
Design strategies and recent advancements of solid-state supercapacitor operating in wide temperature range
Jie Zhou, Zhengfeng Zhu, Wenhui Shi, Xiangyu Shi, Zhuoyuan Zheng, Ye Xiong, Yusong Zhu
Carbon Energy ›› 2024, Vol. 6 ›› Issue (6) : 504.
Design strategies and recent advancements of solid-state supercapacitor operating in wide temperature range
Solid-state supercapacitors (SSCs) are emerging as one of the promising energy storage devices due to their high safety, superior power density, and excellent cycling life. However, performance degradation and safety issues under extreme conditions are the main challenges for the practical application. With the expansion of human activities, such as space missions, polar exploration, and so on, the investigation of SSC with wide temperature tolerance, high energy density, power density, and sustainability is highly desired. In this review, the effects of temperature on SSC are systematically illustrated and clarified, including the properties of the electrolyte, ion diffusion, and reaction dynamics of the supercapacitor. Subsequently, we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification, electrode design, and interface adjustment between electrode and electrolyte, especially with critical concerns on ionic conductivity and cycling stability. In the end, a perspective is presented, expecting to promote the practical application of the SSC in harsh conditions.
electrode / interface / solid-state electrolyte / solid-state supercapacitor / wide temperature
[1] |
Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat Mater. 2020; 19 (5): 552- 558.
|
[2] |
Ye L, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature. 2021; 593 (7858): 218- 222.
|
[3] |
Zhu K, Sun Z, Li Z, Liu P, Li H, Jiao L. Design strategies and recent advancements for low-temperature aqueous rechargeable energy storage. Adv Energy Mater. 2023; 13 (8): 2203708.
|
[4] |
Wang CY, Liu T, Yang XG, et al. Fast charging of energy-dense lithium-ion batteries. Nature. 2022; 611 (7936): 485- 490.
|
[5] |
Fagiolari L, Sampò M, Lamberti A, et al. Integrated energy conversion and storage devices: interfacing solar cells, batteries and supercapacitors. Energy Storage Mater. 2022; 51 (6): 400- 434.
|
[6] |
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008; 7 (11): 845- 854.
|
[7] |
Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018; 118 (18): 9233- 9280.
|
[8] |
Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012; 41 (2): 797- 828.
|
[9] |
Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev. 2015; 44 (21): 7484- 7539.
|
[10] |
Jiang S, Wei Y, Li X, et al. Scalable manufacturing of environmentally stable all-solid-state plant protein-based supercapacitors with optimal balance of capacitive performance and mechanically robust. Small. 2023; 19 (25): 2207997.
|
[11] |
Zhou Y, Qi H, Yang J, et al. Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ Sci. 2021; 14 (4): 1854- 1896.
|
[12] |
Xiong C, Wang T, Zhao Z, Ni Y. Recent progress in the development of smart supercapacitors. SmartMat. 2022; 4 (2): e1158.
|
[13] |
Li B, Yu M, Li Z, Yu C, Wang H, Li Q. Constructing flexible all-solid-state supercapacitors from 3D nanosheets active bricks via 3D manufacturing technology: a perspective review. Adv Funct Mater. 2022; 32 (29): 2201166.
|
[14] |
Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J. 2021; 403: 126352.
|
[15] |
Xu J, Yuan N, Razal JM, et al. Temperature-independent capacitance of carbon-based supercapacitor from −100 to 60℃. Energy Storage Mater. 2019; 22 (2): 323- 329.
|
[16] |
Liu F, He J, Liu X, et al. MoC nanoclusters anchored Ni@N-doped carbon nanotubes coated on carbon fiber as three-dimensional and multifunctional electrodes for flexible supercapacitor and self-heating device. Carbon Energy. 2021; 3 (1): 129- 141.
|
[17] |
Wu H, Yuan W, Yuan X, Cheng L. Atmosphere-free activation methodology for holey graphene/cellulose nanofiber-based film electrode with highly efficient capacitance performance. Carbon Energy. 2023; 5 (1): e229.
