Unassisted photoelectrochemical CO2 reduction by employing III–V photoelectrode with 15% solar-to-fuel efficiency

Karthik Peramaiah , Purushothaman Varadhan , Vinoth Ramalingam , Bilawal Khan , Pradip Kumar Das , Hao Huang , Hui-Chun Fu , Xiulin Yang , Vincent Tung , Kuo-Wei Huang , Jr-Hau He

Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e669

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e669 DOI: 10.1002/cey2.669
RESEARCH ARTICLE

Unassisted photoelectrochemical CO2 reduction by employing III–V photoelectrode with 15% solar-to-fuel efficiency

Author information +
History +
PDF

Abstract

Solar-driven carbon dioxide reduction reaction (CO2RR) provides an opportunity to produce value-added chemical feedstocks and fuels. However, achieving efficient and stable photoelectrochemical (PEC) CO2RR into selective products is challenging owing to the difficulties associated with the optical and the electrical configuration of PEC devices and electrocatalyst properties. Herein, we construct an efficient, concentrated sunlight-driven CO2RR setup consisting of InGaP/GaAs/Ge triple-junction cell as a photoanode and oxide-derived Au (Ox-Au) as a cathode to perform the unassisted PEC CO2RR. Under one-sun illumination, a maximum operating current density of 11.5 mA cm–2 with an impressive Faradaic efficiency (FE) of ~98% is achieved for carbon monoxide (CO) production, leading to a solar-to-fuel conversion efficiency of ~15%. Under concentrated intensity of 10 sun, the photoanode records a maximum current density of ~124 mA cm–2 and maintains ~60% of FE for CO production. The results demonstrate crucial advancements in using III–V based photoanodes for concentrated PEC CO2RR.

Keywords

3 J photoanode / CO2 reduction / high STF / unassisted PEC

Cite this article

Download citation ▾
Karthik Peramaiah, Purushothaman Varadhan, Vinoth Ramalingam, Bilawal Khan, Pradip Kumar Das, Hao Huang, Hui-Chun Fu, Xiulin Yang, Vincent Tung, Kuo-Wei Huang, Jr-Hau He. Unassisted photoelectrochemical CO2 reduction by employing III–V photoelectrode with 15% solar-to-fuel efficiency. Carbon Energy, 2025, 7(3): e669 DOI:10.1002/cey2.669

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu P, Wang H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat Catal. 2021; 4(11): 943-951.

[2]

Jin S. What else can photoelectrochemical solar energy conversion do besides water splitting and CO2 reduction? ACS Energy Lett. 2018; 3(10): 2610-2612.

[3]

Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Nørskov JK. Materials for solar fuels and chemicals. Nat Mater. 2016; 16(1): 70-81.

[4]

Hiragond CB, Biswas S, Powar NS, et al. Surface-modified Ag@Ru-P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid-gas interface. Carbon Energy. 2024; 6: e386.

[5]

Gong E, Ali S, Hiragond CB, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ Sci. 2021; 15(3): 880-937.

[6]

Kumaravel V, Bartlett J, Pillai SC. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 2020; 5(2): 486-519.

[7]

Liu B, Wang T, Wang S, et al. Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction. Nat Commun. 2022; 13(1): 7111.

[8]

Urbain F, Tang P, Carretero NM, et al. A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy Environ Sci. 2017; 10(10): 2256-2266.

[9]

Ramalingam V, Varadhan P, Fu HC, et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv Mater. 2019; 31(48): 1-10.

[10]

Wang L, Cheng H, Zhang Z, et al. Rational design of honeycomb-like APTES-TiO2/COF heterostructures: promoted intramolecular charge transfer for visible-light-driven catalytic CO2 reduction. Chem Eng J. 2023; 456: 140990.

[11]

Hou H, Shao G, Wang Y, Wong WY, Yang W. Insights on advanced substrates for controllable fabrication of photoanodes toward efficient and stable photoelectrochemical water splitting. Carbon Energy. 2024; 6(4): e373.

