A review on ultra-small undoped MoS2 as advanced catalysts for renewable fuel production

Guoping Liu, Lingling Ding, Yuxuan Meng, Ahmad Ali, Guifu Zuo, Xianguang Meng, Kun Chang, Oi Lun Li, Jinhua Ye

Carbon Energy ›› 2024, Vol. 6 ›› Issue (2) : 521.

Carbon Energy All Journals
PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (2) : 521. DOI: 10.1002/cey2.521
REVIEW

A review on ultra-small undoped MoS2 as advanced catalysts for renewable fuel production

Author information +
History +

Abstract

Molybdenum disulfide (MoS2) has garnered significant attention in the field of catalysis due to the high density of active sites in its unique two-dimensional (2D) structure, which could be developed into numerous high-performance catalysts. The synthesis of ultra-small MoS2 particles (<10 nm) is highly desired in various experimental studies. The ultra-small structure could often lead to a distinct S–Mo coordination state and nonstoichiometric composition in MoSx, minimizing in-plane active sites of the 2D structure and making it probable to regulate the atomic and electronic structure of its intrinsic active sites on a large extent, especially in MoSx clusters. This article summarizes the recent progress of catalysis over ultra-small undoped MoS2 particles for renewable fuel production. Through a systematic review of their synthesis, structural, and spectral characteristics, as well as the relationship between their catalytic performance and inherent defects, we aim to provide insights into catalysis over this matrix that may potentially enable advancement in the development of high-performance MoS2-based catalysts for sustainable energy generation in the future.

Keywords

applications / catalytic / MoS2 / structure / synthesis

Cite this article

Download citation ▾
Guoping Liu, Lingling Ding, Yuxuan Meng, Ahmad Ali, Guifu Zuo, Xianguang Meng, Kun Chang, Oi Lun Li, Jinhua Ye. A review on ultra-small undoped MoS2 as advanced catalysts for renewable fuel production. Carbon Energy, 2024, 6(2): 521 https://doi.org/10.1002/cey2.521

