
Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives
Yanqing Cai, Xinggang Chen, Ying Xu, Yalin Zhang, Huijun Liu, Hongjuan Zhang, Jing Tang
Carbon Energy ›› 2024, Vol. 6 ›› Issue (2) : 501.
Ti3C2Tx MXene/carbon composites for advanced supercapacitors: Synthesis, progress, and perspectives
MXenes are a family of two-dimensional (2D) layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas, excellent electron conductivity, good hydrophilicity, and tunable terminations. Among various types of MXenes, Ti3C2Tx is the most widely studied for use in capacitive energy storage applications, especially in supercapacitors (SCs). However, the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites. To overcome such challenges, carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties. This review introduces the common strategies used for synthesizing Ti3C2Tx, followed by a comprehensive overview of recent developments in Ti3C2Tx/carbon composites as electrode materials for SCs. Ti3C2Tx/carbon composites are categorized based on the dimensions of carbons, including 0D carbon dots, 1D carbon nanotubes and fibers, 2D graphene, and 3D carbon materials (activated carbon, polymer-derived carbon, etc.). Finally, this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs.
electrochemical performance / MXene/carbon composites / supercapacitors
[1] |
Verma S, Arya S, Gupta V, et al. Performance analysis, challenges and future perspectives of nickel based nanostructured electrodes for electrochemical supercapacitors. J Mater Res Technol. 2021; 11: 564- 599.
|
[2] |
Miao L, Song Z, Zhu D, Li L, Gan L, Liu M. Recent advances in carbon-based supercapacitors. Mater Adv. 2020; 1 (5): 945- 966.
|
[3] |
Huang J, Lu X, Sun T, et al. Boosting high-voltage dynamics towards high-energy-density lithium-ion capacitors. Energy Environ Mater. 2023; 6 (4): e12505.
|
[4] |
Wei C, Fei H, Tian Y, et al. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020; 26: 223- 233.
|
[5] |
Wei C, Xi B, Wang P, et al. In situ anchoring ultrafine ZnS nanodots on 2D MXene nanosheets for accelerating polysulfide redox and regulating Li plating. Adv Mater. 2023; 35 (32): 2303780.
|
[6] |
Song Z, Li J, Zhang Q, et al. Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells. Carbon Energy. 2023; 5 (7): e342.
|
[7] |
Sharma NRY, Shafi K, An PM. Overview, methods of synthesis and modification of carbon-based electrodes for supercapacitor. J Energy Storage. 2022; 55: 105727.
|
[8] |
Raj B, Padhy AK, Basu S, Mohapatra M. Review—futuristic direction for R&D challenges to develop 2D advanced materials based supercapacitors. J Electrochem Soc. 2020; 167 (13): 136501.
|
[9] |
Jiang Q, Kurra N, Alhabeb M, Gogotsi Y, Alshareef HN. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater. 2018; 8 (13): 1703043.
|
[10] |
Wang Y, Chu X, Zhang H, et al. Hyper-conjugated polyaniline delivering extraordinary electrical and electrochemical properties in supercapacitors. Appl Surf Sci. 2023; 628: 157350.
|
[11] |
Abbas Q, Mirzaeian M, Hunt MRC, Hall P, Raza R. Current state and future prospects for electrochemical energy storage and conversion systems. Energies. 2020; 13 (21): 5847.
|
[12] |
Navarro G, Torres J, Blanco M, Nájera J, Santos-Herran M, Lafoz M. Present and future of supercapacitor technology applied to powertrains, renewable generation and grid connection applications. Energies. 2021; 14 (11): 3060.
|
[13] |
Khalid M. A review on the selected applications of battery-supercapacitor hybrid energy storage systems for microgrids. Energies. 2019; 12 (23): 4559.
|
[14] |
Kasprzak D, Mayorga-Martinez CC, Pumera M. Sustainable and flexible energy storage devices: a review. Energy Fuels. 2023; 37 (1): 74- 97.
|
[15] |
Shao Y, El-Kady MF, Sun J, et al. Design and mechanisms of asymmetric supercapacitors. Chem Rev. 2018; 118 (18): 9233- 9280.
|
[16] |
Wu Z, Guo C, Lu Z, Yuan C, Xu Y, Dai L. A facile brushing method for constructing all-in-one high performance flexible supercapacitor with ordinary carbon materials. J Energy Storage. 2023; 67: 107531.
