Strategies to achieve effective nitrogen activation

Bin Chang, Huabin Zhang, Shuhui Sun, Gaixia Zhang

Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 491-27.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 491-27. DOI: 10.1002/cey2.491
REVIEW

Strategies to achieve effective nitrogen activation

Author information +
History +

Abstract

Ammonia serves as a crucial chemical raw material and hydrogen energy carrier. Aqueous electrocatalytic nitrogen reduction reaction (NRR), powered by renewable energy, has attracted tremendous interest during the past few years. Although some achievements have been revealed in aqueous NRR, significant challenges have also been identified. The activity and selectivity are fundamentally limited by nitrogen activation and competitive hydrogen evolution. This review focuses on the hurdles of nitrogen activation and delves into complementary strategies, including materials design and system optimization (reactor, electrolyte, and mediator). Then, it introduces advanced interdisciplinary technologies that have recently emerged for nitrogen activation using high-energy physics such as plasma and triboelectrification. With a better understanding of the corresponding reaction mechanisms in the coming years, these technologies have the potential to be extended in further applications. This review provides further insight into the reaction mechanisms of selectivity and stability of different reaction systems. We then recommend a rigorous and detailed protocol for investigating NRR performance and also highlight several potential research directions in this exciting field, coupling with advanced interdisciplinary applications, in situ/operando characterizations, and theoretical calculations.

Keywords

activation via mediators / catalyst optimization / electrochemical nitrogen fixation / high-energy activation of nitrogen / nitrogen

Cite this article

Download citation ▾
Bin Chang, Huabin Zhang, Shuhui Sun, Gaixia Zhang. Strategies to achieve effective nitrogen activation. Carbon Energy, 2024, 6(5): 491‒27 https://doi.org/10.1002/cey2.491

References

[1]
Chen JG, Crooks RM, Seefeldt LC, et al. Beyond fossil fuel-driven nitrogen transformations. Science. 2018; 360 (6391): eaar6611.
[2]
Nishibayashi Y, Saito M, Uemura S, Takekuma S, Takekuma H, Yoshida Z. A non-metal system for nitrogen fixation. Nature. 2004; 428 (6980): 279- 280.
[3]
Shi R, Zhang X, Waterhouse GIN, Zhao Y, Zhang T. The journey toward low temperature, low pressure catalytic nitrogen fixation. Adv Energy Mater. 2020; 10 (19): 2000659.
[4]
Wang Y, Meyer TJ. A route to renewable energy triggered by the Haber-Bosch process. Chem. 2019; 5 (3): 496- 497.
[5]
Kyriakou V, Garagounis I, Vourros A, Vasileiou E, Stoukides M. An electrochemical Haber-Bosch process. Joule. 2020; 4 (1): 142- 158.
[6]
Sun Y, Wu W, Yu L, et al. Asymmetric acidic/alkaline N2 electrofixation accelerated by high-entropy metal-organic framework derivatives. Carbon Energy. 2023; 5 (3): e263.
[7]
Zhang X, Cao Y, Huang Z-F, et al. Regulating the interfacial charge transfer and constructing symmetry-breaking sites for the enhanced N2 electroreduction activity. Carbon Energy. 2023; 5 (2): e266.
[8]
Yu W, Yu J, Huang M, et al. Laser-controlled tandem catalytic sites of CuNi alloys with ampere-level electrocatalytic nitrate-to-ammonia reduction activities for Zn-nitrate batteries. Energy Environ Sci. 2023; 16 (7): 2991- 3001.
[9]
Chang B, Pang H, Raziq F, et al. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy Environ Sci. 2023; 16 (11): 4714- 4758.
[10]
Huang W, Su C, Zhu C, et al. Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew Chem. 2023; 135 (25): e202304634.
[11]
Zhang X, Huang W, Yu L, et al. Enabling heterogeneous catalysis to achieve carbon neutrality: directional catalytic conversion of CO2 into carboxylic acids. Carbon Energy. In press; 2023.
CrossRef Google scholar
[12]
Guo W, Zhang K, Liang Z, Zou R, Xu Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem Soc Rev. 2019; 48 (24): 5658- 5716.
[13]
Pang Y, Su C, Jia G, Xu L, Shao Z. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem Soc Rev. 2021; 50 (22): 12744- 12787.
[14]
Qing G, Ghazfar R, Jackowski ST, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem Rev. 2020; 120 (12): 5437- 5516.
[15]
Zhao X, Hu G, Chen GF, Zhang H, Zhang S, Wang H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv Mater. 2021; 33 (33): 2007650.
[16]
Lin L, Wei F, Jiang R, Huang Y, Lin S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res. 2022; 16 (1): 309- 317.
[17]
Li S, Wang Y, Du Y, et al. P-block metal-based electrocatalysts for nitrogen reduction to ammonia: a minireview. Small. 2023; 19 (16): 2206776.
[18]
Liu C, Tian A, Li Q, et al. 2D, metal-free electrocatalysts for the nitrogen reduction reaction. Adv Funct Mater. 2022; 33 (9): 2210759.
[19]
Tort R, Westhead O, Spry M, et al. Nonaqueous Li-mediated nitrogen reduction: taking control of potentials. ACS Energy Lett. 2023; 8 (2): 1003- 1009.
[20]
Liu D, Chen M, Du X, et al. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv Funct Mater. 2020; 31 (11): 2008983.
