The potential of solid-state potassium-ion batteries with polymer-based electrolytes

Tianqi Wang , Qiyao Yu , Zongyou Li , Yanjun Gao , Hanjiao Huang , Chunwei Dong , Caizhen Yang , Shaokun Chong , Wei Wang , Jianguo Zhang

Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e670

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e670 DOI: 10.1002/cey2.670
REVIEW

The potential of solid-state potassium-ion batteries with polymer-based electrolytes

Author information +
History +
PDF

Abstract

As a potential substitute for traditional nonaqueous organic electrolytes, polymer-based solid-state electrolytes (SSEs) have the advantages of high safety, flexibility, low density, and easy processing. In contrast, they still face challenges, such as low room-temperature ionic conductivity, narrow electrochemical windows, and poor mechanical strength. To realize the practical application of all-solid-state alkali metal ion batteries, there has been a lot of research on modifying the chemical composition or structure of polymer-based SSEs. In this review, the transport mechanism of alkali metal ions in polymer SSEs is briefly introduced. We systematically summarize the recent strategies to improve polymer-based SSEs, which have been validated in lithium-ion batteries and sodium-ion batteries, including lamellar electrolyte structure, dual salts hybridization, oriented filler alignment, and so on. Then, taking the unique properties of potassium metal and potassium ions into consideration, the feasibility of potassium-ion batteries for practical use enabled by these novel modification methods is discussed.

Keywords

alkali metal ion batteries / all-solid-state batteries / improvement strategies / polymer electrolytes / potassium-ion batteries

Cite this article

Download citation ▾
Tianqi Wang, Qiyao Yu, Zongyou Li, Yanjun Gao, Hanjiao Huang, Chunwei Dong, Caizhen Yang, Shaokun Chong, Wei Wang, Jianguo Zhang. The potential of solid-state potassium-ion batteries with polymer-based electrolytes. Carbon Energy, 2025, 7(3): e670 DOI:10.1002/cey2.670

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang C, Liang J, Zhao Y, Zheng M, Li X, Sun X. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ Sci. 2021; 14(5): 2577-2619.

[2]

Dirican M, Yan C, Zhu P, Zhang X. Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng R. 2019; 136: 27-46.

[3]

Zhang Z, Wang X, Li X, et al. Review on composite solid electrolytes for solid-state lithium-ion batteries. Mater Today Sustain. 2023; 21: 100316.

[4]

Jin Y, Le PML, Gao P, et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat Energy. 2022; 7(8): 718-725.

[5]

Liu Q, Xu R, Mu D, et al. Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery. Carbon Energy. 2022; 4(3): 458-479.

[6]

Tarascon JM. Na-ion versus Li-ion batteries: complementarity rather than competitiveness. Joule. 2020; 4(8): 1616-1620.

[7]

Lei S, Zeng Z, Wu Y, Liu M, Cheng S, Xie J. Non-coordinating flame retardants with varied vapor pressures enabling biphasic fire-extinguishing electrolyte for high safety lithium-ion batteries. Chem Eng J. 2023; 463: 142181.

[8]

Tian Z, Zou Y, Liu G, et al. Electrolyte solvation structure design for sodium ion batteries. Adv Sci. 2022; 9(22): 2201207.

[9]

Pritam, Arya A, Sharma AL. Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J Mater Sci. 2019; 54(9): 7131-7155.

[10]

Li Y, Wu F, Li Y, et al. Ether-based electrolytes for sodium ion batteries. Chem Soc Rev. 2022; 51(11): 4484-4536.

[11]

Chen Y, Li M, Liu Y, et al. Origin of dendrite-free lithium deposition in concentrated electrolytes. Nat Commun. 2023; 14(1): 2655.

[12]

Li C, Li R, Liu K, Si R, Zhang Z, Hu YS. NaSICON: a promising solid electrolyte for solid-state sodium batteries. Interdiscip Mater. 2022; 1(3): 396-416.

[13]

Ahsan MT, Ali Z, Usman M, Hou Y. Unfolding the structural features of NASICON materials for sodium-ion full cells. Carbon Energy. 2022; 4(5): 776-819.

[14]

Kim W, Noh J, Lee S, et al. Aging property of halide solid electrolyte at the cathode interface. Adv Mater. 2023; 35(32): 2301631.