|
[18] |
Lamba P, Singh P, Singh P, et al. Recent advancements in supercapacitors based on different electrode materials: classifications, synthesis methods and comparative performance. J Energy Storage. 2022; 48: 103871.
|
[19] |
Panasenko IV, Bulavskiy MO, Iurchenkova AA, et al. Flexible supercapacitors based on free-standing polyaniline/single-walled carbon nanotube films. J Power Sources. 2022; 541: 231691.
|
[20] |
Bi X, Li M, Zhou G, et al. High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Res. 2023; 16 (5): 7696- 7709.
|
[21] |
Tong L, Sonnenberg LA, Wu W, et al. Fabrication of high-performance flexible supercapacitor electrodes with poly(3,4-ethylenedioxythiophene) (PEDOT) grown on carbon-deposited polyurethane sponge. Energies. 2021; 14 (21): 7393.
|
[22] |
Xia Y, Mathis TS, Zhao MQ, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature. 2018; 557 (7705): 409- 412.
|
[23] |
Li J, Levitt A, Kurra N, et al. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 2019; 20: 455- 461.
|
[24] |
Ling Z, Ren CE, Zhao MQ, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl A Sci USA. 2014; 111 (47): 16676- 16681.
|
[25] |
Wu Q-L, Zhao S-X, Yu L, et al. Oxygen vacancy-enriched MoO3−x nanobelts for asymmetric supercapacitors with excellent room/low temperature performance. J Mater Chem A. 2019; 7 (21): 13205- 13214.
|
[26] |
Cao X, Zheng B, Shi W, et al. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater. 2015; 27 (32): 4695- 4701.
|
[27] |
Chodankar NR, Dubal DP, Gund GS, Lokhande CD. A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte. J Energy Chem. 2016; 25 (3): 463- 471.
|
[28] |
Lu X, Yu M, Zhai T, et al. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013; 13 (6): 2628- 2633.
|
[29] |
Du Z, Liu W, Liu J, et al. A thermally chargeable supercapacitor based on the g-C3N4-doped PAMPS/PAA hydrogel solid electrolyte and 2D MOF@Ti3C2Tx MXene heterostructure composite electrode. Adv Mater Interfaces. 2023; 10 (17): 2300266.
|
[30] |
Hu S, Rajamani R, Yu X. Flexible solid-state paper based carbon nanotube supercapacitor. Appl Phys Lett. 2012; 100 (10): 104103.
|
[31] |
Li Y, Liu L, Yu Y, Shang X, Meng F. Co9S8 quasi-hexagonal nanoparticles coupled with WS2 nanoring anchored on 3D sulfur, nitrogen Co-doped carbon nanotubes@graphene oxide cross-linking architecture for high performance asymmetric supercapacitor. Carbon. 2022; 189: 503- 518.
|
[32] |
Aziz MA, Shah SS, Nayem SMA, Shaikh MN, Hakeem AS, Bakare IA. Peat soil-derived silica doped porous graphitic carbon with high yield for high-performance all-solid-state symmetric supercapacitors. J Energy Storage. 2022; 50: 104278.
|
[33] |
Zhao Y, Chen Z, Mo F, et al. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv Sci. 2020; 8: 2002590.
|
[34] |
Feng Y, Zhou L, Ma H, et al. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ Sci. 2022; 15 (5): 1711- 1759.
|
[35] |
Pan Z, Yang J, Zhang Y, Gao X, Wang J. Quasi-solid-state fiber-shaped aqueous energy storage devices: recent advances and prospects. J Mater Chem A. 2020; 8 (14): 6406- 6433.
|
[36] |
Asl MS, Hadi R, Salehghadimi L, et al. Flexible all-solid-state supercapacitors with high capacitance, long cycle life, and wide operational potential window: recent progress and future perspectives. J Energy Storage. 2022; 50: 104223.
|
[37] |
Pandey GP, Klankowski SA, Liu T, Wu J, Li J. Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: interfacing vertical core-shell array electrodes with a gel polymer electrolyte. J Power Sources. 2017; 342: 1006- 1016.