References

[1]
Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. P Nl A Sci USA. 2005; 102 (30): 10451- 10453.
[2]
Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004; 306 (5696): 666- 669.
[3]
Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013; 5 (4): 263- 275.
[4]
Ivanovskaya A, Singh N, Liu RF, et al. Transition metal sulfide hydrogen evolution catalysts for hydrobromic acid electrolysis. Langmuir. 2013; 29 (1): 480- 492.
[5]
Choi W, Choudhary N, Han GH, Park J, Akinwande D, Lee YH. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater Today. 2017; 20 (3): 116- 130.
[6]
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017; 2 (8): 17033.
[7]
Kong D, Cha JJ, Wang H, Lee HR, Cui Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci. 2013; 6 (12): 3553.
[8]
Tang G, Zhang J, Liu C, et al. Synthesis and tribological properties of flower-like MoS2 microspheres. Ceram Int. 2014; 40 (8): 11575- 11580.
[9]
Jiao Y, Mukhopadhyay A, Ma Y, Yang L, Hafez AM, Zhu H. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv Energy Mater. 2018; 8 (15): 1702779.
[10]
Wu M, Zhan J, Wu K, et al. Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. J Mater Chem A. 2017; 5 (27): 14061- 14069.
[11]
Xiao J, Choi D, Cosimbescu L, Koech P, Liu J, Lemmon JP. Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem Mater. 2010; 22 (16): 4522- 4524.
[12]
Du G, Guo Z, Wang S, Zeng R, Chen Z, Liu H. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem Commun. 2010; 46 (7): 1106- 1108.
[13]
Wang J, Sun Z, Li Y, et al. Sulfur vacancy MoS2 for electrocatalytic reduction of nitrate to ammonia with enhanced selectivity. J Alloys Compd. 2023; 955: 170199.
[14]
Suryanto BHR, Wang D, Azofra LM, et al. MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Lett. 2019; 4 (2): 430- 435.
[15]
Zhang L, Ji X, Ren X, et al. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies. Adv Mater. 2018; 30 (28): 1800191.
[16]
Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005; 127 (15): 5308- 5309.
[17]
Conway BE, Jerkiewicz G. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim Acta. 2000; 45 (25-26): 4075- 4083.
[18]
Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007; 317 (5834): 100- 102.
[19]
Li G, Zhang D, Qiao Q, et al. All the catalytic active sites of MoS2 for hydrogen evolution. J Am Chem Soc. 2016; 138 (51): 16632- 16638.
[20]
Zhu J, Wang ZC, Dai H, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat Commun. 2019; 10 (1): 1348.
[21]
Shah SA, Khan I, Yuan A. MoS2 as a co-catalyst for photocatalytic hydrogen production: a mini review. Molecules. 2022; 27 (10): 3289.
[22]
Madhushree R, Jadan Resnik Jaleel UC, Pinheiro D, et al. Architecture of visible-light induced Z-scheme MoS2/g-C3N4/ZnO ternary photocatalysts for malachite green dye degradation. Environ Res. 2022; 214: 113742.
[23]
Madhushree R, Jadan Resnik Jaleel UC, Pinheiro D, Devi KRS. The catalytic reduction of 4-nitrophenol using MoS2/ZnO nanocomposite. Appl Surf Sci Adv. 2022; 10: 100265.
[24]
Jaleel UCJR, Devi KRS, Madhushree R, Pinheiro D. Statistical and experimental studies of MoS2/g-C3N4/TiO2: a ternary Z-scheme hybrid composite. J Mater Sci. 2021; 56 (11): 6922- 6944.
[25]
Qiao Y, Hirtz T, Wu F, et al. Fabricating molybdenum disulfide memristors. ACS Appl Electron Mater. 2020; 2 (2): 346- 370.
[26]
Cao Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano. 2021; 15 (7): 11014- 11039.
[27]
Yin W, Liu X, Zhang X, et al. Synthesis of tungsten disulfide and molybdenum disulfide quantum dots and their applications. Chem Mater. 2020; 32 (11): 4409- 4424.
[28]
Tang L, Meng X, Deng D, Bao X. Confinement catalysis with 2D materials for energy conversion. Adv Mater. 2019; 31 (50): 1901996.
[29]
Rahman A, Jennings JR, Tan AL, Khan MM. Molybdenum disulfide-based nanomaterials for visible-light-induced photocatalysis. ACS Omega. 2022; 7 (26): 22089- 22110.
[30]
Toh RJ, Sofer Z, Luxa J, Sedmidubský D, Pumera M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem Commun. 2017; 53 (21): 3054- 3057.
