Small but mighty: Empowering sodium/potassium-ion battery performance with S-doped SnO2 quantum dots embedded in N, S codoped carbon fiber network

Shengnan He , Hui Wu , Shuang Li , Ke Liu , Yaxiong Yang , Hongge Pan , Xuebin Yu

Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 486

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 486 DOI: 10.1002/cey2.486
RESEARCH ARTICLE

Small but mighty: Empowering sodium/potassium-ion battery performance with S-doped SnO2 quantum dots embedded in N, S codoped carbon fiber network

Author information +
History +
PDF

Abstract

SnO2 has been extensively investigated as an anode material for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to its high Na/K storage capacity, high abundance, and low toxicity. However, the sluggish reaction kinetics, low electronic conductivity, and large volume changes during charge and discharge hinder the practical applications of SnO2-based electrodes for SIBs and PIBs. Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges. Herein, S-doped SnO2 (S–SnO2) quantum dots (QDs) (≈3 nm) encapsulated in an N, S codoped carbon fiber networks (S–SnO2–CFN) are rationally fabricated using a sequential freeze-drying, calcination, and S-doping strategy. Experimental analysis and density functional theory calculations reveal that the integration of S–SnO2 QDs with N, S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO2–CFN, and the S doping can increase the conductivity of SnO2, thereby enhancing the ion transfer kinetics. The synergistic interaction between S–SnO2 QDs and N, S codoped carbon fiber network results in a composite with fast Na+/K+ storage and extraordinary long-term cyclability. Specifically, the S–SnO2–CFN delivers high rate capacities of 141.0 mAh g−1 at 20 A g−1 in SIBs and 102.8 mAh g−1 at 10 A g−1 in PIBs. Impressively, it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g−1 and potassium storage up to 5000 cycles at 2 A g−1. This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.

Keywords

carbon fiber network / heteroatom doping / potassium-ion battery / sodium-ion battery / S–SnO 2 quantum dot

Cite this article

Download citation ▾
Shengnan He, Hui Wu, Shuang Li, Ke Liu, Yaxiong Yang, Hongge Pan, Xuebin Yu. Small but mighty: Empowering sodium/potassium-ion battery performance with S-doped SnO2 quantum dots embedded in N, S codoped carbon fiber network. Carbon Energy, 2024, 6(5): 486 DOI:10.1002/cey2.486

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li M, Lu J, Chen Z, Amine K. 30 Years of lithium-ion batteries. Adv Mater. 2018; 30 (33): 1800561.

[2]

Kim T, Song W, Son DY, Ono LK, Qi Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A. 2019; 7 (7): 2942- 2964.

[3]

Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016; 1 (4): 16013.

[4]

Masias A, Marcicki J, Paxton WA. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021; 6 (2): 621- 630.

[5]

Hong Z, Maleki H, Ludwig T, et al. New insights into carbon-based and MXene anodes for Na and K-ion storage: a review. J Energy Chem. 2021; 62: 660- 691.

[6]

Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small. 2021; 17 (9): 1903194.

[7]

Wu H, Xiong Z, Mao Y, et al. MoS2/MoO2 nanosheets anchored on carbon cloth for high-performance magnesium-and sodium-ion storage. J Mater Sci Technol. 2023; 143: 43- 53.

[8]

Gu Y, Ru Pei Y, Zhao M, Cheng Yang C, Jiang Q. Sn-, Sb-and Bi-based anodes for potassium ion battery. Chem Rec. 2022; 22 (10): e202200098.

[9]

Li J, Guo C, Li CM. Recent advances of two-dimensional (2D) MXenes and phosphorene for high-performance rechargeable batteries. ChemSusChem. 2020; 13 (6): 1047- 1070.

[10]

Wu H, Xia G, Yu X. Recent progress on nanostructured iron-based anodes beyond metal-organic frameworks for sodium-ion batteries. EnergyChem. 2023; 5 (1): 100095.

[11]

Qiu H, Zhao L, Asif M, et al. SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. Energy Environ Sci. 2020; 13 (2): 571- 578.

