Recent advances in nickel-based catalysts in eCO2RR for carbon neutrality

Weikang Peng , Fengfeng Li , Shuyi Kong , Chenxi Guo , Haotian Wu , Jiacheng Wang , Yi Shen , Xianguang Meng , Mingxi Zhang

Carbon Energy ›› 2024, Vol. 6 ›› Issue (2) : 498

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (2) : 498 DOI: 10.1002/cey2.498
REVIEW

Recent advances in nickel-based catalysts in eCO2RR for carbon neutrality

Author information +
History +
PDF

Abstract

The excessive use of nonrenewable energy has brought about serious greenhouse effect. Converting CO2 into high-value-added chemicals is undoubtedly the best choice to solve energy problems. Due to the excellent cost-effectiveness and dramatic catalytic performance, nickel-based catalysts have been considered as the most promising candidates for the electrocatalytic CO2 reduction reaction (eCO2RR). In this work, the electrocatalytic reduction mechanism of CO2 over Ni-based materials is reviewed. The strategies to improve the eCO2RR performance are emphasized. Moreover, the research on Ni-based materials for syngas generation is briefly summarized. Finally, the prospects of nickel-based materials in the eCO2RR are provided with the hope of improving transition-metal-based electrocatalysts for eCO2RR in the future.

Keywords

carbon energy / carbon neutrality / CO 2 reduction / electrocatalysis / nickel-based materials

Cite this article

Download citation ▾
Weikang Peng, Fengfeng Li, Shuyi Kong, Chenxi Guo, Haotian Wu, Jiacheng Wang, Yi Shen, Xianguang Meng, Mingxi Zhang. Recent advances in nickel-based catalysts in eCO2RR for carbon neutrality. Carbon Energy, 2024, 6(2): 498 DOI:10.1002/cey2.498

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xia D, Zhang L. Coupling coordination degree between coal production reduction and CO2 emission reduction in coal industry. Energy. 2022; 258: 124902.

[2]

Septavaux J, Tosi C, Jame P, Nervi C, Gobetto R, Leclaire J. Simultaneous CO2 capture and metal purification from waste streams using triple-level dynamic combinatorial chemistry. Nat Chem. 2020; 12 (2): 202- 212.

[3]

Tomkinson T, Lee MR, Mark DF, Smith CL. Sequestration of Martian CO2 by mineral carbonation. Nat Commun. 2013; 4: 2662.

[4]

Kampman N, Busch A, Bertier P, et al. Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks. Nat Commun. 2016; 7: 12268.

[5]

Hu J, Hongmanorom P, Chen J, et al. Tandem distributing Ni into CaO framework for isothermal integration of CO2 capture and conversion. Chem Eng J. 2023; 452: 139460.

[6]

Xie Y, Ou P, Wang X, et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat Catal. 2022; 5 (6): 564- 570.

[7]

Rapagnani RM, Dunscomb RJ, Fresh AA, Tonks IA. Tunable and recyclable polyesters from CO2 and butadiene. Nat Chem. 2022; 14 (8): 877- 883.

[8]

Yang B, Chen L, Xue S, et al. Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes. Nat Commun. 2022; 13: 5122.

[9]

Shafaat HS, Yang JY. Uniting biological and chemical strategies for selective CO2 reduction. Nat Catal. 2021; 4 (11): 928- 933.

[10]

Xie J, Zhou Z, Wang Y. Metal-CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv Funct Mater. 2020; 30 (9): 1908285.

[11]

Xu M, Sun C, Zhao X, Jiang H, Wang H, Huo P. Fabricated hierarchical CdS/Ni-MOF heterostructure for promoting photocatalytic reduction of CO2. Appl Surf Sci. 2022; 576: 151792.

[12]

Li J, Huang H, Xue W, et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat Catal. 2021; 4 (8): 719- 729.

[13]

Li Y, Hao J, Song H, et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat Commun. 2019; 10: 2359.

[14]

Wang S, Zhang D, Wang W, et al. Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis. Nat Commun. 2022; 13: 5305.

[15]

Cai M, Wu Z, Li Z, et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat Energy. 2021; 6 (8): 807- 814.

[16]

Tan X, Wu S, Li Y, et al. Highly efficient photothermocatalytic CO2 reduction in Ni/Mg-doped Al2O3 with high fuel production rate, large light-to-fuel efficiency, and good durability. Energy Environ Mater. 2022; 5 (2): 582- 591.