[31]
Cai L, He J, Liu Q, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc. 2015; 137 (7): 2622- 2627.
[32]
Jayabal S, Wu J, Chen J, Geng D, Meng X. Metallic 1T-MoS2 nanosheets and their composite materials: preparation, properties and emerging applications. Mater Today Energy. 2018; 10: 264- 279.
[33]
Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B. 2011; 83 (24): 245213.
[34]
Yuan YJ, Lu HW, Yu ZT, Zou ZG. Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. ChemSusChem. 2015; 8 (24): 4113- 4127.
[35]
Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett. 2010; 105 (13): 136805.
[36]
Kim K, Lee JU, Cheong H. Raman spectroscopy of two-dimensional magnetic van der waals materials. Nanotechnology. 2019; 30 (45): 452001.
[37]
Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano. 2010; 4 (5): 2695- 2700.
[38]
Arif Khalil RM, Hussain F, Manzoor Rana A, Imran M, Murtaza G. Comparative study of polytype 2H-MoS2 and 3R-MoS2 systems by employing DFT. Phys E. 2019; 106: 338- 345.
[39]
Calandra M. Chemically exfoliated single-layer MoS2: stability, lattice dynamics, and catalytic adsorption from first principles. Phys Rev B. 2013; 88 (24): 245428.
[40]
Tang Q, Jiang D. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016; 6 (8): 4953- 4961.
[41]
Tang J, Huang J, Ding D, Zhang S, Deng X. Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution. Int J Hydrogen Energy. 2022; 47 (94): 39771- 39795.
[42]
Attanayake NH, Thenuwara AC, Patra A, et al. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction. ACS Energy Lett. 2018; 3 (1): 7- 13.
[43]
Li Y, Chang K, Sun Z, et al. Selective preparation of 1T- and 2H-phase MoS2 nanosheets with abundant monolayer structure and their applications in energy storage devices. ACS Appl Energy Mater. 2020; 3 (1): 998- 1009.
[44]
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011; 11 (12): 5111- 5116.
[45]
Morales-Guio CG, Hu X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc Chem Res. 2014; 47 (8): 2671- 2681.
[46]
Huang Z, Luo W, Ma L, et al. Dimeric [Mo2S12]2− cluster: a molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis. Angew Chem Int Ed. 2015; 54 (50): 15181- 15185.
[47]
Jaramillo TF, Bonde J, Zhang J, et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. J Phys Chem C. 2008; 112 (45): 17492- 17498.
[48]
Kibsgaard J, Jaramillo TF, Besenbacher F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat Chem. 2014; 6 (3): 248- 253.
[49]
Ting LRL, Deng Y, Ma L, Zhang YJ, Peterson AA, Yeo BS. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 2016; 6 (2): 861- 867.
[50]
Tran PD, Tran TV, Orio M, et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat Mater. 2016; 15 (6): 640- 646.
[51]
Ren X, Wei Q, Ren P, Wang Y, Peng Y. Hydrothermal-solvothermal cutting integrated synthesis and optical properties of MoS2 quantum dots. Opt Mater. 2018; 86: 62- 65.
[52]
Ottaviano L, Palleschi S, Perrozzi F, et al. Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Mater. 2017; 4 (4): 045013.
[53]
Gao E, Lin SZ, Qin Z, Buehler MJ, Feng XQ, Xu Z. Mechanical exfoliation of two-dimensional materials. J Mech Phys Solids. 2018; 115: 248- 262.
[54]
Ding J, Zhou Y, Li Y, Guo S, Huang X. MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: a new class of bifunctional materials for batteries and electrocatalysis. Chem Mater. 2016; 28 (7): 2074- 2080.
[55]
Yu H, Zhu H, Dargusch M, Huang Y. A reliable and highly efficient exfoliation method for water-dispersible MoS2 nanosheet. J Colloid Interface Sci. 2018; 514: 642- 647.
[56]
Xu L, Gu Y, Li Y, et al. One-step preparation of molybdenum disulfide/graphene nano-catalysts through a simple co-exfoliation method for high-performance electrocatalytic hydrogen evolution reaction. J Colloid Interface Sci. 2019; 542: 355- 362.
[57]
Masoumi Z, Tayebi M, Lee BK. Ultrasonication-assisted liquid-phase exfoliation enhances photoelectrochemical performance in α-Fe2O3/MoS2 photoanode. Ultrason Sonochem. 2021; 72: 105403.