[21]
Yang X, Mukherjee S, O'Carroll T, et al. Achievements, challenges, and perspectives on nitrogen electrochemistry for carbon-neutral energy technologies. Angew Chem Int Ed. 2022; 135 (10): e202215938.
[22]
Zheng J, Jiang L, Lyu Y, Jiang SP, Wang S. Green synthesis of nitrogen-to-ammonia fixation: past, present, and future. Energy Environ Mater. 2021; 5 (2): 452- 457.
[23]
Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017; 355 (6321): aad4998.
[24]
Yang B, Ding W, Zhang H, Zhang S. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy Environ Sci. 2021; 14 (2): 672- 687.
[25]
Arif M, Babar M, Azhar U, et al. Rational design and modulation strategies of Mo-based electrocatalysts and photo/electrocatalysts towards nitrogen reduction to ammonia (NH3). Chem Eng J. 2023; 451: 138320.
[26]
Shen H, Choi C, Masa J, et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design. Chem. 2021; 7 (7): 1708- 1754.
[27]
Han Z, Wu P, He M, Zhuang X, Lin H, Han S. Ammonia synthesis by electrochemical nitrogen reduction reaction—a novel energy storage way. J Energy Storage. 2022; 55: 105684.
[28]
Guo X, Du H, Qu F, Li J. Recent progress in electrocatalytic nitrogen reduction. J Mater Chem A. 2019; 7 (8): 3531- 3543.
[29]
Wen L, Sun K, Liu X, Yang W, Li L, Jiang HL. Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv Mater. 2023; 35 (15): 2210669.
[30]
Izelaar B, Ripepi D, Asperti S, et al. Revisiting the electrochemical nitrogen reduction on molybdenum and iron carbides: promising catalysts or false positives? ACS Catal. 2023; 13 (3): 1649- 1661.
[31]
Yang X, Tian Y, Mukherjee S, et al. Constructing oxygen vacancies via engineering heterostructured Fe3C/Fe3O4 catalysts for electrochemical ammonia synthesis. Angew Chem Int Ed. 2023; 62 (34): 202304797.
[32]
Qiang S, Wu F, Yu J, Liu YT, Ding B. Complementary design in multicomponent electrocatalysts for electrochemical nitrogen reduction: beyond the leverage in activity and selectivity. Angew Chem Int Ed. 2023; 62 (15): 202217265.
[33]
Park SY, Jang YJ, Youn DH. A review of transition metal nitride-based catalysts for electrochemical nitrogen reduction to ammonia. Catalysts. 2023; 13 (3): 639.
[34]
Macleod KC, Holland PL. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat Chem. 2013; 5 (7): 559- 565.
[35]
Anderson JS, Rittle J, Peters JC. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature. 2013; 501 (7465): 84- 87.
[36]
Su L, Yang D, Jiang Y, et al. A bioinspired iron-molybdenum μ-nitrido complex and its reactivity toward ammonia formation. Angew Chem Int Ed. 2022; 61 (30): e202203121.
[37]
Hoffman BM, Lukoyanov D, Dean DR, Seefeldt LC. Nitrogenase: a draft mechanism. Acc Chem Res. 2013; 46 (2): 587- 595.
[38]
Cai R, Minteer SD. Nitrogenase bioelectrocatalysis: from understanding electron-transfer mechanisms to energy applications. ACS Energy Lett. 2018; 3 (11): 2736- 2742.
[39]
Harris DF, Lukoyanov DA, Shaw S, et al. Mechanism of N2 reduction catalyzed by Fe-nitrogenase involves reductive elimination of H2. Biochemistry. 2018; 57 (5): 701- 710.
[40]
McKee ML. A new nitrogenase mechanism using a CFe8S9 model: does H2 elimination activate the complex to N2 addition to the central carbon atom? J Phys Chem A. 2016; 120 (5): 754- 764.
[41]
Badalyan A, Yang Z-Y, Seefeldt LC. A voltammetric study of nitrogenase catalysis using electron transfer mediators. ACS Catal. 2019; 9 (2): 1366- 1372.
[42]
Milton RD, Minteer SD. Enzymatic bioelectrosynthetic ammonia production: recent electrochemistry of nitrogenase, nitrate reductase, and nitrite reductase. ChemPlusChem. 2017; 82 (4): 513- 521.
[43]
Han X-Q, Lang Z-L, Zhang F-Y, Xu H-L, Su Z-M. Computational evaluation of femo heteroatom coeffect induced high electroreduction activity of N2-to-NH3. Appl Surf Sci. 2022; 579: 152214.
[44]
Chen A, Xia BY. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis. J Mater Chem A. 2019; 7 (41): 23416- 23431.
[45]
Xue X, Chen R, Yan C, et al. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res. 2019; 12 (6): 1229- 1249.
[46]
Islam J, Shareef M, Zabed HM, et al. Electrochemical nitrogen fixation in metal-N2 batteries: a paradigm for simultaneous NH3 synthesis and energy generation. Energy Stor Mater. 2023; 54: 98- 119.
[47]
Ren Y, Yu C, Tan X, Huang H, Wei Q, Qiu J. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy Environ Sci. 2021; 14 (3): 1176- 1193.
[48]
Choi C, Back S, Kim N-Y, Lim J, Kim Y-H, Jung Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal. 2018; 8 (8): 7517- 7525.