|
[38] |
Gualous H, Bouquain D, Berthon A, Kauffmann JM. Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J Power Sources. 2003; 123 (1): 86- 93.
|
[39] |
Xiong G, Kundu A, Fisher TS. Thermal Effects in Supercapacitors. Springer International Publishing; 2015.
|
[40] |
Keum K, Kim JW, Hong SY, Son JG, Lee SS, Ha JS. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv Mater. 2020; 32 (51): 2002180.
|
[41] |
Nakhanivej P, Rana HH, Kim H, Xia BY, Park HS. Transport and durability of energy storage materials operating at high temperatures. ACS Nano. 2020; 14 (7): 7696- 7703.
|
[42] |
Gualous H, Gallay R, Alcicek G, et al. Supercapacitor ageing at constant temperature and constant voltage and thermal shock. Microelectron Reliab. 2010; 50 (9-11): 1783- 1788.
|
[43] |
Lang J, Zhang X, Liu L, Yang B, Yang J, Yan X. Highly enhanced energy density of supercapacitors at extremely low temperatures. J Power Sources. 2019; 423: 271- 279.
|
[44] |
Kumaravel V, Bartlett J, Pillai SC. Solid electrolytes for high-temperature stable batteries and supercapacitors. Adv Energy Mater. 2020; 11 (3): 2002869.
|
[45] |
Chodankar NR, Patil SJ, Hwang SK, et al. Supercapacitors operated at extremely low environmental temperatures. J Mater Chem A. 2021; 9 (47): 26603- 26627.
|
[46] |
Yan J, Li S, Lan B, Wu Y, Lee PS. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv Funct Mater. 2019; 30 (2): 1902564.
|
[47] |
Pal B, Yang S, Ramesh S, Thangadurai V, Jose R. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv. 2019; 1 (10): 3807- 3835.
|
[48] |
Li J, Jia H, Ma S, et al. Separator design for high-performance supercapacitors: requirements, challenges, strategies, and prospects. ACS Energy Lett. 2022; 8 (1): 56- 78.
|
[49] |
Chen M, Zhang Y, Xing G, Chou S-L, Tang Y. Electrochemical energy storage devices working in extreme conditions. Energy Environ Sci. 2021; 14 (6): 3323- 3351.
|
[50] |
Oyedotun KO, Ighalo JO, Amaku JF, et al. Advances in supercapacitor development: materials, processes, and applications. J Electron Mater. 2022; 52 (1): 96- 129.
|
[51] |
Choi BG, Hong J, Hong WH, Hammond PT, Park H. Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano. 2011; 5 (9): 7205- 7213.
|
[52] |
Vicentini R, Da Silva LM, Cecilio Junior EP, Alves TA, Nunes WG, Zanin H. How to measure and calculate equivalent series resistance of electric double-layer capacitors. Molecules. 2019; 24 (8): 1452.
|
[53] |
Khan S, Fang C, Ma Y, et al. High-performance PVDF-HFP based gel polymer electrolyte modified by core-shell SiO2-PMMA for electrochromic devices. J Electrochem Soc. 2021; 168 (2): 022504.
|
[54] |
Zou Y, Chen C, Sun Y, et al. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem Eng J. 2021; 418: 128616.
|
[55] |
Wright PV. Electrical conductivity in ionic complexes of poly(ethy1ene oxide) Br. Polym J. 1975; 7: 319.
|
[56] |
Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun. 1977; 16: 578- 580.
|
[57] |
Shin DW, Guiver MD, Lee YM. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem Rev. 2017; 117 (6): 4759- 4805.
|
[58] |
Xue Z, He D, Xie X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A. 2015; 3 (38): 19218- 19253.
|
[59] |
Liu X, Osaka T. All-solid-state electric double-layer capacitor with isotropic high-density graphite electrode and polyethylene oxide/LiClO4 polymer electrolyte. J Electrochem Soc. 1996; 143 (12): 3982- 3986.