[15]

Liang F, Sun Y, Yuan Y, Huang J, Hou M, Lu J. Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet. Mater Today. 2021; 50: 418-441.

[16]

Wen C, Luo Z, Liang H, Liu X, Lei W, Lu A. Effect of sintering temperature and holding time on the crystal phase, microstructure, and ionic conductivity of NASICON-type 33Na2O-40ZrO2-40SiO2-10P2O5 solid electrolytes. Appl Phys A. 2022; 128(1): 71.

[17]

Kim KJ, Balaish M, Wadaguchi M, Kong L, Rupp JLM. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv Energy Mater. 2021; 11(1): 2170002.

[18]

Pan J, Zhao P, Wang N, Huang F, Dou S. Research progress in stable interfacial constructions between composite polymer electrolytes and electrodes. Energy Environ Sci. 2022; 15(7): 2753-2775.

[19]

Yamauchi H, Ikejiri J, Tsunoda K, et al. Enhanced rate capabilities in a glass-ceramic-derived sodium all-solid-state battery. Sci Rep. 2020; 10(1): 9453.

[20]

HONMA T, TOGASHI T, ITO N, KOMATSU T. Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery. J Ceram Soc Jpn. 2012; 120(1404): 344-346.

[21]

Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020; 5(3): 229-252.

[22]

Wang Z, Shen L, Deng S, Cui P, Yao X. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv Mater. 2021; 33(25): 2100353.

[23]

Xu S, Sun Z, Sun C, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv Funct Mater. 2020; 30(51): 2007172.

[24]

Sengwa RJ, Patel VK, Saraswat M. Investigation on promising properties of PEO/PVP/LiTFSI solid polymer electrolytes for high-performance energy storage and next-generation flexible optoelectronic and iontronic devices. J Polym Res. 2022; 29(11): 480.

[25]

Wu Y, Li Y, Wang Y, Liu Q, Chen Q, Chen M. Advances and prospects of PVDF based polymer electrolytes. J Energy Chem. 2022; 64: 62-84.

[26]

Zardalidis G, Farmakis F. A systematic study aiming toward voltage noise elimination in viscoelastic poly(methyl methacrylate)-poly(ethylene oxide) polymer blend electrolytes in li metal battery cells. Adv Energy Mater. 2023; 13(27): 2301035.

[27]

Wang H, Lin C, Yan X, et al. Mechanical property-reinforced PEO/PVDF/LiClO4/SN blend all solid polymer electrolyte for lithium ion batteries. J Electroanal Chem. 2020; 869: 114156.

[28]

Oh KS, Lee JE, Lee YH, et al. Elucidating ion transport phenomena in sulfide/polymer composite electrolytes for practical solid-state batteries. Nano-Micro Lett. 2023; 15(1): 179.

[29]

Yang X, Liu J, Pei N, et al. The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 2023; 15(1): 74.

[30]

Liu L, Du Z, Wang J, et al. A review of flexible potassium-ion based energy storage devices. Energy Storage Mater. 2023; 63: 103022.

[31]

Ding J, Zhang H, Fan W, Zhong C, Hu W, Mitlin D. Review of emerging potassium-sulfur batteries. Adv Mater. 2020; 32(23): 1908007.

[32]

Zhou M, Bai P, Ji X, Yang J, Wang C, Xu Y. Electrolytes and interphases in potassium ion batteries. Adv Mater. 2021; 33(7): 2003741.

[33]

Elbinger L, Enke M, Ziegenbalg N, Brendel JC, Schubert US. Beyond lithium-ion batteries: recent developments in polymer-based electrolytes for alternative metal-ion-batteries. Energy Storage Mater. 2024; 65: 103063.

[34]

Xu Y, Ding T, Sun D, Ji X, Zhou X. Recent advances in electrolytes for potassium-ion batteries. Adv Funct Mater. 2023; 33(6): 2211290.

[35]

Xiao P, Yun X, Chen Y, et al. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. Chem Soc Rev. 2023; 52(15): 5255-5316.

[36]

Meng N, Lian F, Cui G. Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries. Small. 2021; 17(3): 2005762.