[17]

Kim HS, Hong SG, Yang J, et al. 3D-Printed interfacial devices for biocatalytic CO2 conversion at gas-liquid interface. J CO2 Util. 2020; 38: 291- 298.

[18]

Barceloux DG, Barceloux D. Nickel. J Toxicol Clin Toxicol. 1999; 37: 239- 258.

[19]

Okamoto Y. Surface state and catalytic activity and selectivity of nickel catalysts in hydrogenation reactions: III. Electronic and catalytic properties of nickel catalysts. J Catal. 1980; 64 (2): 397- 404.

[20]

Guo K, Wang Y, Huang J, Li H, Peng Y, Xu C. Symbiotic Ni3Se4/Ni heterostructure induced by unstable NiSe2 for enhanced hydrogen generation. Chem Eng J. 2023; 454: 140488.

[21]

Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science. 2011; 334 (6060): 1256- 1260.

[22]

Wu T, Xu S, Zhang Z, et al. Bimetal modulation stabilizing a metallic heterostructure for efficient overall water splitting at large current density. Adv Sci. 2022; 9 (25): 2202750.

[23]

Dutta A, Appel AM, Shaw WJ. Designing electrochemically reversible H2 oxidation and production catalysts. Nat Rev Chem. 2018; 2 (9): 244- 252.

[24]

Anjaneyulu C, Kumar VV, Bhargava SK, Venugopal A. Characteristics of La-modified Ni-Al2O3 and Ni-SiO2 catalysts for COx-free hydrogen production by catalytic decomposition of methane. J Energy Chem. 2013; 22 (6): 853- 8860.

[25]

Tiwari AP, Lee K, Kim K, Kim J, Novak TG, Jeon S. Conformally coated nickel phosphide on 3D, ordered nanoporous nickel for highly active and durable hydrogen evolution. ACS Sustainable Chem Eng. 2020; 8 (46): 17116- 17123.

[26]

Baranton S, Coutanceau C. Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction. Appl Catal B. 2013; 136-137: 1- 8.

[27]

Feng J, Chen M, Zhou P, et al. Reconstruction optimization of distorted FeOOH/Ni hydroxide for enhanced oxygen evolution reaction. Mater Today Energy. 2022; 27: 101005.

[28]

Lee S, Banjac K, Lingenfelder M, Hu X. Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew Chem Int Ed. 2019; 131 (30): 10401- 10405.

[29]

Ding Y, Miao BQ, Zhao Y, et al. Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction. Chin J Catal. 2021; 42 (2): 271- 278.

[30]

Masa J, Sinev I, Mistry H, et al. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv Energy Mater. 2017; 7 (17): 1700381.

[31]

Lee SY, Oh HJ, Kim M, Cho HS, Lee YK. Insights into enhanced activity and durability of hierarchical Fe-doped Ni(OH)2/Ni catalysts for alkaline oxygen evolution reaction: in situ XANES studies. Appl Catal B. 2023; 324: 122269.

[32]

Görlin M, Halldin Stenlid J, Koroidov S, et al. Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nat Commun. 2020; 11: 6181.

[33]

Li D, Zhang Y, Zhou X, et al. Dynamic active sites on plasma engraved Ni hydroxide for enhanced electro-catalytic urea oxidation. J Energy Chem. 2022; 71: 150- 158.

[34]

Hosseini H, Shahrokhian S. Self-supported nanoporous Zn-Ni-Co/Cu selenides microball arrays for hybrid energy storage and electrocatalytic water/urea splitting. Chem Eng J. 2019; 375: 122090.

[35]

Dabboussi J, Abdallah R, Santinacci L, et al. Solar-assisted urea oxidation at silicon photoanodes promoted by an amorphous and optically adaptive Ni-Mo-O catalytic layer. J Mater Chem A. 2022; 10 (37): 19769- 19776.

[36]

Shilpa N, Pandikassala A, Krishnaraj P, Walko PS, Devi RN, Kurungot S. Co-Ni layered double hydroxide for the electrocatalytic oxidation of organic molecules: an approach to lowering the overall cell voltage for the water splitting process. ACS Appl Mater Interfaces. 2022; 14 (14): 16222- 16232.

[37]

Wang Z, Liu W, Bao J, et al. Modulating electronic structure of ternary NiMoV LDH nanosheet array induced by doping engineering to promote urea oxidation reaction. Chem Eng J. 2022; 430: 133100.

[38]

Akri M, Zhao S, Li X, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat Commun. 2019; 10: 5181.

