Nature-inspired 3D hierarchical carbon nanotube matrices enable extraordinary solar steam generation

Chuanshuai Dong , Lei Chen , Weiquan Lin , Zipai Li , Linjie Wei , Chaohua Peng , Huan Liu , Ronghui Qi , Lin Lu , Lizhi Zhang

Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e655

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (3) : e655 DOI: 10.1002/cey2.655
RESEARCH ARTICLE

Nature-inspired 3D hierarchical carbon nanotube matrices enable extraordinary solar steam generation

Author information +
History +
PDF

Abstract

Interfacial solar evaporation, which captures solar energy and localizes the absorbed heat for water evaporation, is considered a promising technology for seawater desalination and solar energy conversion. However, it is currently limited by its low photothermal conversion efficiency, salt accumulation, and poor reliability. Herein, inspired by human intestinal villi structure, we design and fabricate a novel intestinal villi-like nitrogen-doped carbon nanotubes solar steam generator (N-CNTs SSG) consisting of three-dimensional (3D) hierarchical carbon nanotube matrices for ultrahigh solar evaporation efficiency. The 3D matrices with radial direction nitrogen-doped carbon nanotube clusters achieve ultrahigh surface area, photothermal efficiency, and hydrophilicity, which significantly intensifies the whole interfacial solar evaporation process. The new solar evaporation efficiency reaches as high as 96.8%. Furthermore, our ab initio molecular dynamics simulation reveals that N-doped carbon nanotubes exhibit a greater number of electronic states in close proximity to the Fermi level when compared to pristine carbon nanotubes. The outstanding absorptivity in the full solar spectrum and high solar altitude angles of the 3D hierarchical carbon nanotube matrices offer great potential to enable ultrahigh photothermal conversion under all-day and all-season circumstances.

Keywords

fermi level / interfacial solar evaporation / nitrogen-doped carbon nanotubes / photothermal conversion

Cite this article

Download citation ▾
Chuanshuai Dong, Lei Chen, Weiquan Lin, Zipai Li, Linjie Wei, Chaohua Peng, Huan Liu, Ronghui Qi, Lin Lu, Lizhi Zhang. Nature-inspired 3D hierarchical carbon nanotube matrices enable extraordinary solar steam generation. Carbon Energy, 2025, 7(3): e655 DOI:10.1002/cey2.655

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu N, Li J, Finnerty C, et al. Going beyond efficiency for solar evaporation. Nat Water. 2023; 1(6): 494-501.

[2]

Zhang Y, Tan SC. Best practices for solar water production technologies. Nat Sustain. 2022; 5(7): 554-556.

[3]

Wang Z, Horseman T, Straub AP, et al. Pathways and challenges for efficient solar-thermal desalination. Sci Adv. 2019; 5(7): eaax0763.

[4]

Liu S, Huang C, Huang Q, Wang F, Guo C. A new carbon-black/cellulose sponge system with water supplied by injection for enhancing solar vapor generation. J Mater Chem A. 2019; 7(30): 17954-17965.

[5]

Liang H, Liao Q, Chen N, et al. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew Chem Int Ed. 2019; 131(52): 19217-19222.

[6]

Wang X, Lin Z, Gao J, et al. Solar steam-driven membrane filtration for high flux water purification. Nat Water. 2023; 1(4): 391-398.

[7]

Gao J, Zhang L, You J, et al. Extreme salt-resisting multistage solar distillation with thermohaline convection. Joule. 2023; 7(10): 2274-2290.

[8]

Xu Z, Yu J, Shan H, et al. Solar evaporation with solute replacement towards real-world applications. Energy Environ Sci. 2023; 16(11): 5325-5338.

[9]

Yu Z, Gu R, Tian Y, Xie P, Jin B, Cheng S. Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv Funct Mater. 2022; 32(17): 2108586.

[10]

Zhou L, Tan Y, Wang J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photonics. 2016; 10(6): 393-398.

[11]

brahim I, Seo DH, Angeloski A, McDonagh A, Shon HK, Tijing LD. 3D microflowers CuS/Sn2S3 heterostructure for highly efficient solar steam generation and water purification. Sol Energy Mater Sol Cells. 2021; 232: 111377.

[12]

Li X, Tian Y, Zhang P, et al. A Lotus-petiole-inspired hierarchical design with hydrophilic/hydrophobic management for enhanced solar water purification. Adv Funct Mater. 2023; 33(31): 2302019.