|
[17] |
Zhai Z, Zhang L, Du T, et al. A review of carbon materials for supercapacitors. Mater Des. 2022; 221: 111017.
|
[18] |
Zhou Q, Yao H. Recent development of carbon electrode materials for electrochemical supercapacitors. Energy Rep. 2022; 8: 656- 661.
|
[19] |
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008; 7 (11): 845- 854.
|
[20] |
Boota M, Gogotsi Y. MXene—conducting polymer asymmetric pseudocapacitors. Adv Energy Mater. 2019; 9 (7): 1802917.
|
[21] |
Gan Z, Yin J, Xu X, Cheng Y, Yu T. Nanostructure and advanced energy storage: elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS Nano. 2022; 16 (4): 5131- 5152.
|
[22] |
Jiang X, Chu X, Zhang X, et al. Surplus charge injection enables high-cell-potential stable 2D polyaniline supercapacitors. Electrochim Acta. 2023; 445: 142052.
|
[23] |
Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J. 2021; 403: 126352.
|
[24] |
Jiang Y, Liu J. Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater. 2019; 2 (1): 30- 37.
|
[25] |
Liu Y, Jiang SP, Shao Z. Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Mater Today Adv. 2020; 7: 100072.
|
[26] |
Li J, Wang H, Xiao X. Intercalation in two-dimensional transition metal carbides and nitrides (MXenes) toward electrochemical capacitor and beyond. Energy Environ Mater. 2020; 3 (3): 306- 322.
|
[27] |
Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renewable Sustainable Energy Rev. 2019; 101: 123- 145.
|
[28] |
Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017; 4 (7): 1600539.
|
[29] |
Shi Y, Liu G, Jin R, Xu H, Wang Q, Gao S. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review. Carbon Energy. 2019; 1 (2): 253- 275.
|
[30] |
Huang S, Zhu X, Sarkar S, Zhao Y. Challenges and opportunities for supercapacitors. APL Mater. 2019; 7 (10): 100901.
|
[31] |
Baig MM, Gul IH, Baig SM, Shahzad F. 2D MXenes: synthesis, properties, and electrochemical energy storage for supercapacitors—a review. J Electroanal Chem. 2022; 904: 115920.
|
[32] |
Venkateshalu S, Grace AN. MXenes—a new class of 2D layered materials: synthesis, properties, applications as supercapacitor electrode and beyond. Appl Mater Today. 2020; 18: 100509.
|
[33] |
Zhu Q, Li J, Simon P, Xu B. Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Mater. 2021; 35: 630- 660.
|
[34] |
Wang Y, Wang Y. Recent progress in MXene layers materials for supercapacitors: high-performance electrodes. SmartMat. 2022; 4 (1): 1- 35.
|
[35] |
Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater. 2021; 33 (39): 2103148.
|
[36] |
Wang Z, Xu Z, Huang H, et al. Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano. 2020; 14 (4): 4916- 4924.
|
[37] |
Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv Funct Mater. 2020; 30 (45): 2004613.
|
[38] |
Zhang C, Ma Y, Zhang X, et al. Two-dimensional transition metal carbides and nitrides (MXenes):synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater. 2020; 3 (1): 29- 55.
|
[39] |
Chen Y, Yang H, Han Z, et al. MXene-based electrodes for supercapacitor energy storage. Energy Fuels. 2022; 36 (5): 2390- 2406.
|
[40] |
Gogotsi Y, Huang Q. MXenes: two-dimensional building blocks for future materials and devices. ACS Nano. 2021; 15 (4): 5775- 5780.
|
[41] |
Jiang X, Wu X, Xie Y, et al. Additive engineering enables ionic-liquid electrolyte-based supercapacitors to deliver simultaneously high energy and power density. ACS Sustainable Chem Eng. 2023; 11 (14): 5685- 5695.
|
[42] |
Tian Y, Yang C, Luo Y, et al. Understanding MXene-based “symmetric” supercapacitors and redox electrolyte energy storage. ACS Appl Energy Mater. 2020; 3 (5): 5006- 5014.
|
[43] |
Tang X, Guo X, Wu W, Wang G. 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv Energy Mater. 2018; 8 (33): 1801897.
|
[44] |
Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014; 26 (7): 992- 1005.
|
[45] |
Feng A, Yu Y, Wang Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des. 2017; 114: 161- 166.
|
[46] |
Li Y, Deng Y, Zhang J, et al. Tunable energy storage capacity of two-dimensional Ti3C2Tx modified by a facile two-step pillaring strategy for high performance supercapacitor electrodes. Nanoscale. 2019; 11 (45): 21981- 21989.