[12]

Song K, Hou H, Zhang D, He F, Yang W. In-situ cation-exchange strategy for engineering single-atomic Co on TiO2 photoanode toward efficient and durable solar water splitting. Appl Catal B. 2023; 330: 122630.

[13]

Song K, Hou H, Gong C, et al. Enhanced solar water splitting of BiVO4 photoanodes by in situ surface band edge modulation. J Mater Chem A. 2022; 10(42): 22561-22570.

[14]

Jouny M, Luc W, Jiao F. General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res. 2018; 57(6): 2165-2177.

[15]

Sisler J, Khan S, Ip AH, et al. Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2-CO-C2H4 tandems. ACS Energy Lett. 2021; 6(3): 997-1002.

[16]

Dinh CT, García De Arquer FP, Sinton D, Sargent EH. High rate, selective, and stable electroreduction of CO2 to Co in basic and neutral media. ACS Energy Lett. 2018; 3(11): 2835-2840.

[17]

Hernández S, Amin Farkhondehfal M, Sastre F, Makkee M, Saracco G, Russo N. Syngas production from electrochemical reduction of CO2: current status and prospective implementation. Green Chem. 2017; 19(10): 2326-2346.

[18]

Wang L, Huang G, Zhang L, et al. Construction of TiO2-covalent organic framework Z-Scheme hybrid through coordination bond for photocatalytic CO2 conversion. J Energy Chem. 2022; 64: 85-92.

[19]

Kistler TA, Um MY, Cooper JK, Sharp ID, Agbo P. Monolithic photoelectrochemical CO2 reduction producing syngas at 10% efficiency. Adv Energy Mater. 2021; 11(21): 2100070.

[20]

Li A, Wang T, Chang X, et al. Tunable syngas production from photocatalytic CO2 reduction with mitigated charge recombination driven by spatially separated cocatalysts. Chem Sci. 2018; 9(24): 5334-5340.

[21]

Ma M, Hansen HA, Valenti M, et al. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy. 2017; 42: 51-57.

[22]

Chang X, Wang T, Yang P, Zhang G, Gong J. The development of cocatalysts for photoelectrochemical CO2 reduction. Adv Mater. 2019; 31(31): 1804710.

[23]

Dong WJ, Navid IA, Xiao Y, et al. Bi catalysts supported on GaN nanowires toward efficient photoelectrochemical CO2 reduction. J Mater Chem A. 2022; 10(14): 7869-7877.

[24]

Raciti D, Wang C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 2018; 3(7): 1545-1556.

[25]

Li P, Yang F, Li J, et al. Nanoscale engineering of P-block metal-based catalysts toward industrial-scale electrochemical reduction of CO2. Adv Energy Mater. 2023; 13(34): 2301597.

[26]

Fan L, Xia C, Yang F, Wang J, Wang H, Lu Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci Adv. 2020; 6(8): 1-18.

[27]

Lu Q, Jiao F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy. 2016; 29: 439-456.

[28]

Mariano RG, McKelvey K, White HS, Kanan MW. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science. 2017; 358(6367): 1187-1192.

[29]

Chen Y, Li CW, Kanan MW. Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles. J Am Chem Soc. 2012; 134(49): 19969-19972.

[30]

Li D, Yang K, Lian J, Yan J, Liu S. Powering the world with solar fuels from photoelectrochemical CO2 reduction: basic principles and recent advances. Adv Energy Mater. 2022; 12(31): 2201070.

[31]

Wang Y, Liu J, Wang Y, Wang Y, Zheng G. Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system. Nat Commun. 2018; 9(1): 5003.

[32]

Zhang Z, Chi M, Veith GM, et al. Rational design of bi nanoparticles for efficient electrochemical CO2 reduction: the elucidation of size and surface condition effects. ACS Catal. 2016; 6(9): 6255-6264.