[58]
Gan X, Zhao H, Lei D, Wang P. Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: covalent surface modification versus interlayer interaction. J Catal. 2020; 391: 424- 434.
[59]
Sokolov MR, Tumbinskiy KA, Zvyagina AI, et al. A new 2-methylimidazole-assisted liquid-exfoliation method for a rapid scalable fabrication of chemically pure MoS2 nanosheets. Colloid Interface Sci Commun. 2022; 47: 100604.
[60]
Sahoo D, Kumar B, Sinha J, Ghosh S, Roy SS, Kaviraj B. Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Sci Rep. 2020; 10 (1): 10759.
[61]
Hau HH, Duong TTH, Man NK, et al. Enhanced NO2 gas-sensing performance at room temperature using exfoliated MoS2 nanosheets. Sens Actuators A. 2021; 332: 113137.
[62]
Ji S, Yang Z, Zhang C, et al. Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolution. Electrochim Acta. 2013; 109: 269- 275.
[63]
Liu J, Liu H, Peng W, Li Y, Zhang F, Fan X. High-yield exfoliation of MoS2 (WS2) monolayers towards efficient photocatalytic hydrogen evolution. Chem Eng J. 2022; 431: 133286.
[64]
Dai W, Dong H, Fugetsu B, et al. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small. 2015; 11 (33): 4158- 4164.
[65]
Gopalakrishnan D, Damien D, Shaijumon MM. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano. 2014; 8 (5): 5297- 5303.
[66]
Gopalakrishnan D, Damien D, Li B, et al. Electrochemical synthesis of luminescent MoS2 quantum dots. Chem Commun. 2015; 51 (29): 6293- 6296.
[67]
Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013; 135 (28): 10274- 10277.
[68]
Chang K, Pang H, Hai X, et al. Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. Appl Catal B. 2018; 232: 446- 453.
[69]
Majumder S, Banerjee S. Flower-Like MoS2 for next generation high performance energy storage device applications. Microsc Microanal. 2019; 25 (6): 1394- 1400.
[70]
Lambora S, Bhardwaj A. Role of dielectric medium on optical behaviour of blue emitting colloidal MoS2 quantum dots. J Lumin. 2023; 255: 119598.
[71]
Chen L, Xu J, Wang Y, Huang R. Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging. J Mater Sci Technol. 2021; 63: 91- 96.
[72]
Liu T, Chao Y, Gao M, et al. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res. 2016; 9 (10): 3003- 3017.
[73]
Xu S, Li D, Wu P. One-Pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater. 2015; 25 (7): 1127- 1136.
[74]
Bockris JO, Potter EC. The mechanism of the cathodic hydrogen evolution reaction. J Electrochem Soc. 1952; 99 (4): 169.
[75]
Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta. 2002; 47 (22-23): 3571- 3594.
[76]
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Hydrogenases. Chem Rev. 2014; 114 (8): 4081- 4148.
[77]
Hardt S, Stapf S, Filmon DT, et al. Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film. Nat Catal. 2021; 4 (3): 251- 258.
[78]
Deng J, Li H, Xiao J, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci. 2015; 8 (5): 1594- 1601.
[79]
Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014; 4 (11): 3957- 3971.
[80]
Yin Y, Han J, Zhang Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J Am Chem Soc. 2016; 138 (25): 7965- 7972.
[81]
Peng J, Liu Y, Luo X, et al. High phase purity of large-sized 1T′-MoS2 monolayers with 2D superconductivity. Adv Mater. 2019; 31 (19): 1900568.
[82]
Yu Y, Nam GH, He Q, et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat Chem. 2018; 10 (6): 638- 643.
[83]
Guo X, Song E, Zhao W, et al. Charge self-regulation in 1T‴-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity. Nat Commun. 2022; 13: 5954.
[84]
Li H, Tsai C, Koh AL, et al. Correction: corrigendum: activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater. 2016; 15 (3): 364.
[85]
Xie J, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater. 2013; 25 (40): 5807- 5813.
[86]
Tsai C, Li H, Park S, et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun. 2017; 8 (1): 15113.
[87]