[39]

Qiu L, Zhang M, Song Y, et al. Deciphering the degradation discrepancy in Ni-rich cathodes with a diverse proportion of [003] crystallographic textures. Carbon Energy. 2023; 5 (7): e298.

[40]

Yan X, Sun W, Fan L, et al. Nickel@ siloxene catalytic nanosheets for high-performance CO2 methanation. Nat Commun. 2019; 10: 2608.

[41]

Si X, Lu R, Zhao Z, et al. Catalytic production of low-carbon footprint sustainable natural gas. Nat Commun. 2022; 13: 258.

[42]

Chen W, Xu H, Ma X, Qi L, Zhou Z. Synergistic trimetallic Ni-Cu-Sn catalysts for efficient selective hydrogenation of phenylacetylene. Chem Eng J. 2023; 455: 140565.

[43]

Li S, Ma R, Hu J, et al. Coordination environment tuning of nickel sites by oxyanions to optimize methanol electro-oxidation activity. Nat Commun. 2022; 13: 2916.

[44]

Li S, Ma P, Gao C, et al. Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining. Energy Environ Sci. 2022; 15 (7): 3004- 3014.

[45]

Li Z, He D, Yan X, et al. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew Chem Int Ed. 2020; 132 (42): 18731- 18736.

[46]

Hao Q, Zhong H, Wang J, et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat Synth. 2022; 1 (9): 719- 728.

[47]

Wu ZY, Zhu P, Cullen DA, et al. A general synthesis of single atom catalysts with controllable atomic and mesoporous structures. Nat Synth. 2022; 1 (8): 658- 667.

[48]

Tan X, Yu C, Cui S, et al. Activity descriptor of Ni, N-Codoped carbon electrocatalyst in CO2 electroreduction reaction. Chem Eng J. 2022; 433: 131965.

[49]

Leverett J, Yuwono JA, Kumar P, et al. Impurity tolerance of unsaturated Ni-NC active sites for practical electrochemical CO2 reduction. ACS Energy Lett. 2022; 7 (3): 920- 928.

[50]

Tan TH, Xie B, Ng YH, et al. Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nat Catal. 2020; 3 (12): 1034- 1043.

[51]

Dong Y, Yang P, Zhao S, Li Y. Reductive cyanation of organic chlorides using CO2 and NH3 via Triphos-Ni (I) species. Nat Commun. 2020; 11: 4096.

[52]

Chen B, Li B, Tian Z, et al. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni-N4 sites. Adv Energy Mater. 2021; 11 (40): 2102152.

[53]

Möller T, Ju W, Bagger A, et al. Efficient CO2 to CO electrolysis on solid Ni-N-C catalysts at industrial current densities. Energy Environ Sci. 2019; 12 (2): 640- 647.

[54]

Long C, Li X, Guo J, Shi Y, Liu S, Tang Z. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives. Small Methods. 2019; 3 (3): 1800369.

[55]

Liang S, Huang L, Gao Y, Wang Q, Liu B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism. Adv Sci. 2021; 8 (24): 2102886.

[56]

Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy. 2019; 4 (9): 732- 745.

[57]

Liu S, Yang HB, Hung SF, et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew Chem Int Ed. 2020; 59 (2): 798- 803.

[58]

Lin W, Stocker KM, Schatz GC. Mechanisms of hydrogen-assisted CO2 reduction on nickel. J Am Chem Soc. 2017; 139 (13): 4663- 4666.

[59]

Chen J, Wei X, Cai R, et al. Composition-tuned surface binding on CuZn-Ni catalysts boosts CO2RR selectivity toward CO generation. ACS Mater Lett. 2022; 4 (3): 497- 504.

[60]

Zheng Y, Vasileff A, Zhou X, Jiao Y, Jaroniec M, Qiao SZ. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc. 2019; 141 (19): 7646- 7659.

[61]

Calvinho KUD, Laursen AB, Yap KMK, et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ Sci. 2018; 11 (9): 2550- 2559.

[62]

Tian J, Shen Y, Liu P, et al. Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis. J Mater Sci Technol. 2022; 127: 1- 18.

[63]

Badreldin A, Nabeeh A, Ghouri ZK, et al. Early transition-metal-based binary oxide/nitride for efficient electrocatalytic hydrogen evolution from saline water in different pH environments. ACS Appl Mater Interfaces. 2021; 13 (45): 53702- 53716.

[64]

Mahmood N, Yao Y, Zhang JW, Pan L, Zhang X, Zou JJ. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv Sci. 2018; 5 (2): 1700464.