[33]

Zhou X, Liu R, Sun K, et al. Solar-driven reduction of 1 atm of CO2 to formate at 10% energy-conversion efficiency by use of a TiO2-protected III-V tandem photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett. 2016; 1(4): 764-770.

[34]

Khan B, Faheem MB, Peramaiah K, et al. Unassisted photoelectrochemical CO2-to-liquid fuel splitting over 12% solar conversion efficiency. Nat Commun. 2024; 15(1): 6990.

[35]

Feng X, Jiang K, Fan S, Kanan MW. Grain-boundary-dependent CO2 electroreduction activity. J Am Chem Soc. 2015; 137(14): 4606-4609.

[36]

Song JT, Ryoo H, Cho M, et al. Nanoporous Au thin films on si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction. Adv Energy Mater. 2017; 7(3): 1601103.

[37]

Feng X, Jiang K, Fan S, Kanan MW. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent Sci. 2016; 2(3): 169-174.

[38]

Chen S, Chen A. Electrochemical reduction of carbon dioxide on Au nanoparticles: an in situ FTIR study. J Phys Chem C. 2019; 123(39): 23898-23906.

[39]

Kim J, Song JT, Ryoo H, Kim JG, Chung SY, Oh J. Morphology-controlled Au nanostructures for efficient and selective electrochemical CO2 reduction. J Mater Chem A. 2018; 6(12): 5119-5128.

[40]

Jin Y, Hwang J, Han MK, Shon W, Rhyee JS, Kim SJ. Size-controlled Au-Cu2Se core-shell nanoparticles and their thermoelectric properties. ACS Appl Mater Interfaces. 2020; 12(32): 36589-36599.

[41]

Li J, Liu C, Liu Y. Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem. 2012; 22(17): 8426-8430.

[42]

Kim Y, Kim B, Choi H, Kim S, Yun Y, Oh J. Modulating the electronic structure of Au using a heterostructure for efficient electrochemical CO2 reduction. Chem Eng J. 2023; 461: 142126.

[43]

Peramaiah K, Ramalingam V, Fu HC, et al. Optically and electrocatalytically decoupled Si photocathodes with a porous carbon nitride catalyst for nitrogen reduction with over 61.8% Faradaic efficiency. Adv Mater. 2021; 33(18): 2100812.

[44]

Li W, Fu HC, Zhao Y, He JH, Jin S. 14.1% efficient monolithically integrated solar flow battery. Chem. 2018; 4(11): 2644-2657.

[45]

Chen C, Khosrowabadi Kotyk JF, Sheehan SW. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem. 2018; 4(11): 2571-2586.

[46]

Huang H, Periyanagounder D, Chen C, et al. Artificial leaf for solar-driven ammonia conversion at milligram-scale using triple junction III-V photoelectrode. Adv Sci. 2023; 10(14): 2205808.

[47]

Pătru A, Binninger T, Pribyl B, Schmidt TJ. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J Electrochem Soc. 2019; 166(2): F34-F43.

[48]

Vermaas DA, Wiegman S, Nagaki T, Smith WA. Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting. Sustain Energy Fuels. 2018; 2(9): 2006-2015.

[49]

Yan Z, Zhu L, Li YC, et al. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes. Energy Environ Sci. 2018; 11(8): 2235-2245.

[50]

Salvatore DA, Weekes DM, He J, et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 2018; 3(1): 149-154.

[51]

Castro S, Albo J, Irabien A. Photoelectrochemical reactors for CO2 utilization. ACS Sustain Chem Eng. 2018; 6(12): 15877-15894.

[52]

Vermaas DA, Smith WA. Synergistic electrochemical CO2 reduction and water oxidation with a bipolar membrane. ACS Energy Lett. 2016; 1(6): 1143-1148.

[53]

Vargas-Barbosa NM, Geise GM, Hickner MA, Mallouk TE. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells. ChemSusChem. 2014; 7(11): 3017-3020.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/