[37]

Choo Y, Halat DM, Villaluenga I, Timachova K, Balsara NP. Diffusion and migration in polymer electrolytes. Prog Polym Sci. 2020; 103: 101220.

[38]

Niu W, Chen L, Liu Y, Fan LZ. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chem Eng J. 2020; 384: 123233.

[39]

Zheng H, Xiang H, Jiang F, et al. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Adv Energy Mater. 2020; 10(30): 2001440.

[40]

Jaschin PW, Tang CR, Wachsman ED. High-rate cycling in 3D dual-doped NASICON architectures toward room-temperature sodium-metal-anode solid-state batteries. Energy Environ Sci. 2024; 17(2): 727-737.

[41]

Huang YF, Gu T, Rui G, et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ Sci. 2021; 14(11): 6021-6029.

[42]

Kang Q, Li Y, Zhuang Z, et al. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J Energy Chem. 2022; 69: 194-204.

[43]

Mallaiah Y, Jeedi VR, Swarnalatha R, Raju A, Narender Reddy S, Sadananda Chary A. Impact of polymer blending on ionic conduction mechanism and dielectric properties of sodium based PEO-PVdF solid polymer electrolyte systems. J Phys Chem Solids. 2021; 155: 110096.

[44]

Wang C, Wang T, Wang L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv Sci. 2019; 6(22): 1901036.

[45]

Gao S, Sun F, Liu N, Yang H, Cao PF. Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries—a review. Mater Today. 2020; 40: 140-159.

[46]

Duan H, Fan M, Chen WP, et al. Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv Mater. 2019; 31(12): 1807789.

[47]

Zhai P, Fu L, Yuan S, et al. Ionic conductive thermoplastic polymer welding layer for low electrode/solid electrolyte interface resistance. ACS Appl Energy Mater. 2020; 3(7): 7011-7019.

[48]

Wang S, Hu J, Gui X, Lin S, Tu Y. A promising PMMA/m-MgO all-solid-state electrolyte for lithium-oxygen batteries. J Electrochem Soc. 2021; 168(2): 020514.

[49]

Cheng D, Li K, Zang H, Chen J. Recent advances on polyoxometalate-based ion-conducting electrolytes for energy-related devices. Energy Environ Mater. 2023; 6(2): e12341.

[50]

Chen Z, Li X, Wang D, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ Sci. 2021; 14(6): 3492-3501.

[51]

Yu X, Hoffman ZJ, Lee J, et al. A practical polymer electrolyte for lithium and sodium batteries: poly(pentyl malonate). ACS Energy Lett. 2022; 7(11): 3791-3797.

[52]

Jing B, Wang X, Shi Y, Zhu Y, Gao H, Fullerton-Shirey SK. Combining hyperbranched and linear structures in solid polymer electrolytes to enhance mechanical properties and room-temperature ion transport. Front Chem. 2021; 9: 563864.

[53]

Chen S, Feng F, Che H, Yin Y, Ma ZF. High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte. Chem Eng J. 2021; 406: 126736.

[54]

Hou W, Guo X, Shen X, Amine K, Yu H, Lu J. Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective. Nano Energy. 2018; 52: 279-291.

[55]

Che H, Chen S, Xie Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci. 2017; 10(5): 1075-1101.

[56]

Alptekin H, Au H, Olsson E, et al. Elucidation of the solid electrolyte interphase formation mechanism in micro-mesoporous hard-carbon anodes. Adv Mater Interfaces. 2022; 9(8): 2101267.

[57]

Wang S, Cai W, Sun Z, et al. Stable cycling of Na metal anodes in a carbonate electrolyte. Chem Commun. 2019; 55(95): 14375-14378.

[58]

Diana MI, Selvin PC, Selvasekarapandian S, Krishna MV. Investigations on Na-ion conducting electrolyte based on sodium alginate biopolymer for all-solid-state sodium-ion batteries. J Solid State Electrochem. 2021; 25(7): 2009-2020.

[59]

Kim S, Jung Y, Park J, Hong M, Byon HR. Sodium fluoride-rich solid electrolyte interphase for sodium-metal and sodium-oxygen batteries. Bull Korean Chem Soc. 2021; 42(11): 1519-1523.