[49]
Höskuldsson ÁB, Tayyebi E, Skúlason E. Computational examination of the kinetics of electrochemical nitrogen reduction and hydrogen evolution on a tungsten electrode. J Catal. 2021; 404: 362- 370.
[50]
Zhu H, Ren X, Yang X, Liang X, Liu A, Wu G. Fe-based catalysts for nitrogen reduction toward ammonia electrosynthesis under ambient conditions. SusMat. 2022; 2 (3): 214- 242.
[51]
Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today. 2019; 27: 69- 90.
[52]
Patil SB, Wang DY. Exploration and investigation of periodic elements for electrocatalytic nitrogen reduction. Small. 2020; 16 (45): e2002885.
[53]
Zhou H, Xiong B, Chen L, Shi J. Modulation strategies of Cu-based electrocatalysts for efficient nitrogen reduction. J Mater Chem A. 2020; 8 (39): 20286- 20293.
[54]
Du L, Xing L, Zhang G, Liu X, Rawach D, Sun S. Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis. SusMat. 2021; 1 (2): 150- 173.
[55]
Hou J, Yang M, Zhang J. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale. 2020; 12 (13): 6900- 6920.
[56]
Xu H, Ithisuphalap K, Li Y, et al. Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: theory, practices, and challenges for catalysts and electrolytes. Nano Energy. 2020; 69: 104469.
[57]
Guo X, Zhu Y, Ma T. Lowering reaction temperature: electrochemical ammonia synthesis by coupling various electrolytes and catalysts. J Energy Chem. 2017; 26 (6): 1107- 1116.
[58]
Chen X, Guo Y, Du X, et al. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv Energy Mater. 2019; 10 (3): 1903172.
[59]
Yang C, Zhu Y, Liu J, et al. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy. 2020; 77: 105126.
[60]
Liu M, Zhang S, Chen M, Wu L. Boosting electrochemical nitrogen reduction performance through water-in-salt electrolyte. Appl Catal B. 2022; 319: 121925.
[61]
Biswas A, Nandi S, Kamboj N, Pan J, Bhowmik A, Dey RS. Alteration of electronic band structure via a metal-semiconductor interfacial effect enables high Faradaic efficiency for electrochemical nitrogen fixation. ACS Nano. 2021; 15 (12): 20364- 20376.
[62]
Ge R, Huo J, Sun M, et al. Surface and interface engineering: molybdenum carbide-based nanomaterials for electrochemical energy conversion. Small. 2021; 17 (9): 1903380.
[63]
Chen S, Liu X, Xiong J, Mi L, Song X-Z, Li Y. Defect and interface engineering in metal sulfide catalysts for the electrocatalytic nitrogen reduction reaction: a review. J Mater Chem A. 2022; 10 (13): 6927- 6949.
[64]
Kim D, Alam K, Han MK, et al. Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction. J Colloid Interface Sci. 2023; 633: 53- 59.
[65]
Paul S, Sarkar S, Adalder A, Kapse S, Thapa R, Ghorai UK. Strengthening the metal center of CoN4 active sites in a 1D-2D heterostructure for nitrate and nitrogen reduction reaction to ammonia. ACS Sustainable Chem Eng. 2023; 11 (16): 6191- 6200.
[66]
Zhou J, Chen X, Guo M, Hu W, Huang B, Yuan D. Enhanced catalytic activity of bimetallic ordered catalysts for nitrogen reduction reaction by perturbation of scaling relations. ACS Catal. 2023; 13 (4): 2190- 2201.
[67]
Wang X, Luo M, Lan J, Peng M, Tan Y. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv Mater. 2021; 33 (18): 2007733.
[68]
Zou H, Arachchige LJ, Rong W, et al. Low-valence metal single atoms on graphdiyne promotes electrochemical nitrogen reduction via M-to-N2 π-backdonation. Adv Funct Mater. 2022; 32 (24): 2200333.
[69]
Pu Z, Liu T, Zhang G, et al. Nanostructured metal borides for energy-related electrocatalysis: recent progress, challenges, and perspectives. Small Methods. 2021; 5 (10): 2100699.
[70]
Zhao R, Chen Y, Xiang H, et al. Two-dimensional ordered double-transition metal carbides for the electrochemical nitrogen reduction reaction. ACS Appl Mater Interfaces. 2023; 15 (5): 6797- 6806.
[71]
Wang J, Jiang Z, Peng G, et al. Surface valence state effect of MoO2+x on electrochemical nitrogen reduction. Adv Sci. 2022; 9 (12): 2104857.
[72]
Yang X, Xu B, Chen JG, Yang X. Recent progress in electrochemical nitrogen reduction on transition metal nitrides. ChemSusChem. 2023; 16 (5): e202201715.
[73]
Jin H, Kim HS, Lee CH, et al. Directing the surface atomic geometry on copper sulfide for enhanced electrochemical nitrogen reduction. ACS Catal. 2022; 12 (21): 13638- 13648.
[74]
Yesudoss DK, Chun H, Han B, Shanmugam S. Accelerated N2 reduction kinetics in hybrid interfaces of NbTiO4 and nitrogen-doped carbon nanorod via synergistic electronic coupling effect. Appl Catal B. 2022; 304: 120938.
[75]
Zhao S, Lu X, Wang L, Gale J, Amal R. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv Mater. 2019; 31 (13): 1805367.
[76]
Pang J, Chang B, Liu H, Zhou W. Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett. 2021; 7 (1): 78- 96.