|
[60] |
Bar N, Ramanjaneyulu K, Basak P. Quasi-solid semi-interpenetrating polymer networks as electrolytes: part I. dependence of physicochemical characteristics and ion conduction behavior on matrix composition, cross-link density, chain length between cross-links, molecular entanglements, charge carrier concentration, and nature of anion. J Phys Chem C. 2013; 118 (11): 159- 174.
|
[61] |
Hastak RS, Sivaraman P, Potphode DD, Shashidhara K, Samui AB. All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochim Acta. 2012; 59: 296- 303.
|
[62] |
Liu G, Wang S, Mao T, et al. High temperature all-solid flexible supercapacitor based on novel cross-linked polybenzimidazole electrolyte. J Energy Storage. 2020; 32: 101901.
|
[63] |
Kim SK, Kim HJ, Lee JC, Braun PV, Park HS. Extremely durable, flexible supercapacitors with greatly improved performance at high temperatures. ACS Nano. 2015; 9 (8): 8569- 8577.
|
[64] |
Chaichi A, Venugopalan G, Devireddy R, Arges C, Gartia MR. A solid-state and flexible supercapacitor that operates across a wide temperature range. ACS Appl Energy Mater. 2020; 3 (6): 5693- 5704.
|
[65] |
Amaral MM, Venâncio R, Peterlevitz AC, Zanin H. Recent advances on quasi-solid-state electrolytes for supercapacitors. J Energy Chem. 2022; 67: 697- 717.
|
[66] |
Lu XH, Yu MH, Wang GM, Tong YX, Li Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci. 2014; 7 (7): 2160- 2181.
|
[67] |
Ma YL, Wainright JS, Litt MH, Savinell RF. Conductivity of PBI membranes for high temperature polymer electrolyte fuel cells. J Electrochem Soc. 2004; 151 (1): A8- A16.
|
[68] |
Rong Q, Lei W, Huang J, Liu M. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater. 2018; 8 (31): 1801967.
|
[69] |
Pal P, Ghosh A. Highly efficient gel polymer electrolytes for all solid-state electrochemical charge storage devices. Electrochim Acta. 2018; 278: 137- 148.
|
[70] |
Hosseinioun A, Paillard E. In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries. J Membr Sci. 2020; 594: 117456.
|
[71] |
Jeedi VR, Narsaiah EL, Yalla M, Swarnalatha R, Reddy SN, Sadananda Chary A. Structural and electrical studies of PMMA and PVdF based blend polymer electrolyte. SN Appl Sci. 2020; 2 (12): 2093.
|
[72] |
Feng E, Gao W, Li J, et al. Stretchable, healable, adhesive, and redox-active multifunctional supramolecular hydrogel-based flexible supercapacitor. ACS Sustainable Chem Eng. 2020; 8 (8): 3311- 3320.
|
[73] |
Hu X, Fan L, Qin G, et al. Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor. J Power Sources. 2019; 414: 201- 209.
|
[74] |
Cui H, Mi H, Ji C, et al. A durable MXene-based zinc ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte. J Mater Chem A. 2021; 9 (42): 23941- 23954.
|
[75] |
Wu S, Alsaid Y, Yao B, et al. Rapid and scalable fabrication of ultra-stretchable, anti-freezing conductive gels by cononsolvency effect. EcoMat. 2021; 3 (2): e12085.
|
[76] |
Zhang G, Yang X, Shu H, Zhong W. Ultrahigh conductivity and antifreezing zwitterionic sulfobetaine hydrogel electrolyte for low-temperature resistance flexible supercapacitors. J Mater Chem A. 2023; 11 (16): 9097- 9111.
|
[77] |
Liu J, Khanam Z, Ahmed S, Wang T, Wang H, Song S. Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS Appl Mater Interfaces. 2021; 13 (14): 16454- 16468.
|
[78] |
Dou Q, Lei S, Wang D-W, et al. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ Sci. 2018; 11 (11): 3212- 3219.
|
[79] |
Zhang XF, Ma X, Hou T, et al. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew Chem Int Ed. 2019; 58 (22): 7366- 7370.