[60]

Boschin A, Johansson P. Characterization of NaX (X: TFSI, FSI)-PEO based solid polymer electrolytes for sodium batteries. Electrochim Acta. 2015; 175: 124-133.

[61]

Peta G, Alon-Yehezkel H, Bublil S, et al. Influence of salt anions on the reactivity of polymer electrolytes in all-solid-state sodium batteries. J Electrochem Soc. 2022; 169(7): 070530.

[62]

Law HM, Yu J, Kwok SCT, et al. A hybrid dual-salt polymer electrolyte for sodium metal batteries with stable room temperature cycling performance. Energy Storage Mater. 2022; 46: 182-191.

[63]

Mogensen R, Buckel A, Colbin S, Younesi R. A wide-temperature-range, low-cost, fluorine-free battery electrolyte based on sodium bis(oxalate)borate. Chem Mater. 2021; 33(4): 1130-1139.

[64]

Liu X, Shen C, Gao N, et al. Concentrated electrolytes based on dual salts of LiFSI and LiODFB for lithium-metal battery. Electrochim Acta. 2018; 289: 422-427.

[65]

Zhang YH, Lu MN, Li Q, Shi FN. Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery. J Solid State Chem. 2022; 310: 123072.

[66]

Nourisabet T, Jamshidi Aval H, Shidpour R, Naji L. Fabrication of a PEO-PVDF blend based polymer composite electrolyte with extremely high ionic conductivity via the addition of LLTO nanowires. Solid State Ionics. 2022; 377: 115885.

[67]

Gupta S, Gupta AK, Pandey BK. First-principle study on ionic pair dissociation in PEO-PVP-NaClO4 blend for solid polymer electrolyte. Polym Bull. 2022; 79(7): 4999-5018.

[68]

Wang SZ, Lyu JY, He W, Liu PJ, Yan QL. Thermal decomposition and combustion behavior of ion conductive PEO-PAN based energetic composites. Combust Flame. 2021; 230: 111421.

[69]

Xu X, Wang Y, Lu L, Zhang H. Impedance analysis of PEG plasticized PEO-based composite polymer electrolytes for sodium-ion batteries. Funct Mater Lett. 2023; 16(4): 2340016.

[70]

Guo K, Li S, Wang J, Shi Z, Wang Y, Xue Z. In situ orthogonal polymerization for constructing fast-charging and long-lifespan Li metal batteries with topological copolymer electrolytes. ACS Energy Lett. 2024; 9(3): 843-852.

[71]

Chen G, Ye L, Zhang K, et al. Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries. Chem Eng J. 2020; 394: 124885.

[72]

Wang T, Zhang M, Zhou K, et al. A hetero-layered, mechanically reinforced, ultra-lightweight composite polymer electrolyte for wide-temperature-range, solid-state sodium batteries. Adv Funct Mater. 2023; 33(22): 2215117.

[73]

Yu X, Li J, Manthiram A. Rational design of a laminated dual-polymer/polymer-ceramic composite electrolyte for high-voltage all-solid-state lithium batteries. ACS Mater Lett. 2020; 2(4): 317-324.

[74]

Yu X, Xue L, Goodenough JB, Manthiram A. Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv Funct Mater. 2021; 31(2): 2002144.

[75]

Ran L, Li M, Cooper E, et al. Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design. Energy Storage Mater. 2021; 41: 8-13.

[76]

Glynos E, Pantazidis C, Sakellariou G. Designing all-polymer nanostructured solid electrolytes: advances and prospects. ACS Omega. 2020; 5(6): 2531-2540.

[77]

Li J, Zhu K, Yao Z, et al. A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries. Ionics. 2020; 26(3): 1101-1108.

[78]

Liu Q, Zhao X, Yang Q, et al. The progress in the electrolytes for solid state sodium-ion battery. Adv Mater Technol. 2023; 8(7): 2200822.

[79]

Bao W, Zhao L, Zhao H, et al. Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater. 2021; 43: 258-265.

[80]

Yang H, Abdullah M, Bright J, et al. Polymer-ceramic composite electrolytes for all-solid-state lithium batteries: ionic conductivity and chemical interaction enhanced by oxygen vacancy in ceramic nanofibers. J Power Sources. 2021; 495: 229796.