[77]
Choi J, Suryanto BHR, Wang D, et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat Commun. 2020; 11: 5546.
[78]
Tang C, Qiao S-Z. True or false in electrochemical nitrogen reduction. Joule. 2019; 3 (7): 1573- 1575.
[79]
Suryanto BHR, Du H-L, Wang D, Chen J, Simonov AN, MacFarlane DR. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal. 2019; 2 (4): 290- 296.
[80]
Tang C, Qiao SZ. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev. 2019; 48 (12): 3166- 3180.
[81]
Guo Y, Wang T, Yang Q, et al. Highly efficient electrochemical reduction of nitrogen to ammonia on surface termination modified Ti3C2Tx MXene nanosheets. ACS Nano. 2020; 14 (7): 9089- 9097.
[82]
Zheng X, Liu Y, Yao Y. Trimetallic single-cluster catalysts for electrochemical nitrogen reduction reaction: activity prediction, mechanism, and electronic descriptor. Chem Eng J. 2021; 426: 130745.
[83]
Zou H, Rong W, Wei S, Ji Y, Duan L. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proc Natl Acad Sci USA. 2020; 117 (47): 29462- 29468.
[84]
Gu H, Chen W, Li X. Atomically dispersed metal catalysts for the electrochemical nitrogen reduction reaction. J Mater Chem A. 2022; 10 (42): 22331- 22353.
[85]
Cai X, Yang F, An L, et al. Evaluation of electrocatalytic activity of noble metal catalysts toward nitrogen reduction reaction in aqueous solutions under ambient conditions. ChemSusChem. 2022; 15 (1): e202102234.
[86]
Lu L, Zheng H, Li Y, Zhou Y, Fang B. Ligand-free synthesis of noble metal nanocatalysts for electrocatalysis. Chem Eng J. 2023; 451: 138668.
[87]
Kong W, Deng J, Li L. Recent advances in noble metal MXene-based catalysts for electrocatalysis. J Mater Chem A. 2022; 10 (28): 14674- 14691.
[88]
Liu S, Wang Z, Zhang H, et al. Palladium nanothorn assembly array for efficient electroreduction of nitrogen to ammonia. ACS Sustainable Chem Eng. 2020; 8 (37): 14228- 14233.
[89]
Du R, Jin X, Hübner R, Fan X, Hu Y, Eychmüller A. Engineering self-supported noble metal foams toward electrocatalysis and beyond. Adv Energy Mater. 2019; 10 (11): 1901945.
[90]
Du R, Joswig JO, Hübner R, et al. Freeze-thaw-promoted fabrication of clean and hierarchically structured noble-metal aerogels for electrocatalysis and photoelectrocatalysis. Angew Chem Int Ed. 2020; 59 (21): 8293- 8300.
[91]
Zhang F, Zhu Y, Lin Q, Zhang L, Zhang X, Wang H. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ Sci. 2021; 14 (5): 2954- 3009.
[92]
Gao F, Zhang Y, Wu Z, You H, Du Y. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord Chem Rev. 2021; 436: 213825.
[93]
Bao D, Zhang Q, Meng FL, et al. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater. 2017; 29 (3): 1604799.
[94]
Feng C, Wu ZP, Huang KW, Ye J, Zhang H. Surface modification of 2D photocatalysts for solar energy conversion. Adv Mater. 2022; 34 (23): 2200180.
[95]
Feng C, Tang L, Deng Y, et al. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv Funct Mater. 2020; 30 (39): 2001922.
[96]
Wu G, Han X, Cai J, et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat Commun. 2022; 13: 4200.
[97]
Li Y, Guo S. Noble metal-based 1D and 2D electrocatalytic nanomaterials: recent progress, challenges and perspectives. Nano Today. 2019; 28: 100774.
[98]
Yang Y, Luo M, Zhang W, Sun Y, Chen X, Guo S. Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem. 2018; 4 (9): 2054- 2083.
[99]
Chen P, Tong Y, Wu C, Xie Y. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Acc Chem Res. 2018; 51 (11): 2857- 2866.
[100]
Cheng H, Ding LX, Chen GF, Zhang L, Xue J, Wang H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv Mater. 2018; 30 (46): 1803694.
[101]
Yin H, Hu J, Fang C, et al. Highly efficient electrocatalytic nitrogen fixation enabled by the bridging effect of Ru in plasmonic nanoparticles. Nano Res. 2022; 16 (1): 360- 370.
[102]
Yu J, Chang B, Yu W, et al. Chromium phosphide nanoparticles embedded in porous nitrogen-/phosphorus-doped carbon as efficient electrocatalysts for a nitrogen reduction reaction. Carbon Energy. 2022; 4 (2): 237- 245.
[103]
Tschersich C, Hoof S, Frank N, Herwig C, Limberg C. The effect of substituents at Lewis acidic bismuth(iii) centers on its propensity to bind a noble metal donor. Inorg Chem. 2016; 55 (4): 1837- 1842.
[104]
Halldin Stenlid J, Johansson AJ, Brinck T. σ-Holes and σ-lumps direct the Lewis basic and acidic interactions of noble metal nanoparticles: introducing regium bonds. Phys Chem Chem Phys. 2018; 20 (4): 2676- 2692.
[105]
Bin C, Yuan H, Li L, et al. Enhancing electrochemical nitrogen fixation by mimicking π back-donation on laser-tuned lewis acid sites in noble-metal-molybdenum carbide. Appl Catal B. 2023; 320: 121777.