|
[80] |
Li F, Yu L, Hu Q, et al. Fabricating low-temperature-tolerant and durable Zn-ion capacitors via modulation of co-solvent molecular interaction and cation solvation. Sci China Mater. 2021; 64 (7): 1609- 1620.
|
[81] |
Lu N, Na R, Li L, et al. Rational design of antifreezing organohydrogel electrolytes for flexible supercapacitors. ACS Appl Energy Mater. 2020; 3 (2): 1944- 1951.
|
[82] |
Mun WJ, Kim B, Moon SJ, Kim JH. Multifunctional, bicontinuous, flexible comb copolymer electrolyte for solid-state supercapacitors. Chem Eng J. 2023; 454: 140386.
|
[83] |
Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ. Highly stretchable and tough hydrogels below water freezing temperature. Adv Mater. 2018; 30 (35): e1801541.
|
[84] |
Tao F, Qin L, Wang Z, Pan Q. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl Mater Interfaces. 2017; 9 (18): 15541- 15548.
|
[85] |
Nian Q, Wang J, Liu S, et al. Aqueous batteries operated at −50℃. Angew Chem Int Ed. 2019; 58 (47): 16994- 16999.
|
[86] |
Chen F, Zhou D, Wang J, et al. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew Chem Int Ed. 2018; 57 (22): 6568- 6571.
|
[87] |
Sun Y, Wang Y, Liu L, et al. Towards the understanding of acetonitrile suppressing salt precipitation mechanism in a water-in-salt electrolyte for low-temperature supercapacitors. J Mater Chem A. 2020; 8 (35): 17998- 18006.
|
[88] |
Sun W, Xu Z, Qiao C, et al. Antifreezing proton zwitterionic hydrogel electrolyte via ionic hopping and Grotthuss transport mechanism toward solid supercapacitor working at −50℃. Adv Sci. 2022; 9 (27): 2201679.
|
[89] |
Liu Z, Zhang J, Liu J, et al. Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. J Mater Chem A. 2020; 8 (13): 6219- 6228.
|
[90] |
Fu Q, Hao S, Meng L, Xu F, Yang J. Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano. 2021; 15 (11): 18469- 18482.
|
[91] |
Li Z, Chen D, An Y, et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020; 28: 307- 314.
|
[92] |
Hansen BB, Spittle S, Chen B, et al. Deep eutectic solvents: a review of fundamentals and applications. Chem Rev. 2021; 121 (3): 1232- 1285.
|
[93] |
Li G, Yang H, Zuo D, Xu J, Zhang H. Deep eutectic solvent-based supramolecular gel polymer electrolytes for high-performance electrochemical double layer capacitors. Int J Hydrogen Energy. 2021; 46 (24): 13044- 13049.
|
[94] |
Yang G, Huang J, Wan X, et al. A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy. 2021; 90: 106500.
|
[95] |
Yang H, Zhang J, Yao J, Zuo D, Xu J, Zhang H. A gel polymer electrolyte based on ternary deep eutectic solvent for flexible, wide-temperature tolerant zinc-ion hybrid supercapacitors. J Power Sources. 2022; 548: 232070.
|
[96] |
Yang G, Huang J, Wan X, et al. An aqueous zinc-ion battery working at −50℃ enabled by low-concentration perchlorate-based chaotropic salt electrolyte. EcoMat. 2022; 4 (2): e12165.
|
[97] |
Lu C, Chen X. All-temperature flexible supercapacitors enabled by antifreezing and thermally stable hydrogel electrolyte. Nano Lett. 2020; 20 (3): 1907- 1914.
|
[98] |
Jin X, Sun G, Zhang G, et al. A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance. Nano Res. 2019; 12 (5): 1199- 1206.
|
[99] |
Wei J, Wei G, Shang Y, Zhou J, Wu C, Wang Q. Dissolution-crystallization transition within a polymer hydrogel for a processable ultratough electrolyte. Adv Mater. 2019; 31 (30): e1900248.