|
[47] |
Ajmal Z, Qadeer A, Khan U, et al. Current progresses in two-dimensional MXene-based framework: prospects from superficial synthesis to energy conversion and storage applications. Mater Today Chem. 2023; 27: 101238.
|
[48] |
Huang H, He J, Wang Z, et al. Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors. Nano Energy. 2020; 69: 104431.
|
[49] |
Pu S, Wang Z, Xie Y, et al. Origin and regulation of self-discharge in MXene supercapacitors. Adv Funct Mater. 2023; 33 (8): 2208715.
|
[50] |
Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019; 13 (8): 8491- 8494.
|
[51] |
Zhang Y, Feng Z, Wang X, Hu H, Wu M. MXene/carbon composites for electrochemical energy storage and conversion. Mater Today Sustain. 2023; 22: 100350.
|
[52] |
De S, Acharya S, Maity CK, Nayak GC. Polyindole-stabilized nanocellulose-wrapped Ti3C2Tx (MXene) nanocomposite for asymmetric supercapacitor devices. ACS Appl Energy Mater. 2023; 6 (2): 969- 980.
|
[53] |
Liu Q, Zhang H, Xie J, Liu X, Lu X. Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon Energy. 2020; 2 (4): 521- 539.
|
[54] |
Zhong M, Zhang M, Li X. Carbon nanomaterials and their composites for supercapacitors. Carbon Energy. 2022; 4 (5): 950- 985.
|
[55] |
Wu X, Wang Z, Yu M, Xiu L, Qiu J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater. 2017; 29 (24): 1607017.
|
[56] |
Zhu L, Lv J, Yu X, et al. Further construction of MnO2 composite through in-situ growth on MXene surface modified by carbon coating with outstanding catalytic properties on thermal decomposition of ammonium perchlorate. Appl Surf Sci. 2020; 502: 144171.
|
[57] |
Elemike EE, Adeyemi J, Onwudiwe DC, Wei L, Oyedeji AO. The future of energy materials: a case of MXenes-carbon dots nanocomposites. J Energy Storage. 2022; 50: 104711.
|
[58] |
Kwon YS, Lee JS, Hwang GH, Jeong YG. Hybrid carbon nanofibers derived from MXene nanosheets and aromatic poly(ether amide) for self-standing electrochemical energy storage materials. Macromol Mater Eng. 2022; 307 (5): 2100877.
|
[59] |
Lin Z, Shao H, Xu K, Taberna P-L, Simon P. MXenes as high-rate electrodes for energy storage. Trends Chem. 2020; 2 (7): 654- 664.
|
[60] |
Lu M, Zhang Z, Kang L, et al. Intercalation and delamination behavior of Ti3C2Tx and MnO2/Ti3C2Tx/RGO flexible fibers with high volumetric capacitance. J Mater Chem A. 2019; 7 (20): 12582- 12592.
|
[61] |
Fu Q, Wen J, Zhang N, et al. Free-standing Ti3C2Tx electrode with ultrahigh volumetric capacitance. RSC Adv. 2017; 7 (20): 11998- 12005.
|
[62] |
Ferrara C, Gentile A, Marchionna S, Ruffo R. Ti3C2Tx MXene compounds for electrochemical energy storage. Curr Opin Electrochem. 2021; 29: 100764.
|
[63] |
Forouzandeh P, Pillai SC. MXenes-based nanocomposites for supercapacitor applications. Curr Opin Chem Eng. 2021; 33: 100710.
|
[64] |
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011; 23 (37): 4248- 4253.
|
[65] |
Barsoum MWE-RT, Ali MN. Processing and properties of cellular and laminate Ti3AlC2. J Am Ceram Soc. 2001; 84 (11): 2453- 2456.
|
[66] |
Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012; 6 (2): 1322- 1331.
|
[67] |
Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014; 516 (7529): 78- 81.
|
[68] |
Xie X, Xue Y, Li L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale. 2014; 6 (19): 11035- 11040.
|
[69] |
Zhang S, Huang P, Wang J, Zhuang Z, Zhang Z, Han WQ. Fast and universal solution-phase flocculation strategy for scalable synthesis of various few-layered MXene powders. J Phys Chem Lett. 2020; 11 (4): 1247- 1254.
|
[70] |
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017; 29 (18): 7633- 7644.