[13]

Meera B, Vidhya C, Nair RB, Surya R, Kurian S. Sustainable sponge-like composite hydrogel evaporator for highly efficient solar steam generation. Mater Today Sustain. 2023; 23: 100439.

[14]

Poredoš P, Wang R. Sustainable cooling with water generation. Science. 2023; 380(6644): 458-459.

[15]

Fu J, Li Z, Li X, et al. Hierarchical porous metallic glass with strong broadband absorption and photothermal conversion performance for solar steam generation. Nano Energy. 2023; 106: 108019.

[16]

Ni G, Li G, Boriskina SV, et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat Energy. 2016; 1(9): 16126.

[17]

Nepal D, Kang S, Adstedt KM, et al. Hierarchically structured bioinspired nanocomposites. Nat Mater. 2023; 22(1): 18-35.

[18]

Wang F, Lee J, Chen L, et al. Inspired by wood: thick electrodes for supercapacitors. ACS Nano. 2023; 17(10): 8866-8898.

[19]

Chen C, Kuang Y, Zhu S, et al. Structure-property-function relationships of natural and engineered wood. Nat Rev Mater. 2020; 5(9): 642-666.

[20]

Wu L, Dong Z, Cai Z, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat Commun. 2020; 11(1): 521.

[21]

Xie M, Zhang P, Cao Y, Yan Y, Wang Z, Jin C. A three-dimensional antifungal wooden cone evaporator for highly efficient solar steam generation. npj Clean Water. 2023; 6(1): 12.

[22]

Mehrkhah R, Goharshadi EK, Ghafurian MM, Mohammadi M, Mahian O. Clean water production by non-noble metal/reduced graphene oxide nanocomposite coated on wood: scalable interfacial solar steam generation and heavy metal sorption. Sol Energy. 2021; 224: 440-454.

[23]

Cui T, Liu Z, Gao L, et al. Engineered wood with hierarchically tunable microchannels toward efficient solar vapor generation. Langmuir. 2022; 38(42): 12773-12784.

[24]

Jia C, Li Y, Yang Z, et al. Rich mesostructures derived from natural woods for solar steam generation. Joule. 2017; 1(3): 588-599.

[25]

Ding M, Zhao D, Feng P, et al Highly efficient 3D solar evaporator for zero liquid discharge desalination of high-salinity brine. Carbon Energy. 2024; 6: e548.

[26]

Zhao D, Ding M, Lin T, et al. Gradient graphene spiral sponges for efficient solar evaporation and zero liquid discharge desalination with directional salt crystallization. Adv Sci. 2024; 11(22): 2400310.

[27]

Ding M, Lu H, Sun Y, et al. Superelastic 3D assembled clay/graphene aerogels for continuous solar desalination and oil/organic solvent absorption. Adv Sci. 2022; 9(36): 2205202.

[28]

Ding M, Zhao D, Wei R, et al. Multifunctional elastomeric composites based on 3D graphene porous materials. Exploration. 2024; 4(2): 20230057.

[29]

Li T, Liu H, Zhao X, et al Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat. Adv Funct Mater. 2018; 28(16): 1707134.

[30]

Saleque AM, Ma S, Thakur AK, et al. MXene/MnO2 nanocomposite coated superior salt-rejecting biodegradable luffa sponge for efficient solar steam generation. Desalination. 2023; 554: 116488.

[31]

Wong MY, Zhu Y, Ho TC, Pan A, Tso CY. Polypyrrole-reduced graphene oxide coated delignified wood for highly efficient solar interfacial steam generation. Appl Therm Eng. 2023; 219 (Part D): 119686.

[32]

Setyawan H, Juliananda J, Widiyastuti W. Engineering materials to enhance light-to-heat conversion for efficient solar water purification. Ind Eng Chem Res. 2022; 61(49): 17783-17800.

[33]

Chen S, Sun Z, Xiang W, et al. Plasmonic wooden flower for highly efficient solar vapor generation. Nano Energy. 2020; 76: 104998.

[34]

Soo Joo B, Soo Kim I, Ki Han I, Ko H, Gu Kang J, Kang G. Plasmonic silicon nanowires for enhanced heat localization and interfacial solar steam generation. Appl Surf Sci. 2022; 583: 152563.