Merki D, Vrubel H, Rovelli L, Fierro S, Hu X. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci. 2012; 3 (8): 2515.
[88]
Luo Z, Ouyang Y, Zhang H, et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat Commun. 2018; 9 (1): 2120.
[89]
Meng X, Ma C, Jiang L, et al. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew Chem Int Ed. 2020; 59 (26): 10502- 10507.
[90]
Baloglou A, Ončák M, Grutza ML, Van Der Linde C, Kurz P, Beyer MK. Structural properties of gas phase molybdenum sulfide clusters [Mo3S13]2−, [HMo3S13], [H3Mo3S13]+ as model systems of a promising hydrogen evolution catalyst. J Phys Chem C. 2019; 123 (13): 8177- 8186.
[91]
Hellstern TR, Kibsgaard J, Tsai C, et al. Investigating catalyst-support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2− nanoclusters. ACS Catal. 2017; 7 (10): 7126- 7130.
[92]
Zhuang TT, Liang ZQ, Seifitokaldani A, et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat Catal. 2018; 1 (6): 421- 428.
[93]
Xie S, Shen Z, Deng J, et al. Visible light-driven C-H activation and C-C coupling of methanol into ethylene glycol. Nat Commun. 2018; 9 (1): 1181.
[94]
Khan I, Yuan A, Khan S, et al. Graphitic carbon nitride composites with gold and ZIF-67 nanoparticles as visible-light-promoted catalysts for CO2 conversion and bisphenol a degradation. ACS Appl Nano Mater. 2022; 5 (9): 13404- 13416.
[95]
Khan I, Kang K, Khan A, et al. Efficient CO2 conversion and organic pollutants degradation over Sm3+ doped and rutile TiO2 nanorods decorated-GdFeO3 nanorods. Int J Hydrogen Energy. 2023; 48 (84): 32756- 32770.
[96]
Khan I, Yuan A, Khan A, et al. Efficient visible-light activities of TiO2 decorated and Cr3+incorporated-porous SmFeO3 for CO2 conversion and 4-chlorophenol degradation. Surf Interfaces. 2022; 34: 102358.
[97]
Khan I, Luo M, Guo L, et al. Synthesis of phosphate-bridged g-C3N4/LaFeO3 nanosheets Z-scheme nanocomposites as efficient visible photocatalysts for CO2 reduction and malachite green degradation. Appl Catal A. 2022; 629: 118418.
[98]
Kudo A, Nakagawa S, Tsuneto A, Sakata T. Electrochemical reduction of high pressure CO2 on Ni electrodes. J Electrochem Soc. 1993; 140 (6): 1541- 1545.
[99]
Zheng X, De Luna P, García de Arquer FP, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule. 2017; 1 (4): 794- 805.
[100]
Asadi M, Kumar B, Behranginia A, et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun. 2014; 5 (1): 4470.
[101]
Asadi M, Kim K, Liu C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science. 2016; 353 (6298): 467- 470.
[102]
Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J. MoS2/Graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano. 2014; 8 (7): 7078- 7087.
[103]
Lin H, Zhang K, Yang G, et al. Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution. Appl Catal B. 2020; 279: 119387.
[104]
Li X, Lv X, Li N, Wu J, Zheng YZ, Tao X. One-step hydrothermal synthesis of high-percentage 1T-phase MoS2 quantum dots for remarkably enhanced visible-light-driven photocatalytic H2 evolution. Appl Catal B. 2019; 243: 76- 85.
[105]
Zhang L, Zhang H, Jiang C, et al. Z-scheme system of WO3@MoS2/CdS for photocatalytic evolution H2: MoS2 as the charge transfer mode switcher, electron-hole mediator and cocatalyst. Appl Catal B. 2019; 259: 118073.
[106]
Liu J, Wang E, Lv J, et al. Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation. Fuel Process Technol. 2013; 110: 249- 257.
[107]
Liu N, Wang X, Xu W, Hu H, Liang J, Qiu J. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel. 2014; 119: 163- 169.
[108]
Bushuyev OS, De Luna P, Dinh CT, et al. What should we make with CO2 and how can we make it? Joule. 2018; 2 (5): 825- 832.
[109]
Hu J, Yu L, Deng J, et al. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat Catal. 2021; 4 (3): 242- 250.
[110]
Li H, Wang L, Dai Y, et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat Nanotechnol. 2018; 13 (5): 411- 417.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

24

Accesses

0

Citations

Detail

Sections
Recommended

/