[106]
Tian Y, Chang B, Wang G, et al. Magnetron sputtering tuned “π back-donation” sites over metal oxides for enhanced electrocatalytic nitrogen reduction. J Mater Chem A. 2022; 10 (6): 2800- 2806.
[107]
Zhao L, Chang B, Dong T, et al. Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions. J Mater Chem A. 2022; 10 (37): 20071- 20079.
[108]
Li J, Chen S, Quan F, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem. 2020; 6 (4): 885- 901.
[109]
Yuan C, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed. 2014; 53 (6): 1488- 1504.
[110]
Maduraiveeran G, Sasidharan M, Jin W. Earth-abundant transition metal and metal oxide nanomaterials: synthesis and electrochemical applications. Prog Mater Sci. 2019; 106: 100574.
[111]
Huang Y, Babu DD, Peng Z, Wang Y. Atomic modulation, structural design, and systematic optimization for efficient electrochemical nitrogen reduction. Adv Sci. 2020; 7 (4): 1902390.
[112]
Chang B, Deng L, Wang S, et al. A vanadium-nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media. J Mater Chem A. 2020; 8 (1): 91- 96.
[113]
Jin H, Li L, Liu X, et al. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Adv Mater. 2019; 31 (32): 1902709.
[114]
Wang H, Li J, Li K, et al. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev. 2021; 50 (2): 1354- 1390.
[115]
Xue Z-H, Luan D, Zhang H, (David) Lou XW. Single-atom catalysts for photocatalytic energy conversion. Joule. 2022; 6 (1): 92- 133.
[116]
Liu C, Li Q, Wu C, et al. Single-boron catalysts for nitrogen reduction reaction. J Am Chem Soc. 2019; 141 (7): 2884- 2888.
[117]
Liu X, Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J Am Chem Soc. 2019; 141 (24): 9664- 9672.
[118]
Gu Y, Xi B, Tian W, Zhang H, Fu Q, Xiong S. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv Mater. 2021; 33 (25): 2100429.
[119]
Li S, Lin J, Chang B, et al. Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater. 2023; 55: 94- 104.
[120]
Li X, Xu W, Fang Y, et al. Single-atom catalyst application in distributed renewable energy conversion and storage. SusMat. 2023; 3 (2): 160- 179.
[121]
Huang J, Zhang Q, Ding J, Zhai Y. Fe-N-C single atom catalysts for the electrochemical conversion of carbon, nitrogen and oxygen elements. Mater Rep Energy. 2022; 2 (3): 100141.
[122]
Song Z, Zhang L, Doyle-Davis K, Fu X, Luo JL, Sun X. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv Energy Mater. 2020; 10 (38): 2001561.
[123]
Iqbal MS, Yao Z-B, Ruan Y-K, et al. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 2023; 42 (4): 1075- 1097.
[124]
Li X, Liu L, Ren X, Gao J, Huang Y, Liu B. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci Adv. 2020; 6 (39): eabb6833.
[125]
Ma Y, Yang T, Zou H, et al. Synergizing mo single atoms and Mo2c nanoparticles on cnts synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv Mater. 2020; 32 (33): 2002177.
[126]
Zhao Y, Zhang J, Guo X, et al. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chem Soc Rev. 2023; 52 (9): 3215- 3264.
[127]
Johnson D, Djire A. Effect of pH on the electrochemical behavior and nitrogen reduction reaction activity of Ti2N nitride mxene. Adv Mater Interfaces. 2023; 10 (10): 2202147.
[128]
Gao Y, Cao Y, Zhuo H, et al. Mo2TiC2 MXene: a promising catalyst for electrocatalytic ammonia synthesis. Catal Today. 2020; 339: 120- 126.
[129]
Johnson LR, Sridhar S, Zhang L, et al. MXene materials for the electrochemical nitrogen reduction-functionalized or not? ACS Catal. 2019; 10 (1): 253- 264.
[130]
Sun J, Kong W, Jin Z, et al. Recent advances of MXene as promising catalysts for electrochemical nitrogen reduction reaction. Chin Chem Lett. 2020; 31 (4): 953- 960.
[131]
Song HC, Ham HC. On the role of metal cation in MXene in boosting the catalytic activity of single/double atom toward electrochemical NH3 production. Chem Eng J. 2023; 470: 144243.
[132]
Cai J, Huang J, Cao A, et al. Interfacial hydrogen bonding-involved electrocatalytic ammonia synthesis on OH-terminated mxene. Appl Catal B. 2023; 328: 122473.
[133]
Cheng Y, Li X, Shen P, Guo Y, Chu K. Mxene quantum dots/copper nanocomposites for synergistically enhanced N2 electroreduction. Energy Environ Mater. 2022; 6 (1): 12268.
[134]
He H, Wen HM, Li HK, et al. Hydrophobicity tailoring of ferric covalent organic framework/MXene nanosheets for high-efficiency nitrogen electroreduction to ammonia. Adv Sci. 2023; 10 (15): 2206933.
[135]
Fang QJ, Zhang W, Zhang X, et al. Rational design of bimetallic MXene solid solution with high-performance electrocatalytic n2 reduction. J Colloid Interface Sci. 2023; 640: 67- 77.
[136]
Peng W, Luo M, Xu X, et al. Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv Energy Mater. 2020; 10 (25): 2001364.