|
[71] |
Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res. 2011; 41 (1): 195- 227.
|
[72] |
Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013; 341 (6153): 1502- 1505.
|
[73] |
Dall'Agnese Y, Lukatskaya MR, Cook KM, Taberna PL, Gogotsi Y, Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun. 2014; 48: 118- 122.
|
[74] |
Li J, Yuan X, Lin C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater. 2017; 7 (15): 1602725.
|
[75] |
Li T, Yao L, Liu Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew Chem Int Ed. 2018; 57 (21): 6115- 6119.
|
[76] |
Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017; 2 (8): 17105.
|
[77] |
Deng Y, Shang T, Wu Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv Mater. 2019; 31 (43): 1902432.
|
[78] |
Tang J, Mathis T, Zhong X, et al. Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor. Adv Energy Mater. 2021; 11 (4): 2003025.
|
[79] |
Li M, Lu J, Luo K, et al. Element replacement approach by reaction with Lewis Acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019; 141 (11): 4730- 4737.
|
[80] |
Sun W, Shah SA, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A. 2017; 5 (41): 21663- 21668.
|
[81] |
Shi CZY, Zhao D, et al. Iodide ion intercalation into MXene lattice towards energy storage applications. Nano Energy. 2018; 51: 9.
|
[82] |
Yang S, Zhang P, Wang F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed. 2018; 57 (47): 15491- 15495.
|
[83] |
Zhao MQ, Ren CE, Ling Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv Mater. 2015; 27 (2): 339- 345.
|
[84] |
Yu L, Hu L, Anasori B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 2018; 3 (7): 1597- 1603.
|
[85] |
Bai T, Wang W, Xue G, et al. Free-standing, flexible carbon@MXene films with cross-linked mesoporous structures toward supercapacitors and pressure sensors. ACS Appl Mater Interfaces. 2021; 13 (48): 57576- 57587.
|
[86] |
Zhu C, Geng F. Macroscopic MXene ribbon with oriented sheet stacking for high-performance flexible supercapacitors. Carbon Energy. 2020; 3 (1): 142- 152.
|
[87] |
Li L, Wu S, Wu K, et al. Carbon dot-regulated 2D MXene films with high volumetric capacitance. Ind Eng Chem Res. 2020; 59 (31): 13969- 13978.
|
[88] |
Zhang P, Li J, Yang D, Soomro RA, Xu B. Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors. Adv Funct Mater. 2022; 33 (1): 2209918.
|
[89] |
Tan Z, Wang W, Zhu M, et al. Ti3C2Tx MXene@carbon dots hybrid microflowers as a binder-free electrode material toward high capacity capacitive deionization. Desalination. 2023; 548: 116267.
|
[90] |
Li L, Wang F, Zhu J, Wu W. The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Trans. 2017; 46 (43): 14880- 14887.
|
[91] |
Yang L, Zheng W, Zhang P, et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J Electroanal Chem. 2018; 830-831: 1- 6.
|
[92] |
Cai Y-Z, Fang Y-S, Cao W-Q, He P, Cao M-S. MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy. J Alloys Compd. 2021; 868: 159159.
|
[93] |
Liang W, Zhitomirsky I. MXene-carbon nanotube composite electrodes for high active mass asymmetric supercapacitors. J Mater Chem A. 2021; 9 (16): 10335- 10344.
|
[94] |
Wang Y, Chen N, Liu Y, et al. MXene/graphdiyne nanotube composite films for free-standing and flexible solid-state supercapacitor. Chem Eng J. 2022; 450: 138398.
|
[95] |
Levitt AS, Alhabeb M, Hatter CB, Sarycheva A, Dion G, Gogotsi Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J Mater Chem A. 2019; 7 (1): 269- 277.
|
[96] |
Kshetri T, Khumujam DD, Singh TI, Lee YS, Kim NH, Lee JH. Co-MOF@MXene-carbon nanofiber-based freestanding electrodes for a flexible and wearable quasi-solid-state supercapacitor. Chem Eng J. 2022; 437: 135338.
|
[97] |
Fan Z, Wang Y, Xie Z, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv Sci. 2018; 5 (10): 1800750.
|
[98] |
Yan J, Ren CE, Maleski K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater. 2017; 27 (30): 1701264.
|
[99] |
Miao J, Zhu Q, Li K, Zhang P, Zhao Q, Xu B. Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. J Energy Chem. 2021; 52: 243- 250.