[81]

Luo B, Wang W, Wang Q, et al. Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes. Chem Eng J. 2023; 460: 141329.

[82]

Shu K, Zhou J, Wu X, et al. A PVDF/g−C3N4-based composite polymer electrolytes for sodium-ion battery. Polymers. 2023; 15(9): 2006.

[83]

Sun Y, Zhan X, Hu J, et al. Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl Mater Interfaces. 2019; 11(13): 12467-12475.

[84]

Ma C, Dai K, Hou H, et al. High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv Sci. 2018; 5(5): 1700996.

[85]

Jia W, Li Z, Wu Z, et al. Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ionics. 2018; 315: 7-13.

[86]

Yang H, Zhang B, Jing M, et al. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv Energy Mater. 2022; 12(39): 2201762.

[87]

Lin D, Liu W, Liu Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016; 16(1): 459-465.

[88]

Wu F, Fitzhugh W, Ye L, Ning J, Li X. Advanced sulfide solid electrolyte by core-shell structural design. Nat Commun. 2018; 9(1): 4037.

[89]

Dirksen CL, Skadell K, Schulz M, Fertig MP, Stelter M. Influence of 3D transition metal doping on lithium stabilized Na-β″-alumina solid electrolytes. Materials. 2021; 14(18): 5389.

[90]

Yu X, Xue L, Goodenough JB, Manthiram A. A high-performance all-solid-state sodium battery with a poly(ethylene oxide)-Na3Zr2Si2PO12 composite electrolyte. ACS Materials Lett. 2019; 1(1): 132-138.

[91]

Zhang Z, Zhang Q, Ren C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries. J Mater Chem A. 2016; 4(41): 15823-15828.

[92]

Lu Y, Li L, Zhang Q, Cai Y, Ni Y, Chen J. High-performance all-solid-state electrolyte for sodium batteries enabled by the interaction between the anion in salt and Na3SbS4. Chem Sci. 2022; 13(12): 3416-3423.

[93]

Wang YJ, Pan Y, Wang L, Pang MJ, Chen L. Conductivity studies of plasticized PEO-lithium chlorate-FIC filler composite polymer electrolytes. Mater Lett. 2005; 59(24-25): 3021-3026.

[94]

Su Y, Rong X, Gao A, et al. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. Nat Commun. 2022; 13(1): 4181.

[95]

Shen L, Deng S, Jiang R, Liu G, Yang J, Yao X. Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries. Energy Storage Mater. 2022; 46: 175-181.

[96]

Li D, Chen L, Wang T, Fan LZ. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl Mater Interfaces. 2018; 10(8): 7069-7078.

[97]

Tang W, Tang S, Zhang C, et al. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv Energy Mater. 2018; 8(24): 1800866.

[98]

He G, Xu M, Zhao J, et al. Bioinspired ultrastrong solid electrolytes with fast proton conduction along 2D channels. Adv Mater. 2017; 29(28): 1605898.

[99]

Neumann A, Hamann TR, Danner T, et al. Effect of the 3D structure and grain boundaries on lithium transport in garnet solid electrolytes. ACS Appl Energy Mater. 2021; 4(5): 4786-4804.

[100]

Devi C, Gellanki J, Pettersson H, Kumar S. High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci Rep. 2021; 11(1): 20180.

[101]

Wang X, Zhai H, Qie B, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy. 2019; 60: 205-212.

[102]

Yu G, Wang Y, Li K, et al. Plasma optimized Li7La3Zr2O12 with vertically aligned ion diffusion pathways in composite polymer electrolyte for stable solid-state lithium metal batteries. Chem Eng J. 2022; 430: 132874.

[103]

Guo J, Feng F, Zhao S, et al. Achieving ultra-stable all-solid-state sodium metal batteries with anion-trapping 3D fiber network enhanced polymer electrolyte. Small. 2023; 19(16): 2206740.

[104]

Bae J, Li Y, Zhang J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem Int Ed. 2018; 57(8): 2096-2100.

[105]

Shoji M, Munakata H, Kanamura K. Fabrication of all-solid-state lithium-ion cells using three-dimensionally structured solid electrolyte Li7La3Zr2O12 pellets. Front Energy Res. 2016; 4: 32.