[137]
Jiang H, Shi D, Sun X, et al. Boron carbonitride lithium-ion capacitors with an electrostatically expanded operating voltage window. ACS Appl Mater Interfaces. 2020; 12 (42): 47425- 47434.
[138]
Paul R, Zhu L, Chen H, Qu J, Dai L. Recent advances in carbon-based metal-free electrocatalysts. Adv Mater. 2019; 31 (31): 1806403.
[139]
Feng C, Tang L, Deng Y, et al. A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl Catal B. 2021; 281: 119539.
[140]
Wen Y, Zhu H, Hao J, et al. Metal-free boron and sulphur Co-doped carbon nanofibers with optimized p-band centers for highly efficient nitrogen electroreduction to ammonia. Appl Catal B. 2021; 292: 120144.
[141]
Li Y, Gao D, Zhao S, et al. Carbon doped hexagonal boron nitride nanoribbon as efficient metal-free electrochemical nitrogen reduction catalyst. Chem Eng J. 2021; 410: 128419.
[142]
Xu T, Ma B, Liang J, et al. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys Chim Sin. 2021; 37 (7): 2009043.
[143]
Li L, Tang C, Jin H, Davey K, Qiao S-Z. Main-group elements boost electrochemical nitrogen fixation. Chem. 2021; 7 (12): 3232- 3255.
[144]
Wang B, Liu B, Dai L. Non-N-doped carbons as metal-free electrocatalysts. Adv Sustainable Syst. 2020; 5 (1): 2000134.
[145]
Hu C, Gao Y, Zhao L, Dai L. Carbon-based metal-free electrocatalysts: recent progress and forward looking. Chem Catal. 2022; 2 (9): 2150- 2156.
[146]
Zhai Q, Pan Y, Dai L. Carbon-based metal-free electrocatalysts: past, present, and future. Acc Mater Res. 2021; 2 (12): 1239- 1250.
[147]
Lv C, Jia N, Qian Y, et al. Ammonia electrosynthesis with a stable metal-free 2D silicon phosphide catalyst. Small. 2023; 19 (10): 2205959.
[148]
Lan J, Luo M, Han J, Peng M, Duan H, Tan Y. Nanoporous B13C2 towards highly efficient electrochemical nitrogen fixation. Small. 2021; 17 (39): 2102814.
[149]
Tang M, Jiang X, He M, Jiang N, Zheng Q, Lin D. B (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction. Int J Hydrogen Energy. 2021; 46 (1): 439- 448.
[150]
Zhang W, Mao K, Low J, et al. Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials. Nano Res. 2021; 14 (9): 3234- 3239.
[151]
Chang B, Li L, Shi D, et al. Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl Catal B. 2021; 283: 119622.
[152]
Ma C, Zhang Y, Yan S, Liu B. Carbon-doped boron nitride nanosheets: a high-efficient electrocatalyst for ambient nitrogen reduction. Appl Catal B. 2022; 315: 121574.
[153]
Zhang W, Zhan S, Qin Q, et al. Electrochemical generation of catalytically active edge sites in C2N-type carbon materials for artificial nitrogen fixation. Small. 2022; 18 (42): 2204116.
[154]
Kong Y, Li Y, Sang X, et al. Atomically dispersed zinc(i) active sites to accelerate nitrogen reduction kinetics for ammonia electrosynthesis. Adv Mater. 2022; 34 (2): 2103548.
[155]
Liu P-Y, Shi K, Chen W-Z, et al. Enhanced electrocatalytic nitrogen reduction reaction performance by interfacial engineering of MOF-based sulfides FeNi2S4/NiS hetero-interface. Appl Catal B. 2021; 287: 119956.
[156]
Zhang L, Ding LX, Chen GF, Yang X, Wang H. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew Chem. 2019; 131 (9): 2638- 2642.
[157]
Li L, Tang C, Yao D, Zheng Y, Qiao S-Z. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019; 4 (9): 2111- 2116.
[158]
Hodgetts RY, Du HL, MacFarlane DR, Simonov AN. Electrochemically induced generation of extraneous nitrite and ammonia in organic electrolyte solutions during nitrogen reduction experiments. ChemElectroChem. 2021; 8 (9): 1596- 1604.
[159]
Sheets BL, Botte GG. Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte. Chem Commun. 2018; 54 (34): 4250- 4253.
[160]
Fan G, Xu W, Li J, et al. Enhancing electrocatalytic nitrogen reduction on few-layer antimonene in an aqueous potassium sulfate electrolyte. J Phys Chem C. 2022; 126 (32): 13629- 13639.
[161]
Blair SJ, Doucet M, Browning JF, et al. Lithium-mediated electrochemical nitrogen reduction: tracking electrode-electrolyte interfaces via time-resolved neutron reflectometry. ACS Energy Lett. 2022; 7 (6): 1939- 1946.
[162]
Zhou F, Azofra LM, Ali M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ Sci. 2017; 10 (12): 2516- 2520.
[163]
Mao H, Fu Y, Yang H, et al. Ultrathin 1T-MoS2 nanoplates induced by quaternary ammonium-type ionic liquids on polypyrrole/graphene oxide nanosheets and its irreversible crystal phase transition during electrocatalytic nitrogen reduction. ACS Appl Mater Interfaces. 2020; 12 (22): 25189- 25199.
[164]
Licht S, Cui B, Wang B, Li FF, Lau J, Liu S. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science. 2014; 345 (6197): 637- 640.