[65]

Tiwari JN, Dang NK, Sultan S, Thangavel P, Jeong HY, Kim KS. Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat Sustain. 2020; 3 (7): 556- 563.

[66]

Lee JH, Kattel S, Jiang Z, et al. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat Commun. 2019; 10: 3724.

[67]

Wang X, Zhang J, Wang Z, Lin Z, Shen S, Zhong W. Fabricating Ru single atoms and clusters on CoP for boosted hydrogen evolution reaction. Chin J Struct Chem. 2023; 42 (4): 100035.

[68]

Huang Y, Hu Z, Huang L, et al. Phosphorus-modified cobalt single-atom catalysts loaded on crosslinked carbon nanosheets for efficient alkaline hydrogen evolution reaction. Nanoscale. 2023; 15 (7): 3550- 3559.

[69]

Ju W, Bagger A, Hao GP, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun. 2017; 8: 944.

[70]

Vijay S, Ju W, Brückner S, Tsang SC, Strasser P, Chan K. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat Catal. 2021; 4 (12): 1024- 1031.

[71]

Wang L, Wang D, Li Y. Single-atom catalysis for carbon neutrality. Carbon Energy. 2022; 4 (6): 1021- 1079.

[72]

Fu X, Shi R, Jiao S, Li M, Li Q. Structural design for electrocatalytic water splitting to realize industrial-scale deployment: strategies, advances, and perspectives. J Energy Chem. 2022; 70: 129- 153.

[73]

Yang HB, Hung SF, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy. 2018; 3 (2): 140- 147.

[74]

Mudchimo T, Takahashi K, Mano P, Sanghiran Lee V, Rungrotmongkol T, Namuangruk S. Understanding the effect of transition metals and vacancy boron nitride catalysts on activity and selectivity for CO2 reduction reaction to valuable products: A DFT-D3 study. Fuel. 2022; 319: 123808.

[75]

Qiu L, Shen S, Ma C, et al. Controllable fabrication of atomic dispersed low-coordination nickel-nitrogen sites for highly efficient electrocatalytic CO2 reduction. Chem Eng J. 2022; 440: 135956.

[76]

Hao Q, Tang Q, Zhong HX, Wang JZ, Liu DX, Zhang XB. Fully exposed nickel clusters with electron-rich centers for high-performance electrocatalytic CO2 reduction to CO. Sci Bull. 2022; 67 (14): 1477- 1485.

[77]

Zhang Y, Li P, Zhao C, et al. Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Sci Bull. 2022; 67 (16): 1679- 1687.

[78]

Ma Z, Zhang X, Wu D, et al. Ni and nitrogen-codoped ultrathin carbon nanosheets with strong bonding sites for efficient CO2 electrochemical reduction. J Colloid Interface Sci. 2020; 570: 31- 40.

[79]

Cheng Y, Zhao S, Li H, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl Catal B. 2019; 243: 294- 303.

[80]

Lepre E, Heske J, Nowakowski M, et al. Ni-based electrocatalysts for unconventional CO2 reduction reaction to formic acid. Nano Energy. 2022; 97: 107191.

[81]

Fan Q, Hou P, Choi C, et al. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv Energy Mater. 2020; 10 (5): 1903068.

[82]

Hwa Jeong G, Chuan Tan Y, Tae Song J, et al. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction. Chem Eng J. 2021; 426: 131063.

[83]

Hossain MD, Huang Y, Yu TH, Goddard III WA, Luo Z. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nat Commun. 2020; 11: 2256.

[84]

Zhang Z, Xiao J, Chen XJ, et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew Chem Int Ed. 2018; 57 (50): 16339- 16342.

[85]

Wang T, Huang W, Sun T, et al. Two-dimensional metal-polyphthalocyanine conjugated porous frameworks as promising optical limiting materials. ACS Appl Mater Interfaces. 2020; 12 (41): 46565- 46570.

[86]

Wu Y, Jiang Z, Lu X, Liang Y, Wang H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature. 2019; 575 (7784): 639- 642.

[87]

Gong S, Wang W, Lu R, et al. Mediating heterogenized nickel phthalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction. Appl Catal B. 2022; 318: 121813.

[88]

Wei S, Zou H, Rong W, Zhang F, Ji Y, Duan L. Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window. Appl Catal B. 2021; 284: 119739.