[106]

Wang T, Liu X, Xie L, et al. 3D nanofiber framework based on polyacrylonitrile and siloxane-modified Li6.4La3Zr1.4Ta0.6O12 reinforced poly (ethylene oxide)-based composite solid electrolyte for lithium batteries. J Alloys Compd. 2023; 945: 168877.

[107]

Yi X, Fu H, Rao AM, et al. Safe electrolyte for long-cycling alkali-ion batteries. Nat Sustain. 2024; 7(3): 326-337.

[108]

Fan L, Xie H, Hu Y, et al. A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ Sci. 2023; 16(1): 305-315.

[109]

Wu L, Fu H, Lyu W, et al. Rational regulation of high-voltage stability in potassium layered oxide cathodes. ACS Nano. 2024; 18(20): 13415-13427.

[110]

Zhou M, Bai P, Ji X, Yang J, Wang C, Xu Y. Electrolytes and interphases in potassium ion batteries. Adv Mater. 2021; 33(7): 2003741.

[111]

Verma R, Didwal PN, Hwang JY, Park CJ. Recent progress in electrolyte development and design strategies for next-generation potassium-ion batteries. Batteries Supercaps. 2021; 4(9): 1428-1450.

[112]

Fan L, Chen S, Ma R, et al. Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small. 2018; 14(30): 1801806.

[113]

Wang H, Hu J, Dong J, et al. Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries. Adv Energy Mater. 2019; 9(43): 1902697.

[114]

Du X, Gao Y, Zhang B. Building elastic solid electrolyte interphases for stabilizing microsized antimony anodes in potassium ion batteries. Adv Funct Mater. 2021; 31(26): 2102562.

[115]

Li D, Sun Y, Li M, et al. Rational design of an artificial SEI: alloy/solid electrolyte hybrid layer for a highly reversible Na and K metal anode. ACS Nano. 2022; 16(10): 16966-16975.

[116]

Zhang D, Fu H, Ma X, et al. Nonflammable phosphate-based electrolyte for safe and stable potassium batteries enabled by optimized solvation effect. Angew Chem Int Ed. 2024; 63(29): e202405153.

[117]

Wang H, Wang H, Chen S, et al. A depth-profiling study on the solid electrolyte interface: bis(fluorosulfuryl)imide anion toward improved K+ storage. ACS Appl Energy Mater. 2019; 2(11): 7942-7951.

[118]

Xie J, Li X, Lai H, et al. A robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angew Chem Int Ed. 2019; 131(41): 14882-14889.

[119]

Zhang X, Meng J, Wang X, Xiao Z, Wu P, Mai L. Comprehensive insights into electrolytes and solid electrolyte interfaces in potassium-ion batteries. Energy Storage Mater. 2021; 38: 30-49.

[120]

Liu Y, Gao C, Dai L, et al. The features and progress of electrolyte for potassium ion batteries. Small. 2020; 16(44): 2004096.

[121]

Singh P, Sachdeva A, Bhargava C, Alheety MA, Sharma J. Electrical and structural properties of PEMA-based plasticized polymer electrolyte. Macromol Symp. 2023; 407(1): 2200107.

[122]

Lyu W, Yu X, Lv Y, Rao AM, Zhou J, Lu B. Building stable solid-state potassium metal batteries. Adv Mater. 2024; 36(24): 2305795.

[123]

Manjunatha H, Damle R, Pravin K, Kumaraswamy GN. Modification in the transport and morphological properties of solid polymer electrolyte system by low-energy ion irradiation. Ionics. 2018; 24(10): 3027-3037.

[124]

Chandra A. Hot pressed K+ ion conducting solid polymer electrolytes: synthesis, ion conduction and polymeric battery fabrication. Indian J Phys. 2016; 90(7): 759-765.

[125]

Yang H, Farrington GC. Poly(ethylene oxide) electrolytes containing mixed salts. J Polym Sci Pt B. 1993; 31(2): 157-163.

[126]

K. Money B, Hariharan K, Swenson J. Relation between structural and conductivity relaxation in PEO and PEO based electrolytes. Solid State Ionics. 2014; 262: 785-789.

[127]

Ni'mah YL, Muhaiminah ZH, Suprapto S. Increase of solid polymer electrolyte ionic conductivity using nano-SiO2 synthesized from sugarcane bagasse as filler. Polymers. 2021; 13(23): 4240.