|
[100] |
Kuzina MA, Kartsev DD, Stratonovich AV, Levkin PA. Organogels versus hydrogels: advantages, challenges, and applications. Adv Funct Mater. 2023; 33 (27): 2301421.
|
[101] |
Zheng Q, Li X, Yang Q, et al. High performance solid-state supercapacitors based on highly conductive organogel electrolyte at low temperature. J Power Sources. 2022; 524: 231102.
|
[102] |
Wu Y, Wang S, Sang M, et al. A safeguarding and high temperature tolerant organogel electrolyte for flexible solid-state supercapacitors. J Power Sources. 2021; 505: 230083.
|
[103] |
Yong H, Park H, Jung C. Quasi-solid-state gel polymer electrolyte for a wide temperature range application of acetonitrile-based supercapacitors. J Power Sources. 2020; 447: 227390.
|
[104] |
Guyomard-Lack A, Delannoy PE, Dupré N, Cerclier CV, Humbert B, Le Bideau J. Destructuring ionic liquids in ionogels: enhanced fragility for solid devices. Phys Chem Chem Phys. 2014; 16 (43): 23639- 23645.
|
[105] |
Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009; 8 (8): 621- 629.
|
[106] |
Tang X, Xiao D, Xu Z, et al. A novel ionic liquid-based electrolyte assisting the high performance of low-temperature supercapacitors. J Mater Chem A. 2022; 10 (35): 18374- 18382.
|
[107] |
Feng L, Wang K, Zhang X, et al. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater. 2018; 28 (4): 1704463.
|
[108] |
Ding Y, Zhang J, Chang L, Zhang X, Liu H, Jiang L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv Mater. 2017; 29 (47): 1704253.
|
[109] |
Rana HH, Park JH, Ducrot E, et al. Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Mater. 2019; 19: 197- 205.
|
[110] |
Rana HH, Park JH, Gund GS, Park HS. Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors. Energy Storage Mater. 2020; 25: 70- 75.
|
[111] |
Liu X, Taiwo OO, Yin C, et al. Aligned ionogel electrolytes for high-temperature supercapacitors. Adv Sci. 2019; 6 (5): 1801337.
|
[112] |
Brachet M, Gaboriau D, Gentile P, et al. Solder-reflow resistant solid-state micro-supercapacitors based on ionogels. J Mater Chem A. 2016; 4 (30): 11835- 11843.
|
[113] |
Asbani B, Douard C, Brousse T, Le Bideau J. High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Mater. 2019; 21: 439- 445.
|
[114] |
Ortega PFR, Trigueiro JPC, Silva GG, Lavall RL. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochim Acta. 2016; 188: 809- 817.
|
[115] |
Kim DW, Jung SM, Jung HY. A super-thermostable, flexible supercapacitor for ultralight and high performance devices. J Mater Chem A. 2020; 8 (2): 532- 542.
|
[116] |
Negre L, Daffos B, Turq V, Taberna PL, Simon P. Ionogel-based solid-state supercapacitor operating over a wide range of temperature. Electrochim Acta. 2016; 206: 490- 495.
|
[117] |
Ye T, Li L, Zhang Y. Recent progress in solid electrolytes for energy storage devices. Adv Funct Mater. 2020; 30 (29): 2000077.
|
[118] |
Zeng X, Song H, Shen Z-Y, Moskovits M. Progress and challenges of ceramics for supercapacitors. J Materiomics. 2021; 7 (6): 1198- 1224.
|
[119] |
Yoon YS, Cho WI, Lim JH, Choi DJ. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films. J Power Sources. 2001; 101 (1): 126- 129.
|
[120] |
Jiménez R, del Campo A, Calzada ML, et al. Lithium La0.57Li0.33TiO3 perovskite and Li1.3Al0.3Ti1.7(PO4)3 Li-NASICON supported thick films electrolytes prepared by tape casting method. J Electrochem Soc. 2016; 163 (8): A1653- A1659.
|
[121] |
Ma F, Zhao E, Zhu S, et al. Preparation and evaluation of high lithium ion conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte obtained using a new solution method. Solid State Ion. 2016; 295: 7- 12.