|
[100] |
Shao L, Xu J, Ma J, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Compos Commun. 2020; 19: 108- 113.
|
[101] |
Yang X, Wang Q, Zhu K, et al. 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors. Adv Funct Mater. 2021; 31 (20): 2101087.
|
[102] |
Ma R, Zhang X, Zhuo J, et al. Self-supporting, binder-free, and flexible Ti3C2Tx MXene-based supercapacitor electrode with improved electrochemical performance. ACS Nano. 2022; 16 (6): 9713- 9727.
|
[103] |
Shen L, Zhou X, Zhang X, et al. Carbon-intercalated Ti3C2Tx MXene for high-performance electrochemical energy storage. J Mater Chem A. 2018; 6 (46): 23513- 23520.
|
[104] |
Zhou H, Lu Y, Wu F, et al. MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. J Alloys Compd. 2019; 802: 259- 268.
|
[105] |
Yuan M, Zhong R, Gao H, et al. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing. Appl Surf Sci. 2015; 355: 1136- 1144.
|
[106] |
Li Y, Liu J, Gong T, et al. One-step hydrothermal preparation of a novel 2D MXene-based composite electrode material synergistically modified by CuS and carbon dots for supercapacitors. J Alloys Compd. 2023; 947: 169400.
|
[107] |
Wang Z, Qin S, Seyedin S, et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small. 2018; 14 (37): 1802225.
|
[108] |
Nie G, Zhao X, Luan Y, Jiang J, Kou Z, Wang J. Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. Nanoscale. 2020; 12 (25): 13225- 13248.
|
[109] |
Qin L, Yang D, Zhang M, Zhao T, Luo Z, Yu ZZ. Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage. J Colloid Interface Sci. 2021; 589: 264- 274.
|
[110] |
Yang X, Chen Y, Zhang C, Duan G, Jiang S. Electrospun carbon nanofibers and their reinforced composites: preparation, modification, applications, and perspectives. Composites Part B. 2023; 249: 110386.
|
[111] |
Wang Q, Zhou Y, Zhao X, et al. Tailoring carbon nanomaterials via a molecular scissor. Nano Today. 2021; 36: 101033.
|
[112] |
Zhang H, Su H, Zhang L, et al. Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures. J Power Sources. 2016; 331: 332- 339.
|
[113] |
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011; 40 (7): 3941- 3994.
|
[114] |
Zhou J, Zhang S, Zhou Y-N, et al. Biomass-derived carbon materials for high-performance supercapacitors: current status and perspective. Electrochem Energy Rev. 2021; 4 (2): 219- 248.
|
[115] |
Li K, Zhang P, Soomro RA, Xu B. Alkali-induced porous MXene/carbon nanotube-based film electrodes for supercapacitors. ACS Appl Nano Mater. 2022; 5 (3): 4180- 4186.
|
[116] |
Wang Q, Yuan H, Zhang M, et al. A highly conductive and supercapacitive MXene/N-CNT electrode material derived from a MXene-Co-melamine precursor. ACS Appl Electron Mater. 2023; 5 (5): 2506- 2517.
|
[117] |
Yang R, Hu Q, Yang S, et al. Anchoring oxidized MXene nanosheets on porous carbon nanotube sponge for enhancing ion transport and pseudocapacitive performance. ACS Appl Mater Interfaces. 2022; 14 (37): 41997- 42006.
|
[118] |
Xu N, Chen S, Li Y, et al. A hybrid 1D/2D coating strategy with MXene and CNT towards the interfacial reinforcement of carbon fiber/poly(ether ether ketone) composite. Composites Part B. 2022; 246: 110278.
|
[119] |
Zhou T, Pang WK, Zhang C, et al. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano. 2014; 8 (8): 8323- 8333.
|
[120] |
Liu B, Yang M, Chen H, Liu Y, Yang D, Li H. Graphene-like porous carbon nanosheets derived from Salvia splendens for high-rate performance supercapacitors. J Power Sources. 2018; 397: 1- 10.
|
[121] |
Sahoo BB, Pandey VS, Dogonchi AS, Thatoi DN, Nayak N, Nayak MK. Synthesis, characterization and electrochemical aspects of graphene based advanced supercapacitor electrodes. Fuel. 2023; 345: 128174.
|
[122] |
Rashi. . Exploring the methods of synthesis, functionalization, and characterization of graphene and graphene oxide for supercapacitor applications. Ceram Int. 2023; 49 (1): 40- 47.