[89]

Yang X, Cheng J, Xuan X, Liu N, Liu J. Boosting defective carbon by anchoring well-defined atomically dispersed Ni-N4 sites for electrocatalytic CO2 reduction. ACS Sustainable Chem Eng. 2020; 8 (28): 10536- 10543.

[90]

Ma Z, Zhang X, Han X, et al. Synergistic adsorption and activation of nickel phthalocyanine anchored onto ketjenblack for CO2 electrochemical reduction. Appl Surf Sci. 2021; 538: 148134.

[91]

Ma DD, Han SG, Cao C, Li X, Wu XT, Zhu QL. Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine. Appl Catal B. 2020; 264: 118530.

[92]

Hu MK, Zhou S, Ma DD, Zhu QL. New insight into heterointerfacial effect for heterogenized metallomacrocycle catalysts in executing electrocatalytic CO2 reduction. Appl Catal B. 2022; 310: 121324.

[93]

Chen K, Cao M, Ni G, et al. Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction. Appl Catal B. 2022; 306: 121093.

[94]

Chen J, Li J, Xu J, Zhu M, Han YF. Phthalocyanine-derived catalysts decorated by metallic nanoclusters for enhanced CO2 electroreduction. Green Energy Environ. 2023; 8 (2): 444- 451.

[95]

Wen Q, Duan J, Wang W, et al. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew Chem Int Ed. 2022; 61 (35): e202206077.

[96]

Liang Z, Wang J, Tang P, et al. Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol. Appl Catal B. 2022; 314: 121451.

[97]

Wang H, Liu G, Chen C, et al. Single-Ni sites embedded in multilayer nitrogen-doped graphene derived from amino-functionalized MOF for highly selective CO2 electroreduction. ACS Sustainable Chem Eng. 2021; 9 (10): 3792- 3801.

[98]

Peng SY, Jin GP, Cui JS, Lv XY, Yu YX, Tang HW. Preparation of nickel hexacyanoferrate/heterogeneous carbon composites for CO2 continuous electrocatalytic reduction to formic acid. J Environ Chem Eng. 2018; 6 (6): 6931- 6938.

[99]

Payra S, Shenoy S, Chakraborty C, Tarafder K, Roy S. Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Appl Mater Interfaces. 2020; 12 (17): 19402- 19414.

[100]

Sun GQ, Zhang W, Liao LL, et al. Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO2. Nat Commun. 2021; 12: 7086.

[101]

Chen K, Cao M, Lin Y, et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2. Adv Funct Mater. 2022; 32 (10): 2111322.

[102]

Hamby TB, Lalama MJ, Sevov CS. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling. Science. 2022; 376 (6591): 410- 416.

[103]

Zhang X, Wang Y, Gu M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat Energy. 2020; 5 (9): 684- 692.

[104]

Li K, Wang W, Zheng H, et al. Visualizing highly selective electrochemical CO2 reduction on a molecularly dispersed catalyst. Mater Today Phys. 2021; 19: 100427.

[105]

Wang M, Shi H, Tian M, et al. Single nickel atom-modified phosphorene nanosheets for electrocatalytic CO2 reduction. ACS Appl Nano Mater. 2021; 4 (10): 11017- 11030.

[106]

Han MH, Kim D, Kim S, et al. Real-Time mimicking the electronic structure of N-coordinated Ni single atoms: NiS-enabled electrochemical reduction of CO2 to CO. Adv Energy Mater. 2022; 12 (35): 2201843.

[107]

Zhao S, Guo S, Zhu C, et al. Achieving electroreduction of CO2 to CH3OH with high selectivity using a pyrite-nickel sulfide nanocomposite. RSC Adv. 2017; 7 (3): 1376- 1381.

[108]

Gao ZH, Wei K, Wu T, et al. A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc. 2022; 144 (12): 5258- 5262.

[109]

Wang Y, You L, Zhou K. Origin of the N-coordinated single-atom Ni sites in heterogeneous electrocatalysts for CO2 reduction reaction. Chem Sci. 2021; 12 (42): 14065- 14073.

[110]

Su X, Yang XF, Huang Y, Liu B, Zhang T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc Chem Res. 2018; 52 (3): 656- 664.

[111]

Zhai P, Gu X, Wei Y, et al. Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis. J Energy Chem. 2021; 62: 43- 50.

[112]

Lu Y, Wang H, Yu P, et al. Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction. Nano Energy. 2020; 77: 105158.