|
[122] |
Kim H-K, Cho S-H, Ok Y-W, Seong T-Y, Yoon YS. All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes. J Vac Sci Technol B. 2003; 21: 949- 952.
|
[123] |
Kato Y, Hori S, Saito T, et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy. 2016; 1 (4): 16030.
|
[124] |
Francisco BE, Jones CM, Lee S-H, Stoldt CR. Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte. Appl Phys Lett. 2012; 100 (10): 103902.
|
[125] |
Lu D-L, Zhao RR, Wu JL, et al. Investigations on the properties of Li3xLa2/3−xTiO3 based all-solid-state supercapacitor: relationships between the capacitance, ionic conductivity, and temperature. J Eur Ceram Soc. 2020; 40 (6): 2396- 2403.
|
[126] |
Ulihin AS, Mateyshina YG, Uvarov NF. All-solid-state asymmetric supercapacitors with solid composite electrolytes. Solid State Ions. 2013; 251: 62- 65.
|
[127] |
Hu X, Chen Y, Hu Z, Li Y, Ling Z. All-solid-state supercapacitors based on a carbon-filled porous/dense/porous layered ceramic electrolyte. J Electrochem Soc. 2018; 165 (7): A1269- A1274.
|
[128] |
Shen Z-Y, Wang Y, Tang Y, et al. Glass modified barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J Materiomics. 2019; 5 (4): 641- 648.
|
[129] |
Kaur G, Singh MD, Sivasubramanian SC, Dalvi A. Investigations on enhanced ionic conduction in ionic liquid dispersed sol-gel derived LiTi2(PO4)3. Mater Res Bull. 2022; 145: 111555.
|
[130] |
Kaur G, Sivasubramanian SC, Dalvi A. Solid-state supercapacitors using ionic liquid dispersed Li+-NASICONs as electrolytes. Electrochim Acta. 2022; 434: 141311.
|
[131] |
Yang Y, Ng SW, Chen D, et al. Freestanding lamellar porous carbon stacks for low-temperature-foldable supercapacitors. Small. 2019; 15 (48): 1902071.
|
[132] |
Zang X, Zhang R, Zhen Z, et al. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes. Nano Energy. 2017; 40: 224- 232.
|
[133] |
Gao X, Du X, Mathis TS, et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat Commun. 2020; 11: 6160.
|
[134] |
Liu Q, Zhao A, He X, et al. Full-temperature all-solid-state Ti3C2Tx/aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility. Adv Funct Mater. 2021; 31 (22): 2010944.
|
[135] |
Hou R, Miao M, Wang Q, et al. Integrated conductive hybrid architecture of metal-organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors. Adv Energy Mater. 2019; 10 (1): 1901892.
|
[136] |
Guan X, Chen J, Zhu E, et al. Intrinsic electrochemical activity modulation of MOF-derived C/N-NiCoMn-LDH/Ag electrode for low temperature hybrid supercapacitors. J Mater Sci Technol. 2023; 150: 145- 158.
|
[137] |
Zheng S, Ma J, Wu Z-S, et al. All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ Sci. 2018; 11 (8): 2001- 2009.
|
[138] |
Jin X, Zhang G, Sun G, et al. Flexible and high-performance microsupercapacitors with wide temperature tolerance. Nano Energy. 2019; 64: 103938.
|
[139] |
Pang Z, Duan J, Zhao Y, Tang Q, He B, Yu L. A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140℃. J Power Sources. 2018; 400: 126- 134.
|
[140] |
Xiong Z, Cao Y, Jiang W-J, Zu L, Liang Q, Li D. Shearing induced ordered structures in two-dimensional nanomaterials-based electrodes for boosted pseudocapacitive kinetics. Energy Storage Mater. 2022; 53: 444- 452.
|
[141] |
Qin B, Han Y, Ren Y, et al. A ceramic-based separator for high-temperature supercapacitors. Energy Technol. 2018; 6 (2): 306- 311.