[165]
Garagounis I, Kyriakou V, Skodra A, Vasileiou E, Stoukides M. Electrochemical synthesis of ammonia in solid electrolyte cells. Front Energy Res. 2014; 2: 1- 10.
[166]
Li S, Zhou Y, Li K, et al. Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase. Joule. 2022; 6 (9): 2083- 2101.
[167]
Chen Y, Gu S, Li W. Solid-electrolyte interphases enable efficient Li-mediated ammonia electrosynthesis. Joule. 2022; 6 (9): 1973- 1976.
[168]
Lan R, Tao S. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. RSC Adv. 2013; 3 (39): 18016- 18021.
[169]
Huang D, Han Y, Wu F, Wang H. Intermediate temperature electrochemical properties of lutetium-doped SrCeO3/SrZrO3-molten carbonate composite electrolyte. Ceram Int. 2019; 45 (8): 10149- 10153.
[170]
Bagryantseva IN, Ponomareva VG, Lazareva NP. Proton-conductive membranes based on CsH2PO4 and ultra-dispersed polytetrafluoroethylene. Solid State Ion. 2019; 329: 61- 66.
[171]
Chanda D, Xing R, Xu T, et al. Electrochemical nitrogen reduction: recent progress and prospects. Chem Commun. 2021; 57 (60): 7335- 7349.
[172]
Shahid UB, Chen Y, Gu S, Li W, Shao M. Electrochemical nitrogen reduction: an intriguing but challenging quest. Trends Chem. 2022; 4 (2): 142- 156.
[173]
Kolen M, Ripepi D, Smith WA, Burdyny T, Mulder FM. Overcoming nitrogen reduction to ammonia detection challenges: the case for leapfrogging to gas diffusion electrode platforms. ACS Catal. 2022; 12 (10): 5726- 5735.
[174]
Dong F, Wu M, Chen Z, et al. Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 2021; 14 (1): 36.
[175]
Glibin VP, Dodelet JP, Zhang G. Energetics and thermodynamic stability of potential Fe(ii)-hexa-aza-active sites for O2 reduction in PEM fuel cells. SusMat. 2022; 2 (6): 731- 748.
[176]
Shi Y, Wang Y, Yu J, et al. Superscalar phase boundaries derived multiple active sites in SnO2/Cu6Sn5/CuO for tandem electroreduction of CO2 to formic acid. Adv Energy Mater. 2023; 13 (13): 2203506.
[177]
Andersen SZ, Statt MJ, Bukas VJ, et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy Environ Sci. 2020; 13 (11): 4291- 4300.
[178]
Lazouski N, Schiffer ZJ, Williams K, Manthiram K. Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule. 2019; 3 (4): 1127- 1139.
[179]
Chalkley MJ, Drover MW, Peters JC. Catalytic N2-to-NH3 (or -N2H4) conversion by well-defined molecular coordination complexes. Chem Rev. 2020; 120 (12): 5582- 5636.
[180]
Foster SL, Bakovic SIP, Duda RD, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal. 2018; 1 (7): 490- 500.
[181]
Lazouski N, Steinberg KJ, Gala ML, Krishnamurthy D, Viswanathan V, Manthiram K. Proton donors induce a differential transport effect for selectivity toward ammonia in lithium-mediated nitrogen reduction. ACS Catal. 2022; 12 (9): 5197- 5208.
[182]
Jiang H, Chen G-F, Savateev O, Wang H. Visualizing the reaction interface of lithium-mediated nitrogen fixation. Joule. 2023; 7 (2): 253- 256.
[183]
Du H-L, Matuszek K, Hodgetts RY, et al. The chemistry of proton carriers in high-performance lithium-mediated ammonia electrosynthesis. Energy Environ Sci. 2023; 16 (3): 1082- 1090.
[184]
Westhead O, Spry M, Bagger A, et al. The role of ion solvation in lithium mediated nitrogen reduction. J Mater Chem A. 2023; 11 (24): 12746- 12758.
[185]
Steinberg K, Yuan X, Klein CK, et al. Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nat Energy. 2022; 8 (2): 138- 148.
[186]
Suryanto BHR, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science. 2021; 372 (6547): 1187- 1191.
[187]
Du HL, Chatti M, Hodgetts RY, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature. 2022; 609 (7928): 722- 727.
[188]
Krishnamurthy D, Lazouski N, Gala ML, Manthiram K, Viswanathan V. Closed-loop electrolyte design for lithium-mediated ammonia synthesis. ACS Cent Sci. 2021; 7 (12): 2073- 2082.
[189]
Westhead O, Jervis R, Stephens IEL. Is lithium the key for nitrogen electroreduction? Science. 2021; 372 (6547): 1149- 1150.
[190]
Li K, Andersen SZ, Statt MJ, et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science. 2021; 374 (6575): 1593- 1597.
[191]
Fu X, Pedersen JB, Zhou Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science. 2023; 379 (6633): 707- 712.
[192]
Shaver MP, Fryzuk MD. Activation of molecular nitrogen: coordination, cleavage and functionalization of N2 mediated by metal complexes. Adv Synth Catal. 2003; 345 (910): 1061- 1076.
[193]
Chalkley MJ, Del Castillo TJ, Matson BD, Peters JC. Fe-mediated nitrogen fixation with a metallocene mediator: exploring pka effects and demonstrating electrocatalysis. J Am Chem Soc. 2018; 140 (19): 6122- 6129.