[128]

Sreekanth T, Jaipal Reddy M, Subba Rao UV. Polymer electrolyte system based on (PEO+KBrO3)—its application as an electrochemical cell. J Power Sources. 2001; 93(1-2): 268-272.

[129]

Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat Nanotechnol. 2019; 14(7): 705-711.

[130]

Qi X, Ma Q, Liu L, et al. Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries. ChemElectroChem. 2016; 3(11): 1741-1745.

[131]

Fei H, Liu Y, An Y, et al. Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode. J Power Sources. 2019; 433: 226697.

[132]

Genova FKM, Selvasekarapandian S, Karthikeyan S, Vijaya N, Pradeepa R, Sivadevi S. Study on blend polymer (PVA-PAN) doped with lithium bromide. Polym Sci Ser A. 2015; 57(6): 851-862.

[133]

Bhargav PB, Mohan VM, Sharma AK, Rao VVRN. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. Ionics. 2007; 13(6): 441-446.

[134]

Pavani Y, Ravi M, Bhavani S, Karthikeya RS, Rao VVRN. Physical investigations on pure and KBr doped poly(vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. J Mater Sci Mater Electron. 2018; 29(7): 5518-5524.

[135]

Arunkumar R, Babu RS, Usha Rani M, Kalainathan S. Effect of PBMA on PVC-based polymer blend electrolytes. J Appl Polym Sci. 2017; 134(27): 44939.

[136]

Subba Reddy CV, Han X, Zhu QY, Mai LQ, Chen W. Conductivity and discharge characteristics of (PVC+NaClO4) polymer electrolyte systems. Eur Polym J. 2006; 42(11): 3114-3120.

[137]

Janaki Rami Reddy T, Achari VBS, Sharma AK, Narasimha Rao VVR. Preparation and electrical characterization of (PVC + KBrO3) polymer electrolytes for solid state battery applications. Ionics. 2007; 13(6): 435-439.

[138]

Sundaramahalingam K, Vanitha D, Nallamuthu N, Manikandan A, Muthuvinayagam M. Electrical properties of lithium bromide poly ethylene oxide/poly vinyl pyrrolidone polymer blend elctrolyte. Phys B. 2019; 553: 120-126.

[139]

Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR. Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci. 2014; 454: 200-211.

[140]

Nadimicherla R, Sharma AK, Rao VVRN, Chen W. Electrical and solid-state battery performance of a new PVC/PEO + KBr blend-based polymer electrolyte system. Ionics. 2015; 21(6): 1587-1594.

[141]

Shenbagavalli S, Muthuvinayagam M, Revathy MS. Characterization of lithium-based poly (ethylene oxide)/poly (vinylidene fluoride-co-hexafluoropropylene) solid blend polymer electrolytes for energy storage applications. Ionics. 2023; 29(1): 211-231.

[142]

Shenbagavalli S, Muthuvinayagam M, Revathy MS. Enhancement of electrical and electrochemical properties of sodium bromide incorporated with poly (ethylene oxide)/poly (vinylidene fluoride-hexafluoropropylene) solid blend polymer electrolytes for electrochemical double layer capacitors. J Energy Storage. 2022; 55: 105726.

[143]

Hatta FF, Yahya MZA, Ali AMM, Subban RHY, Harun MK, Mohamad AA. Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte. Ionics. 2005; 11(5-6): 418-422.

[144]

Sundaramahalingam K, Muthuvinayagam M, Nallamuthu N, Vanitha D, Vahini M. Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes. Polym Bull. 2019; 76(11): 5577-5602.

[145]

Irfan M, Manjunath A, Mahesh SS, Somashekar R, Demappa T. Influence of NaF salt doping on electrical and optical properties of PVA/PVP polymer blend electrolyte films for battery application. J Mater Sci Mater Electron. 2021; 32(5): 5520-5537.

[146]

Subba Reddy CV, Sharma AK, Narasimha Rao VVR. Characterization of a solid state battery based on polyblend of (PVP+PVA+KBrO3) electrolyte. Ionics. 2004; 10(1-2): 142-147.

RIGHTS & PERMISSIONS

2025 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/