|
[142] |
Zhao T, Yang D, Hao S-M, et al. Optimized electron/ion transport by constructing radially oriented channels in MXene hybrid fiber electrodes for high-performance supercapacitors at low temperatures. J Mater Chem A. 2023; 11 (4): 1742- 1755.
|
[143] |
Xu J, Wang X, Zhou X, Yuan N, Ge S, Ding J. Activated carbon coated CNT core-shell nanocomposite for supercapacitor electrode with excellent rate performance at low temperature. Electrochim Acta. 2019; 301: 478- 486.
|
[144] |
Bagheri A, Bellani S, Beydaghi H, et al. Functionalized metallic 2D transition metal dichalcogenide-based solid-state electrolyte for flexible all-solid-state supercapacitors. ACS Nano. 2022; 16 (10): 16426- 16442.
|
[145] |
Zhu X, Ji C, Meng Q, et al. Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors. Small. 2022; 18 (16): 2200055.
|
[146] |
Qin L, Yang G, Li D, et al. High area energy density of all-solid-state supercapacitor based on double-network hydrogel with high content of graphene/PANI fiber. Chem Eng J. 2022; 430: 133045.
|
[147] |
Qiu Y, Wang Z, Jin M, et al. Amorphous carbon interweaved mesoporous all-carbon electrode for wide-temperature range supercapacitors. Electrochim Acta. 2022; 424: 140622.
|
[148] |
Zang X, Hou Y, Wang T, Zhang R, Kang F, Zhu H. Temperature-resistant and flexible supercapacitors based on 10-inch wafer-scale nanocarbon films. Sci China Mater. 2019; 62 (7): 947- 954.
|
[149] |
Li S, Tian Q, Chen J, et al. An intrinsically non-flammable organic electrolyte for wide temperature range supercapacitors. Chem Eng J. 2023; 457: 141265.
|
[150] |
Yu H, Rouelle N, Qiu A, et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance. ACS Appl Mater Interfaces. 2020; 12 (34): 37977- 37985.
|
[151] |
Zhu C, Geng F. Macroscopic MXene ribbon with oriented sheet stacking for high-performance flexible supercapacitors. Carbon Energy. 2021; 3 (1): 142- 152.
|
[152] |
Zhang X, Liu X, Feng Y, et al. Stabilizing the MXene by ion confinement shielding in a wide temperature range. Small Struct. 2022; 4 (2): 2200309.
|
[153] |
Li Y, Zhu G, Xu X, et al. Embedding metal-organic frameworks for the design of flexible hybrid supercapacitors by electrospinning: synthesis of highly graphitized carbon nanofibers containing metal oxide nanoparticles. Small Struct. 2022; 3 (9): 2200015.
|
[154] |
Khan U, Nairan A, Gao J, Zhang Q. Current progress in 2D metal-organic frameworks for electrocatalysis. Small Struct. 2022; 4 (6): 2200109.
|
[155] |
Liu QS, An HW, Wang XF, et al. Effective transport network driven by tortuosity gradient enables high-electrochem-active solid-state batteries. Natl Sci Rev. 2023; 10 (3): nwac272.
|
[156] |
Wang F, Lee J, Chen L, et al. Inspired by wood: thick electrodes for supercapacitors. ACS Nano. 2023; 17 (10): 8866- 8898.
|
[157] |
Shang Y, Wei J, Wu C, Wang Q. Extreme temperature-tolerant organohydrogel electrolytes for laminated assembly of biaxially stretchable pseudocapacitors. ACS Appl Mater Interfaces. 2018; 10 (49): 42959- 42966.
|
[158] |
Jin X, Song L, Yang H, et al. Stretchable supercapacitor at −30℃. Energy Environ Sci. 2021; 14 (5): 3075- 3085.
|
[159] |
Lee H, Jung G, Keum K, et al. A textile-based temperature-tolerant stretchable supercapacitor for wearable electronics. Adv Funct Mater. 2021; 31 (50): 2106491.
|
[160] |
Guo W, Yu C, Li S, Qiu J. Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy Environ Sci. 2021; 14 (2): 576- 601.
|
/
〈 |
|
〉 |