Comprehensive insights into sodium storage in pitch-derived porous hard carbon

Tuo Zhao , Luyao Wang , Chu Zhang , Na Liu , Chuying Ouyang , Zhaoxiang Wang , Liquan Chen

Carbon Energy ›› 2025, Vol. 7 ›› Issue (7) : e649

PDF
Carbon Energy ›› 2025, Vol. 7 ›› Issue (7) :e649 DOI: 10.1002/cey2.649
RESEARCH ARTICLE

Comprehensive insights into sodium storage in pitch-derived porous hard carbon

Author information +
History +
PDF

Abstract

The controversies about the mechanism of sodium storage in hard carbon (HC) hinder its rational structural design. A series of porous HC materials using coal tar pitch show a reversible capacity of 377 mAh g−1 and an initial Coulombic efficiency (ICE) of 87% as well as excellent cycling performance. More attention is paid to exploration of the relationships between the sodium status on various storage sites at different sodiation states and the ICE by solid-state 23Na nuclear magnetic resonance spectroscopy. The adsorbed Na ions contribute the most to the irreversible capacity. The de-solvated Na ions entering the closed pores are reduced to Na atoms and aggregated to Na clusters. Also, this process contributes the most to the reversible capacity and is characteristic of a long plateau in the voltage profile. Intercalation is partially reversible; it is the main source of capacity for slope-type HCs but plays a minor role in the reversible capacity of plateau-type HCs. Therefore, increasing the content of the closed pores can improve the reversible plateau capacity and reducing the open mesopores of HC increases the ICE. These findings provide insights into the structural design and cost-efficient preparation of high-performance HC anode materials for advanced sodium-ion batteries.

Keywords

23Na NMR / coal tar pitch / porous hard carbon / sodium clusters / sodium-ion batteries / storage mechanism

Cite this article

Download citation ▾
Tuo Zhao, Luyao Wang, Chu Zhang, Na Liu, Chuying Ouyang, Zhaoxiang Wang, Liquan Chen. Comprehensive insights into sodium storage in pitch-derived porous hard carbon. Carbon Energy, 2025, 7(7): e649 DOI:10.1002/cey2.649

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lege N, He X-X, Wang Y-X, et al. Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy Environ Sci. 2023; 16(12): 5688-5720.

[2]

Chu Y, Zhang J, Zhang Y, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv Mater. 2023; 35(31): 2212186.

[3]

Franklin RE. Crystallite growth in graphitizing and non-graphitizing carbons. Proc R Soc Lond A Math Phys Sci. 1951; 209(1097): 196-218.

[4]

Fredenhagen K, Cadenbach G. Die Bindung von Kalium durch Kohlenstoff. Z für Anorg Allg Chem. 1926; 158(1): 249-263.

[5]

Ge P. Electrochemical intercalation of sodium in graphite. Solid State Ion. 1988; 28-30(2): 1172-1175.

[6]

Doeff MM, Ma Y, Visco SJ, Dejonghe LC. Electrochemical insertion of sodium into carbon. J Electrochem Soc. 1993; 140(12): L169-L170.

[7]

Moriwake H, Kuwabara A, Fisher CAJ, Ikuhara Y. Why is sodium-intercalated graphite unstable? RSC Adv. 2017; 7(58): 36550-36554.

[8]

Lenchuk O, Adelhelm P, Mollenhauer D. New insights into the origin of unstable sodium graphite intercalation compounds. Phys Chem Chem Phys. 2019; 21(35): 19378-19390.

[9]

Alcántara R, Lavela P, Ortiz GF, Tirado L. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid-State Lett. 2005; 8(4): A222.

[10]

Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano. 2013; 7(12): 11004-11015.

[11]

Hong Z, Zhen Y, Ruan Y, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance. Adv Mater. 2018; 30(29): e1802035.

[12]

Kim EJ, Kumar PR, Gossage ZT, et al. Active material and interphase structures governing performance in sodium and potassium ion batteries. Chem Sci. 2022; 13(21): 6121-6158.

[13]

Wan Y, Liu Y, Chao D, Li W, Zhao D. Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries. Nano Mater Sci. 2022; 5(2): 189-201.

[14]

Chen X, Tian J, Li P, et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv Energy Mater. 2022; 12(24): 2200886.

[15]

Fitzpatrick JR, Costa SIR, Tapia-Ruiz N. Sodium-ion batteries: current understanding of the sodium storage mechanism in hard carbons: optimising properties to speed commercialisation. Johnson Matthey Technol Rev. 2022; 66(1): 44-60.

[16]

Kim H, Hyun JC, Kim DH, et al. Revisiting lithium- and sodium-ion storage in hard carbon anodes. Adv Mater. 2023; 35(12): e2209128.

[17]

Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc. 2000; 147(4): 1271-1273.

[18]

Stevens DA, Dahn JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc. 2001; 148(8): A803-A811.

[19]

Alvin S, Cahyadi HS, Hwang J, Chang W, Kwak SK, Kim J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv Energy Mater. 2020; 10(20): 2000283.

[20]

Matei Ghimbeu C, Górka J, Simone V, Simonin L, Martinet S, Vix-Guterl C. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano Energy. 2018; 44: 327-335.

[21]

Qiu S, Xiao L, Sushko ML, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater. 2017; 7(17): 1700403.

[22]

Bommier C, Surta TW, Dolgos M, Ji X. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015; 15(9): 5888-5892.

