YS. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv Mater. 2020; 32(51): 2002193.

[14]

Zhao T, Wang M, Yao Y, et al. Selective elimination of the reactive groups of porous biochar 3D host for stable lithium anodes. Electrochim Acta. 2021; 388: 138632.

[15]

Yang FY, Yao Y, Xu YK, et al. Evolution of the porous structure for phosphoric acid etching carbon as cathodes in Li-O2 batteries: pyrolysis temperature-induced characteristics changes. Carbon Energy. 2024; 6(1): e372.

[16]

Zhang W, Qiu X, Wang C, et al. Lignin derived carbon materials: current status and future trends. Carbon Res. 2022; 1(1): 14.

[17]

Liang Z, Lin D, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci U S A. 2016; 113(11): 2862-2867.

[18]

Lyu T, Luo F, Wang D, Bu L, Tao L, Zheng Z. Carbon/lithium composite anode for advanced lithium metal batteries: design, progress, in situ characterization, and perspectives. Adv Energy Mater. 2022; 12(36): 2201493.

[19]

He X, Zhang K, Zhu Z, Tong Z, Liang X. 3D-hosted lithium metal anodes. Chem Soc Rev. 2023; 53(1): 9-24.

[20]

Rogers RR, Labarbera M. Contribution of internal bony trabeculae to the mechanical properties of the humerus of the pigeon (Columba livia). J Zool. 1993; 230(3): 433-441.

[21]

Cihlář J, Buchal A, Trunec M. Kinetics of thermal decomposition of hydroxyapatite bioceramics. J Mater Sci. 1999; 34(24): 6121-6131.

[22]

Niu J, Shao R, Liang J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy. 2017; 36: 322-330.

[23]

Reed SJB, Ware NG. Quantitative electron microprobe analysis using a lithium drifted silicon detector. X-Ray Spectrom. 1973; 2(2): 69-74.

[24]

Bonhomme F, Lassègues JC, Servant L. Raman spectroelectrochemistry of a carbon supercapacitor. J Electrochem Soc. 2001; 148(11): E450.

[25]

Kim N, Cha H, Chae S, et al. Carbide-mediated catalytic hydrogenolysis: defects in graphene on a carbonaceous lithium host for liquid and all-solid-state lithium metal batteries. Energy Environ Sci. 2023; 16(6): 2505-2517.

[26]

Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004; 104(10): 4271-4302.

[27]

Niu J, Shao R, Liu M, et al. Porous carbons derived from collagen-enriched biomass: tailored design, synthesis, and application in electrochemical energy storage and conversion. Adv Funct Mater. 2019; 29(46): 1905095.

[28]

Zhang F, Liu P, Tian Y, et al. Uniform lithium nucleation/deposition regulated by N/S co-doped carbon nanospheres towards ultra-stable lithium metal anodes. J Mater Chem A. 2022; 10(3): 1463-1472.

[29]

Zhou G, Paek E, Hwang GS, Manthiram A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun. 2015; 6(1): 7760.

[30]

Wang Y, Liu Z, Huang W, et al. Capture-reduction mechanism for promoting Cr(VI) removal by sulfidated microscale zerovalent iron/sulfur-doped graphene-like biochar composite. Carbon Res. 2023; 2(1): 11.

[31]

Liu L, Yin Y-X, Li J-Y, Wang SH, Guo YG, Wan LJ. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater. 2018; 30(10): 1706216.

[32]

Chen X, Chen X-R, Hou T-Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv. 2019; 5(2): eaau7728.

[33]

Chen M, Zheng J, Sheng O, et al. Sulfur-nitrogen Co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. J Mater Chem A. 2019; 7(31): 18267-18274.

[34]

Hou T-Z, Xu W-T, Chen X, Peng HJ, Huang JQ, Zhang Q. Lithium bond chemistry in lithium-sulfur batteries. Angew Chem Int Ed. 2017; 56(28): 8178-8182.

[35]

Cho S, Kim DY, Lee JI, et al. Highly reversible lithium host materials for high-energy-density anode-free lithium metal batteries. Adv Funct Mater. 2022; 32(47): 2208629.

[36]

Yang Y, Hu E, Zhu Y, et al. A flexible carbon nanotube film modified with gradient lithiophilic Cu2O/Cu heterojunction for dendrite-free lithium metal anodes. Chem Eng J. 2023; 477: 146879.

[37]

Baek K, Lee W-G, Im E, et al. Gradient lithium metal infusion in Ag-decorated carbon fibers for high-capacity lithium metal battery anodes. Nano Lett. 2023; 23(18): 8515-8523.

[38]

Wu N, Zhang Q-Y, Guo Y-J, et al. Boron-doped three-dimensional MXene host for durable lithium-metal anode. Rare Met. 2022; 41(7): 2217-2222.

[39]

Yang C, Zhang L, Liu B, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc Natl Acad Sci U S A. 2018; 115(15): 3770-3775.

[40]

Song Z, Liu Y, Wang Z, et al. Synergistic modulation of Li nucleation/growth enabled by CNTs-wrapped lithiophilic CoP/Co2P decorated hollow carbon polyhedron host for stable lithium metal anodes. Nano Res. 2023; 16(4): 4961-4969.

[41]

Qu J, Wang S, Wu F, Zhang C. Effect of electrolyte additives on the cycling performance of Li metal and the kinetic mechanism analysis. ACS Appl Mater Interfaces. 2021; 13(15): 18283-18293.

[42]

Wang C, Wang H, Tao L, et al. Direct observation of nucleation and growth behaviors of lithium by in situ electron microscopy. ACS Energy Lett. 2023; 8(4): 1929-1935.

[43]

Shim J, Striebel KA. Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries. J Power Sources. 2003; 119(SI): 934-937.

[44]

Jaumann T, Balach J, Klose M, Oswald S, Eckert J, Giebeler L. Role of 1,3-dioxolane and LiNO3 addition on the long term stability of nanostructured silicon/carbon anodes for rechargeable lithium batteries. J Electrochem Soc. 2016; 163(3): A557-A564.

[45]

Simon FJ, Hanauer M, Richter FH, Janek J. Interphase formation of PEO20:LiTFSI-Li6PS5Cl composite electrolytes with lithium metal. ACS Appl Mater Interfaces. 2020; 12(10): 11713-11723.

[46]

Ni S, Zhang M, Li C, et al. A 3D framework with Li3N-Li2S solid electrolyte interphase and fast ion transfer channels for a stabilized lithium-metal anode. Adv Mater. 2023; 35(8): 2209028.

[47]

Chen K, Pathak R, Gurung A, et al. Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Mater. 2019; 18: 389-396.

[48]

Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol. 2016; 11(7): 626-632.

[49]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54(16): 11169-11186.

[50]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[51]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999; 59(3): 1758-1775.

[52]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50(24): 17953-17979.

[53]

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010; 132(15): 154104.

[54]

Henkelman G, UberuagaB, BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys. 2000; 113(22): 9901-9904.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/