[113]

Du J, Chen A, Hou S, Guan J. CNT modified by mesoporous carbon anchored by Ni nanoparticles for CO2 electrochemical reduction. Carbon Energy. 2022; 4 (6): 1274- 1284.

[114]

Cao Z, Su P, Wang X, et al. The structure-activity correlation of single-site Ni catalysts dispersed onto porous carbon spheres toward electrochemical CO2 reduction. Fuel. 2022; 321: 124043.

[115]

Yang H, Lin Q, Zhang C, et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat Commun. 2020; 11: 593.

[116]

Li H, Gan K, Li R, et al. Highly dispersed NiO clusters induced electron delocalization of Ni-N-C catalysts for enhanced CO2 electroreduction. Adv Funct Mater. 2022; 33 (1): 2208622.

[117]

Guo C, Zhang T, Liang X, et al. Single transition metal atoms on nitrogen-doped carbon for CO2 electrocatalytic reduction: CO production or further CO reduction. Appl Surf Sci. 2020; 533: 147466.

[118]

Wang M, Liu S, Chen B, Huang M, Peng C. Co-regulation of intermediate binding and water activation in sulfur-doped bismuth nanosheets for electrocatalytic CO2 reduction to formate. Chem Eng J. 2023; 451: 139056.

[119]

Lu P, Yang Y, Yao J, et al. Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Appl Catal B. 2019; 241: 113- 119.

[120]

Daiyan R, Zhu X, Tong Z, et al. Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy. 2020; 78: 105213.

[121]

Hou Y, Liang YL, Shi PC, Huang YB, Cao R. Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl Catal B. 2020; 271: 118929.

[122]

Belmabkhout Y, Bhatt PM, Adil K, et al. Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat Energy. 2018; 3 (12): 1059- 1066.

[123]

Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc. 2017; 139 (24): 8078- 8081.

[124]

Zhao S, Xiao N, Li H, et al. A nickel-nitrogen-doped carbon foam as monolithic electrode for highly efficient CO2 electroreduction. J CO2 Util. 2021; 49: 101549.

[125]

Shao W, Zhang X. Atomic-level engineering of two-dimensional electrocatalysts for CO2 reduction. Nanoscale. 2021; 13 (15): 7081- 7095.

[126]

Wen CF, Mao F, Liu Y, et al. Nitrogen-stabilized low-valent Ni motifs for efficient CO2 electrocatalysis. ACS Catal. 2020; 10 (2): 1086- 1093.

[127]

Helal A, Fettouhi M, Arafat ME, Khan MY, Sanhoob MA. Nickel based metal-organic framework as catalyst for chemical fixation of CO2 in oxazolidinone synthesis. J CO2 Util. 2021; 50: 101603.

[128]

Han SG, Ma DD, Zhou SH, et al. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl Catal B. 2021; 283: 119591.

[129]

Wang Q, Liu K, Hu K, et al. Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO. Nat Commun. 2022; 13: 6082.

[130]

Cheng Y, Zhao S, Johannessen B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv Mater. 2018; 30 (13): 1706287.

[131]

Li X, Bi W, Chen M, et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J Am Chem Soc. 2017; 139 (42): 14889- 14892.

[132]

Liu X, Liao L, Xia G, et al. An accurate “metal pre-buried” strategy for constructing Ni-N2C2 single-atom sites with high metal loadings toward electrocatalytic CO2 reduction. J Mater Chem A. 2022; 10 (47): 25047- 25054.

[133]

Boppella R, Austeria PM, Kim Y, et al. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: identifying the role of pyrrolic-N and synergistic electrocatalysis. Adv Funct Mater. 2022; 32 (35): 2202351.

[134]

Xiong W, Li H, Wang H, et al. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: support structure study for CO2 electrocatalytic reduction catalyst. Small. 2020; 16 (41): 2003943.

[135]

Vogt C, Groeneveld E, Kamsma G, et al. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat Catal. 2018; 1 (2): 127- 134.

[136]

Zhao R, Wang Y, Ji G, et al. Partially nitrided Ni nanoclusters achieve energy-efficient electrocatalytic CO2 reduction to CO at ultralow overpotential. Adv Mater. 2023; 35 (5): 2205262.

[137]

Jia M, Choi C, Wu TS, et al. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem Sci. 2018; 9 (47): 8775- 8780.

[138]

Liang M, Liu Y, Huang H, et al. A robust Ni@NCNT-C catalyst for highly efficient electrochemical CO2 reduction to CO over a wide potential range. Chem Eng J. 2022; 450: 137962.