[35]

Li W, Li X, Liu J, et al. Coating of wood with Fe2O3-decorated carbon nanotubes by one-step combustion for efficient solar steam generation. ACS Appl Mater Interfaces. 2021; 13(19): 22845-22854.

[36]

Zahmatkesh BB, Niazmand H, Goharshadi EK, et al Synergistic effect of Fe3O4 nanoparticles and Au nanolayer in enhancement of interfacial solar steam generation. Mater Res Bull. 2023; 162: 112178.

[37]

Wilson HM, Ahirrao DJ, Raheman Ar S, Jha N. Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination. Sol Energy Mater Sol Cells. 2020; 215: 110604.

[38]

Saleque AM, Ahmed S, Ivan MNAS, et al. High-temperature solar steam generation by MWCNT-HfTe2 van der Waals heterostructure for low-cost sterilization. Nano Energy. 2022; 94: 106916.

[39]

Bhowmik, PK, Schlegel JP. Multicomponent gas mixture parametric CFD study of condensation heat transfer in small modular reactor system safety. Exp Comput Multi Flo. 2023; 5(1): 15-28.

[40]

Suh Y, Chang S, Simadiris P, et al. VISION-iT: a framework for digitizing bubbles and droplets. Energy AI. 2024; 15: 100309.

[41]

Shi Y, Li R, Jin Y, et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule. 2018; 2(6): 1171-1186.

[42]

Li X, Xu W, Tang M, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc Natl Acad Sci U S A. 2016; 113(49): 13953-13958.

[43]

Menon AK, Haechler I, Kaur S, Lubner S, Prasher RS. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nat Sustain. 2020; 3(2): 144-151.

[44]

Bang J, Moon IK, Oh J. Three-dimensional multimodal porous graphene-carbonized wood for highly efficient solar steam generation. Sustainable Energy Technol Assess. 2023; 57: 103199.

[45]

Liu S, Li S, Lin M. Understanding interfacial properties for enhanced solar evaporation devices: from geometrical to physical interfaces. ACS Energy Lett. 2023; 8(4): 1680-1687.

[46]

Koirala, R, Inthavong K, Date A. Numerical study of flow and direct contact condensation of entrained vapor in water jet eductor. Exp Comput Multi Flo. 2022; 4: 291-303.

[47]

Li X, Lin R, Ni G, et al. Three-dimensional artificial transpiration for efficient solar wastewater treatment. Natl Sci Rev. 2018; 5(1): 70-77.

[48]

Hertwig, T, Wittmann T, Wiśniewski P, Friedrichs J. Modeling condensing flows of humid air in transonic nozzles. Exp Comput Multi Flo. 2023; 5(4): 344-356.

[49]

Yang B, Zhang Z, Liu P, et al. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature. 2023; 622(7983): 499-506.

[50]

Taylor SR, Ramsamooj S, Liang RJ, et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature. 2021; 597(7875): 263-267.

[51]

Moor AE, Harnik Y, Ben-Moshe S, et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell. 2018; 175(4): 1156-1167.e15.

[52]

Pham-Huu C, Vieira R, Louis B, et al. About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst. J Catal. 2006; 240(2): 194-202.

[53]

Davy NC, Sezen-Edmonds M, Gao J, et al. Pairing of near-ultraviolet solar cells with electrochromic Windows for smart management of the solar spectrum. Nat Energy. 2017; 2(8): 17104.

[54]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77(18): 3865-3868.

[55]

Kayang KW, Nyankson E, Efavi JK, et al. A comparative study of the interaction of nickel, titanium, palladium, and gold metals with single-walled carbon nanotubes: a DFT approach. Results Phys. 2019; 12: 2100-2106.

[56]

Adara PP, Oyinbo ST, Jen TC. Density functional theory simulation and modeling of the electrical and mechanical properties of Al2O3-CAO-CNT (3,3) nanomaterial. Comput Mater Sci. 2023; 218: 111939.

[57]

Amounas S, Hbab A, Ait Lamine L, Chaib H, Ait-Taleb T. Dependence of tetragonal barium titanate spontaneous polarization and refractive indices on DFT exchange-correlation functionals. Phys B. 2024; 674: 415536.

[58]

Modest, MF, Mazumder, S. Radiative Heat Transfer. Academic Press, 2021.

RIGHTS & PERMISSIONS

2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/