|
[123] |
Zhou Y, Maleski K, Anasori B, et al. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano. 2020; 14 (3): 3576- 3586.
|
[124] |
Fu X-Y, Shu R-Y, Ma C-J, Zhang YY, Jiang HB, Yao MN. Self-assembled MXene-graphene oxide composite enhanced laser-induced graphene based electrodes towards conformal supercapacitor applications. Appl Surf Sci. 2023; 631: 157549.
|
[125] |
Moatasim M, Wang Z, Xie Y, et al. Solving gravimetric-volumetric capacitive paradox of 2D materials through dual-functional chemical bonding-induced self-constructing graphene-MXene monoliths. ACS Appl Mater Interfaces. 2021; 13 (5): 6339- 6348.
|
[126] |
Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater. 2018; 8 (25): 1801149.
|
[127] |
Zhao Y, Ran W, He J, et al. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl Mater Interfaces. 2015; 7 (2): 1132- 1139.
|
[128] |
Song H-K, Jung Y-H, Lee K-H, Dao LH. Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution. Electrochim Acta. 1999; 44 (20): 3513- 3519.
|
[129] |
Yang W, Yang W, Kong L, Song A, Qin X, Shao G. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon. 2018; 127: 557- 567.
|
[130] |
Li Y, Pan C, Kamdem P, Jin X-J. Binder-free two-dimensional MXene/acid activated carbon for high-performance supercapacitors and methylene blue adsorption. Energy Fuels. 2020; 34 (8): 10120- 10130.
|
[131] |
Zhang D, Luo M, Yang K, et al. Porosity-adjustable MXene film with transverse and longitudinal ion channels for flexible supercapacitors. Microporous Mesoporous Mater. 2021; 326: 111389.
|
[132] |
Ganiyat Olatoye A, Li W, Oluwaseyi Fagbohun E, Zeng X, Zheng Y, Cui Y. High-performance asymmetric supercapacitor based on nickel-MOF anchored MXene//NPC/rGO. J Electroanal Chem. 2023; 928: 117036.
|
[133] |
Ren J, Huang Y, Zhu H, et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy. 2020; 2 (2): 176- 202.
|
[134] |
Yao L, Gu Q, Yu X. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries. ACS Nano. 2021; 15 (2): 3228- 3240.
|
[135] |
Zhang Y, Zhou J, Wang D, Cao R, Li J. Performance of MXene incorporated MOF-derived carbon electrode on deionization of uranium(VI). Chem Eng J. 2022; 430: 132702.
|
[136] |
Xie W, Wang Y, Zhou J, et al. MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage. Appl Surf Sci. 2020; 534: 147584.
|
[137] |
Gao T, Li H, Zhou F, Gao M, Liang S, Luo M. Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination. 2019; 451: 133- 138.
|
[138] |
Jiang G, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J. 2019; 373: 1309- 1318.
|
[139] |
Wei L, Deng W, Li S, Wu Z, Cai J, Luo J. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J Bioresour Bioprod. 2022; 7 (1): 63- 72.
|
[140] |
Huang J, Sun T, Ma M, et al. 2D-Nb2CTz-supported, 3D-carbon-encapsulated, oxygen-deficient Nb2O5 for an advanced Li-ion battery. ACS Appl Energy Mater. 2022; 5 (2): 2121- 2129.
|
[141] |
Zhang P, Soomro RA, Guan Z, Sun N, Xu B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 2020; 29: 163- 171.
|
[142] |
Fu J, Yun J, Wu S, Li L, Yu L, Kim KH. Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl Mater Interfaces. 2018; 10 (40): 34212- 34221.
|
[143] |
Liao L, Zhang A, Zheng K, et al. Fabrication of cobaltous sulfide nanoparticle-modified 3D MXene/carbon foam hybrid aerogels for all-solid-state supercapacitors. ACS Appl Mater Interfaces. 2021; 13 (24): 28222- 28230.
|
[144] |
Liu X, Xu W, Zheng D, Li Z, Zeng Y, Lu X. Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges. J Mater Chem A. 2020; 8 (35): 17938- 17950.
|
[145] |
Chen X, Liu Y, Zhou Q, Su F. Facile synthesis of MnO2/Ti3C2Tx/CC as positive electrode of all-solid-state flexible asymmetric supercapacitor. ChemistrySelect. 2020; 5 (46): 14768- 14775.
|
/
〈 |
|
〉 |