[139]

Du J, Chen A. Ni nanoparticles confined by yolk-shell structure of CNT-mesoporous carbon for electrocatalytic conversion of CO2: switching CO to formate. J Energy Chem. 2022; 70: 224- 229.

[140]

Zheng W, Guo C, Yang J, et al. Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon. 2019; 150: 52- 59.

[141]

Ding C, Feng C, Mei Y, et al. Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction. Appl Catal B. 2020; 268: 118391.

[142]

Wang Z, Lin Z, Wang Y, et al. Nontrivial topological surface states in Ru3Sn7 toward wide pH-range hydrogen evolution reaction. Adv Mater. 2023; 35 (25): 2302007.

[143]

Wang H, Jiang Y, Li S, et al. Realizing efficient CN coupling via electrochemical co-reduction of CO2 and NO3- on AuPd nanoalloy to form urea: key CN coupling intermediates. Appl Catal B. 2022; 318: 121819.

[144]

Yin S, Zhao J, Wu S, Wang X, Quan Y, Ren J. Electrochemical reduction of CO2 to CO on bimetallic CoCu-N-C catalyst. J Clean Prod. 2022; 371: 133569.

[145]

Frei MS, Mondelli C, García-Muelas R, et al. Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO2 hydrogenation. Nat Commun. 2021; 12: 1960.

[146]

Fan Z, Luo R, Zhang Y, et al. Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew Chem Int Ed. 2023; 135 (7): e202216326.

[147]

Zeng Z, Gan LY, Bin Yang H, et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat Commun. 2021; 12: 4088.

[148]

Wei X, Cao S, Wei S, et al. Theoretical investigation on electrocatalytic reduction of CO2 to methanol and methane by bimetallic atoms TM1/TM2-N@Gra (TM= Fe, Co, Ni, Cu). Appl Surf Sci. 2022; 593: 153377.

[149]

Yang T, Xie W, Tian N, Liu XH, Zhang X. CuNi alloy nanoparticles embedded in N-doped carbon framework for electrocatalytic reduction of CO2 to CO. J Alloys Compd. 2022; 904: 164042.

[150]

Shen S, Han C, Wang B, Wang Y. Engineering d-band center of nickel in nickel@nitrogen-doped carbon nanotubes array for electrochemical reduction of CO2 to CO and Zn-CO2 batteries. Chin Chem Lett. 2022; 33 (8): 3721- 3725.

[151]

Zhang X, Liu C, Zhao Y, et al. Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction. Appl Catal B. 2021; 291: 120030.

[152]

Lu P, Zhang J, He H, et al. Iron/nickel nano-alloy encapsulated in nitrogen-doped carbon framework for CO2 electrochemical conversion with prominent CO selectivity. J Power Sources. 2020; 449: 227496.

[153]

Beheshti M, Kakooei S, Ismail MC, Shahrestani S. Investigation of CO2 electrochemical reduction to syngas on Zn/Ni-based electrocatalysts using the cyclic voltammetry method. Electrochim Acta. 2020; 341: 135976.

[154]

Wei X, Xiao S, Wu R, et al. Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction. Appl Catal B. 2022; 302: 120861.

[155]

Su P, Iwase K, Nakanishi S, Hashimoto K, Kamiya K. Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide. Small. 2016; 12 (44): 6083- 6089.

[156]

Pei J, Wang T, Sui R, et al. N-Bridged Co-N-Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ Sci. 2021; 14 (5): 3019- 3028.

[157]

Li Y, Wei B, Zhu M, et al. Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv Mater. 2021; 33 (41): 2102212.

[158]

Han H, Im J, Lee M, Choo D. N-bridged Ni and Mn single-atom pair sites: a highly efficient electrocatalyst for CO2 conversion to CO. Appl Catal B. 2023; 320: 121953.

[159]

Cronin SP, Dulovic S, Lawrence JA, et al. Direct synthesis of 1-Butanol with high faradaic efficiency from CO2 utilizing cascade catalysis at a Ni-enhanced (Cr2O3)3Ga2O3 electrocatalyst. J Am Chem Soc. 2023; 145 (12): 6762- 6772.

[160]

Li S, Luo W, Gao Q, et al. Strong electronic coupling induced by synergy of dopant and interface in Ru-Ni3S2/NixPy to boost efficient water splitting. Appl Surf Sci. 2023; 637: 157940.