[12]

Wang M, Wang X, Yao Z, et al. SnO2 nanoflake arrays coated with polypyrrole on a carbon cloth as flexible anodes for sodium-ion batteries. ACS Appl Mater Interfaces. 2019; 11 (27): 24198- 24204.

[13]

Luo S, Wang T, Lu H, et al. Ultrasmall SnO2 nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance. New J Chem. 2020; 44 (27): 11678- 11683.

[14]

Zheng Y, Zhou T, Zhang C, Mao J, Liu H, Guo Z. Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem Int Ed. 2016; 55 (10): 3408- 3413.

[15]

Ma D, Li Y, Mi H, et al. Robust SnO2−x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew Chem. 2018; 130 (29): 9039- 9043.

[16]

Alsamet MAMM, Burgaz E. Synthesis and characterization of nano-sized LiFePO4 by using consecutive combination of sol-gel and hydrothermal methods. Electrochim Acta. 2021; 367: 137530.

[17]

Han F, Li D, Li WC, Lei C, Sun Q, Lu AH. Nanoengineered polypyrrole-coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes. Adv Funct Mater. 2013; 23 (13): 1692- 1700.

[18]

Cui J, Yao S, Huang JQ, et al. Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Storage Mater. 2017; 9: 85- 95.

[19]

Liu Y, Hu X, Zhong G, Chen J, Zhan H, Wen Z. Layer-by-layer stacked nanohybrids of N, S-co-doped carbon film modified atomic MoS2 nanosheets for advanced sodium dual-ion batteries. J Mater Chem A. 2019; 7 (42): 24271- 24280.

[20]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54 (16): 11169- 11186.

[21]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996; 6 (1): 15- 50.

[22]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996; 77 (18): 3865- 3868.

[23]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys. 1999; 59 (3): 1758- 1775.

[24]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994; 50 (24): 17953- 17979.

[25]

Wang Y, Su D, Wang C, Wang G. SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem Commun. 2013; 29: 8- 11.

[26]

Cai Y, Liu F, Luo Z, et al. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 2018; 13: 168- 174.

[27]

Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C. In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J Power Sources. 2013; 237: 178- 186.

[28]

Marcus B, Fayette L, Mermoux M, Abello L, Lucazeau G. Analysis of the structure of multi-component carbon films by resonant Raman scattering. J Appl Phys. 1994; 76 (6): 3463- 3470.

[29]

Jorio A, Ferreira EHM, Moutinho MVO, Stavale F, Achete CA, Capaz RB. Measuring disorder in graphene with the G and D bands. Phys Status Solidi B Basic Res. 2010; 247 (11-12): 2980- 2982.

[30]

Li Y, Liu R, Wang C, Zhou Y. Uniform nano-SnO2/C composite anodes from coal tar pitch for sodium-ion batteries. Energy Fuels. 2021; 35 (10): 9029- 9037.

[31]

Huang Z, Gao H, Ju J, Yu J, Kwon YU, Zhao Y. Sycamore-fruit-like SnO2@C nanocomposites: rational fabrication, highly reversible capacity and superior rate capability anode material for Li storage. Electrochim Acta. 2020; 331: 135297.

[32]

Li Y, Zhu S, Liu Q, et al. Carbon-coated SnO2@C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. J Mater Chem. 2012; 22 (6): 2766- 2773.

[33]

Chen Z, Yin D, Zhang M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small. 2018; 14 (17): 1703818.

[34]

Qin J, Zhao N, Shi C, et al. Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. J Mater Chem A. 2017; 5 (22): 10946- 10956.

[35]

Tian Q, Chen Y, Sui Z, Chen J, Yang L. The sandwiched buffer zone enables porous SnO2@C micro-/nanospheres to toward high-performance lithium-ion battery anodes. Electrochim Acta. 2020; 354: 136699.

[36]

Sridhar V, Park H. Hollow SnO2@carbon core-shell spheres stabilized on reduced graphene oxide for high-performance sodium-ion batteries. New J Chem. 2017; 41 (2): 442- 446.