[194]
Huang W, Peng LY, Zhang J, et al. Vanadium-catalyzed dinitrogen reduction to ammonia via a [V]═NNH2 intermediate. J Am Chem Soc. 2023; 145 (2): 811- 821.
[195]
Garrido-Barros P, Derosa J, Chalkley MJ, Peters JC. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer. Nature. 2022; 609 (7925): 71- 76.
[196]
Threatt SD, Rees DC. Biological nitrogen fixation in theory, practice, and reality: a perspective on the molybdenum nitrogenase system. FEBS Lett. 2023; 597 (1): 45- 58.
[197]
Demtröder L, Narberhaus F, Masepohl B. Coordinated regulation of nitrogen fixation and molybdate transport by molybdenum. Mol Microbiol. 2019; 111 (1): 17- 30.
[198]
Ma J, Song Z, Zhou Y, Han H. Iron-molybdenum quantum dots for enhancing the nitrogenase activity of nodules. ACS Appl Nano Mater. 2022; 5 (11): 16694- 16705.
[199]
Buscagan TM, Oyala PH, Peters JC. N2-to-NH3 conversion by a triphos-iron catalyst and enhanced turnover under photolysis. Angew Chem Int Ed. 2017; 56 (24): 6921- 6926.
[200]
Addo MA, Dos Santos PC. Distribution of nitrogen-fixation genes in prokaryotes containing alternative nitrogenases. ChemBioChem. 2020; 21 (12): 1749- 1759.
[201]
Milton RD, Abdellaoui S, Khadka N, et al. Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein. Energy Environ Sci. 2016; 9 (8): 2550- 2554.
[202]
Söderberg O, Gullberg M, Jarvius M, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods. 2006; 3 (12): 995- 1000.
[203]
Liu C, Sakimoto KK, Colón BC, Silver PA, Nocera DG. Ambient nitrogen reduction cycle using a hybrid inorganic-biological system. Proc Natl Acad Sci USA. 2017; 114 (25): 6450- 6455.
[204]
Wang Y, Wang C, Li M, Yu Y, Zhang B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem Soc Rev. 2021; 50 (12): 6720- 6733.
[205]
Li Y, Wu T, Wang YJ, et al. Green and large-scale production of ammonia: Laser-driven pyrolysis of nitrogen-enriched biomass. SusMat. 2023; 3 (4): 533- 542.
[206]
Chen G-F, Yuan Y, Jiang H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat Energy. 2020; 5 (8): 605- 613.
[207]
Wu T, Chang B, Li Y, et al. Laser-induced plasma and local temperature field for high-efficiency ammonia synthesis. Nano Energy. 2023; 116: 108855.
[208]
Peng P, Schiappacasse C, Zhou N, et al. Sustainable non-thermal plasma-assisted nitrogen fixation-synergistic catalysis. ChemSusChem. 2019; 12 (16): 3702- 3712.
[209]
Winter LR, Chen JG. N2 fixation by plasma-activated processes. Joule. 2021; 5 (2): 300- 315.
[210]
Zhou J, Wei T, An X. Combining non-thermal plasma technology with photocatalysis: a critical review. Phys Chem Chem Phys. 2023; 25 (3): 1538- 1545.
[211]
Zhang Y, Rawat RS, Fan HJ. Plasma for rapid conversion reactions and surface modification of electrode materials. Small Methods. 2017; 1 (9): 0.
[212]
Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S. Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv Mater. 2018; 30 (21): 1705850.
[213]
Sun J, Alam D, Daiyan R, et al. A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy Environ Sci. 2021; 14 (2): 865- 872.
[214]
Zeng Y, Priest C, Wang G, Wu G. Restoring the nitrogen cycle by electrochemical reduction of nitrate: progress and prospects. Small Methods. 2020; 4 (12): 2000672.
[215]
Fan K, Xie W, Li J, et al. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat Commun. 2022; 13: 7958.
[216]
Ge ZX, Wang TJ, Ding Y, et al. Interfacial engineering enhances the electroactivity of frame-like concave RhCu bimetallic nanocubes for nitrate reduction. Adv Energy Mater. 2022; 12 (15): 2103916.
[217]
Ren Y, Yu C, Wang L, et al. Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system. J Am Chem Soc. 2022; 144 (23): 10193- 10200.
[218]
Han K, Luo J, Feng Y, et al. Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOx. ACS Nano. 2020; 14 (3): 2751- 2759.
[219]
Zhou D, Zhou R, Zhou R, et al. Sustainable ammonia production by non-thermal plasmas: status, mechanisms, and opportunities. Chem Eng J. 2021; 421: 129544.
[220]
Miao Y, Yokochi A, Jovanovic G, Zhang S, von Jouanne A. Application-oriented non-thermal plasma in chemical reaction engineering: a review. Green Energy Resour. 2023; 1 (1): 100004.
[221]
Xu G, Li X, Xia X, Fu J, Ding W, Zi Y. On the force and energy conversion in triboelectric nanogenerators. Nano Energy. 2019; 59: 154- 161.
[222]
Wei X, Zhao Z, Wang L, et al. Energy conversion system based on curie effect and triboelectric nanogenerator for low-grade heat energy harvesting. Nano Energy. 2022; 91: 106652.
[223]
Han K, Luo J, Feng Y, Xu L, Tang W, Wang ZL. Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy Environ Sci. 2020; 13 (8): 2450- 2458.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/