Exploring dopant-enhanced ionic conductivity of AgCl-doped Li7P3S11 solid electrolytes: Integrating synchrotron Rietveld analysis, DFT, and ANN-based molecular dynamics approaches

Yong-Seok Choi, Youngin Lee, Hyuna Ahn, Jiwon Jeong, Kyung Yoon Chung, David O. Scanlon, Jae-Chul Lee

Carbon Energy ›› 2024, Vol. 6 ›› Issue (11) : e564

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (11) : e564 DOI: 10.1002/cey2.564
RESEARCH ARTICLE

Exploring dopant-enhanced ionic conductivity of AgCl-doped Li7P3S11 solid electrolytes: Integrating synchrotron Rietveld analysis, DFT, and ANN-based molecular dynamics approaches

Author information +
History +
PDF

Abstract

The effectiveness of dual-doping as a method of improving the conductivity of sulfide solid electrolytes (SEs) is not in doubt; however, the atomic-level mechanisms underpinning these enhancements remain elusive. In this study, we investigate the atomic mechanisms associated with the high ionic conductivity of the Li7P3S11 (LPS) SE and its response to Ag/Cl dual dopants. Synthesis and electrochemical characterizations show that the 0.2 M AgCl-doped LPS (Li6.8P3Ag0.1S10.9Cl0.1) exhibited an over 80% improvement in ionic conductivity compared with the undoped LPS. The atomic-level structures responsible for the enhanced conductivity were generated by a set of experiment and simulation techniques: synchrotron X-ray diffractometry, Rietveld refinement, density functional theory, and artificial neural network-based molecular dynamics simulations. This thorough characterization highlights the role of dual dopants in altering the structure and ionic conductivity. We found that the PS4 and P2S7 structural motifs of LPS undergo transformation into various PSx substructures. These changes in the substructures, in conjunction with the paddle-wheel effect, enable rapid Li migration. The dopant atoms serve to enhance the flexibility of PS4–P2S7 polyhedral frameworks, consequently enhancing the ionic conductivity. Our study elucidates a clear structure–conductivity relationship for the dual-doped LPS, providing a fundamental guideline for the development of sulfide SEs with superior conductivity.

Keywords

density functional theory / molecular dynamics / paddle-wheel dynamics / sulfide solid electrolytes / synchrotron Rietveld analysis

Author summay

Yong-Seok Choi, Youngin Lee, and Hyuna Ahn contributed equally to this study.

Cite this article

Download citation ▾
Yong-Seok Choi, Youngin Lee, Hyuna Ahn, Jiwon Jeong, Kyung Yoon Chung, David O. Scanlon, Jae-Chul Lee. Exploring dopant-enhanced ionic conductivity of AgCl-doped Li7P3S11 solid electrolytes: Integrating synchrotron Rietveld analysis, DFT, and ANN-based molecular dynamics approaches. Carbon Energy, 2024, 6(11): e564 DOI:10.1002/cey2.564

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/