[161]

Abdinejad M, Wilm LFB, Dielmann F, Kraatz HB. Electroreduction of CO2 catalyzed by nickel imidazolin-2-ylidenamino-porphyrins in both heterogeneous and homogeneous molecular systems. ACS Sustainable Chem Eng. 2021; 9 (1): 521- 530.

[162]

Zhou Y, Martín AJ, Dattila F, et al. Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts. Nat Catal. 2022; 5 (6): 545- 554.

[163]

Li H, Liu Q. Synthesis of Ni-phyllosilicate assisted by fluoroboric acid for CO2 methanation. Int J Hydrogen Energy. 2023; 48 (64): 24884- 24893.

[164]

Fan Q, Li H, Chen H, Cheng L, Liu Q. Effect of concentration of nickel precursor on the synthesis of Ni phyllosilicate for CO2 methanation: the promotion of supersaturation. Fuel. 2023; 333: 126440.

[165]

Liu E, Liu T, Ma X, Zhang Y. The electrocatalytic performance of Ni-AlO(OH)3@RGO for the reduction of CO2 to CO. New J Chem. 2022; 46 (25): 12023- 12033.

[166]

Kim Y, Park S, Shin SJ, et al. Time-resolved observation of C-C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ Sci. 2020; 13 (11): 4301- 4311.

[167]

Du J, Cheng B, Yuan H, et al. Molecular nickel thiolate complexes for electrochemical reduction of CO2 to C1-3 hydrocarbons. Angew Chem Int Ed. 2023; 62 (9): e202211804.

[168]

Torelli DA, Francis SA, Crompton JC, et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 2016; 6 (3): 2100- 2104.

[169]

Paris AR, Bocarsly AB. Ni-Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2. ACS Catal. 2017; 7 (10): 6815- 6820.

[170]

Li P, Liu J, Bi J, et al. Tuning the efficiency and product composition for electrocatalytic CO2 reduction to syngas over zinc films by morphology and wettability. Green Chem. 2022; 24 (4): 1439- 1444.

[171]

Zou X, Ma C, Li A, et al. Nanoparticle-assisted Ni-Co binary single-atom catalysts supported on carbon nanotubes for efficient electroreduction of CO2 to syngas with controllable CO/H2 ratios. ACS Appl Energy Mater. 2021; 4 (9): 9572- 9581.

[172]

Proietto F, Li S, Loria A, et al. High-pressure synthesis of CO and syngas from CO2 reduction using Ni-N-doped porous carbon electrocatalyst. Chem Eng J. 2022; 429: 132251.

[173]

Leverett J, Daiyan R, Gong L, et al. Designing undercoordinated Ni-Nx and Fe-Nx on holey graphene for electrochemical CO2 conversion to syngas. ACS Nano. 2021; 15 (7): 12006- 12018.

[174]

He Q, Liu D, Lee JH, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew Chem Int Ed. 2020; 59 (8): 3033- 3037.

[175]

Deka DJ, Gunduz S, Fitzgerald T, Miller JT, Co AC, Ozkan US. Production of syngas with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni and Co-doped lanthanum strontium ferrite perovskite cathodes. Appl Catal B. 2019; 248: 487- 503.

[176]

Ping D, Huang S, Wu S, et al. LDHs-based bifunctional electrocatalyst for effective tunable syngas generation via CO2 reduction. Int J Hydrogen Energy. 2022; 47 (56): 23653- 23660.

[177]

Li J, Xu J, Zhao J, et al. Modulation of oxygen-etching for generating nickel single atoms for efficient electroreduction of CO2 to syngas (CO/H2). J Catal. 2023; 421: 332- 341.

[178]

Kim YE, Kim B, Lee W, et al. Highly tunable syngas production by electrocatalytic reduction of CO2 using Ag/TiO2 catalysts. Chem Eng J. 2021; 413: 127448.

[179]

Ma C, Zou X, Li A, et al. Rapid flame synthesis of carbon doped defective ZnO for electrocatalytic CO2 reduction to syngas. Electrochim Acta. 2022; 411: 140098.

[180]

Sun F, Qin J, Wang Z, et al. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat Commun. 2021; 12: 4182.

[181]

Zhang L, Wang Z, Qiu J. Energy-saving hydrogen production by seawater electrolysis coupling sulfion degradation. Adv Mater. 2022; 34 (16): 2109321.

[182]

Gu J, Liu S, Ni W, Ren W, Haussener S, Hu X. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat Catal. 2022; 5 (4): 268- 276.

[183]

Wang L, Nitopi S, Wong AB, et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat Catal. 2019; 2 (8): 702- 708.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/