[23]

Weaving JS, Lim A, Millichamp J, et al. Elucidating the sodiation mechanism in hard carbon by operando Raman spectroscopy. ACS Appl Energy Mater. 2020; 3(8): 7474-7484.

[24]

Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater. 2011; 21(20): 3859-3867.

[25]

Cai C, Chen Y, Hu P, et al. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage. Small. 2021; 18(6): e2105303.

[26]

Stratford JM, Allan PK, Pecher O, Chater PA, Grey CP. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem Commun. 2016; 52(84): 12430-12433.

[27]

Gotoh K, Yamakami T, Nishimura I, et al. Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by operando solid-state NMR. J Mater Chem A. 2020; 8(29): 14472-14481.

[28]

Morita R, Gotoh K, Kubota K, et al. Correlation of carbonization condition with metallic property of sodium clusters formed in hard carbon studied using 23Na nuclear magnetic resonance. Carbon. 2019; 145: 712-715.

[29]

Au H, Alptekin H, Jensen ACS, et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ Sci. 2020; 13(10): 3469-3479.

[30]

Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon J-M. Correlation between microstructure and Na storage behavior in hard carbon. Adv Energy Mater. 2016; 6(1): 1501588.

[31]

Yang J, Wang X, Dai W, et al. From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 2021; 13(1): 98.

[32]

Xia JL, Yan D, Guo LP, Dong XL, Li WC, Lu AH. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv Mater. 2020; 32(21): e2000447.

[33]

Cheng D, Zhou X, Hu H, et al. Electrochemical storage mechanism of sodium in carbon materials: a study from soft carbon to hard carbon. Carbon. 2021; 182: 758-769.

[34]

Bai P, He Y, Zou X, Zhao X, Xiong P, Xu Y. Elucidation of the sodium-storage mechanism in hard carbons. Adv Energy Mater. 2018; 8(15): 1703217.

[35]

Bray JM, Doswell CL, Pavlovskaya GE, et al. Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imaging. Nat Commun. 2020; 11(1): 2083.

[36]

Morita R, Gotoh K, Fukunishi M, et al. Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. J Mater Chem A. 2016; 4(34): 13183-13193.

[37]

Thompson M, Xia Q, Hu Z, Zhao X-S. A review on biomass-derived hard carbon materials for sodium-ion batteries. Mater Adv. 2021; 2(18): 5881-5905.

[38]

Alcañiz-Monge J, Román-Martínez MC, Lillo-Ródenas . Chemical activation of lignocellulosic precursors and residues: what else to consider? Molecules. 2022; 27(5): 1630.

[39]

Liang Z, Lu Y, Sun Z, Luo H. Polymerization kinetics and control of the components of a mesophase pitch. New Carbon Mater. 2020; 35(5): 591-598.

[40]

Chen P, Metz JN, Mennito AS, et al. Petroleum pitch: exploring a 50-year structure puzzle with real-space molecular imaging. Carbon. 2020; 161: 456-465.

[41]

Jiang M, Sun N, Ali Soomro R, Xu B. The recent progress of pitch-based carbon anodes in sodium-ion batteries. J Energy Chem. 2021; 55: 34-47.

[42]

Sun Y, Lu P, Liang X, Chen C, Xiang H. High-yield microstructure-controlled amorphous carbon anode materials through a pre-oxidation strategy for sodium ion batteries. J Alloys Compd. 2019; 786: 468-474.

[43]

Hao M, Xiao N, Wang Y, et al. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes. Fuel Process Technol. 2018; 177: 328-335.

[44]

Sun W, Sun Q, Lu R, et al. Sodium hypophosphite-assist pyrolysis of coal pitch to synthesis P-doped carbon nanosheet anode for ultrafast and long-term cycling sodium-ion batteries. J Alloys Compd. 2021; 889: 161678.

[45]

Yin R, Wang K, Han B, et al. Structural evaluation of coal-tar-pitch-based carbon materials and their Na+ storage properties. Coatings. 2021; 11(8): 948.

[46]

Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH. Carbon. 2003; 41(2): 267-275.

[47]

Jibril B, Houache O, Al-Maamari R, Al-Rashidi B. Effects of H3PO4 and KOH in carbonization of lignocellulosic material. J Anal Appl Pyrolysis. 2008; 83(2): 151-156.

[48]

Martinez-Escandell M, De Castro MM, Molina-Sabio M, Rodriguez-Reinoso F. KOH activation of carbon materials obtained from the pyrolysis of ethylene tar at different temperatures. Fuel Process Technol. 2013; 106: 402-407.

[49]

Bayley PM, Trease NM, Grey CP. Insights into electrochemical sodium metal deposition as probed with in situ 23Na NMR. J Am Chem Soc. 2016; 138(6): 1955-1961.

[50]

Sato K, Noguchi M, Demachi A, Oki N, Endo M. A mechanism of lithium storage in disordered carbons. Science. 1994; 264(5158): 556-558.

[51]

Luo Z-X, Xing Y-Z, Ling Y-C, Kleinhammes A, Wu Y. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR. Nat Commun. 2015; 6(1): 6358.

[52]

Forse A-C, Griffin JM, Presser V, Gogotsi Y, Grey CP. Ring current effects: factors affecting the NMR chemical shift of molecules adsorbed on porous carbons. J Phys Chem C. 2014; 118(14): 7508-7514.

[53]

Schutjajew K, Giusto P, Härk E, Oschatz M. Preparation of hard carbon/carbon nitride nanocomposites by chemical vapor deposition to reveal the impact of open and closed porosity on sodium storage. Carbon. 2021; 185: 697-708.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/