[37]

Li C, Hou J, Zhang J, et al. Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci China Chem. 2022; 65 (7): 1420- 1432.

[38]

Shao Z, Meng H, Sun J, et al. Engineering of amorphous structures and sulfur defects into ultrathin FeS nanosheets to achieve superior electrocatalytic alkaline oxygen evolution. ACS Appl Mater Interfaces. 2020; 12 (46): 51846- 51853.

[39]

Xu C, Sun J, Gao L. Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale. 2012; 4 (17): 5425- 5430.

[40]

Mao H, Shi L, Song S, et al. N-doped hollow carbon nanosheet supported SnO2 nanoparticles. Inorg Chem Front. 2017; 4 (10): 1742- 1747.

[41]

Qiao M, Meysami SS, Ferrero GA, et al. Low-cost chitosan-derived N-doped carbons boost electrocatalytic activity of multiwall carbon nanotubes. Adv Funct Mater. 2018; 28 (16): 1707284.

[42]

Xiao S, Li X, Li T, Xiang Y, Chen JS. Practical strategies for enhanced performance of anode materials in Na+/K+-ion batteries. J Mater Chem A. 2021; 9 (12): 7317- 7335.

[43]

Dixon D, Ávila M, Ehrenberg H, Bhaskar A. Difference in electrochemical mechanism of SnO2 conversion in lithium-ion and sodium-ion batteries: combined in operando and ex situ XAS investigations. ACS Omega. 2019; 4 (6): 9731- 9738.

[44]

Kalubarme RS, Lee JY, Park CJ. Carbon encapsulated tin oxide nanocomposites: an efficient anode for high performance sodium-ion batteries. ACS Appl Mater Interfaces. 2015; 7 (31): 17226- 17237.

[45]

Gui D, Wei Z, Chen J, et al. Boosting the sodium storage of the 1T/2H MoS2@ SnO2 heterostructure via a fast surface redox reaction. J Mater Chem A. 2021; 9 (1): 463- 471.

[46]

Huang Z, Hou H, Zou G, et al. 3D porous carbon encapsulated SnO2 nanocomposite for ultrastable sodium ion batteries. Electrochim Acta. 2016; 214: 156- 164.

[47]

Wang H, Wu Q, Wang Y, et al. Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv Energy Mater. 2019; 9 (3): 1802993.

[48]

Ma Y, Wang Q, Liu L, et al. Plasma-enabled ternary SnO2@Sn/nitrogen-doped graphene aerogel anode for sodium-ion batteries. ChemElectroChem. 2020; 7 (6): 1358- 1364.

[49]

Li D, Zhang J, Ahmed S, et al. Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions. J Colloid Interface Sci. 2020; 574: 174- 181.

[50]

Kong Z, Liu X, Wang T, et al. Three-dimensional hollow spheres of porous SnO2/rGO composite as high-performance anode for sodium ion batteries. Appl Surf Sci. 2019; 479: 198- 208.

[51]

Li R, Zhang G, Wang Y, et al. Fast ion diffusion kinetics based on ferroelectric and piezoelectric effect of SnO2/BaTiO3 heterostructures for high-rate sodium storage. Nano Energy. 2021; 90: 106591.

[52]

Li X, Sun X, Gao Z, et al. Fabrication of porous carbon sphere@SnO2@carbon layer coating composite as high performance anode for sodium-ion batteries. Appl Surf Sci. 2018; 433: 713- 722.

[53]

Sang J, Liu K, Zhang X, et al. Enabling high-performance sodium battery anodes by complete reduction of graphene oxide and cooperative in situ crystallization of ultrafine SnO2 nanocrystals. Energy Environ Mater. 2023; 6 (3): e12431.

[54]

Cheng Y, Wang S, Zhou L, et al. SnO2 quantum dots: rational design to achieve highly reversible conversion reaction and stable capacities for lithium and sodium storage. Small. 2020; 16 (26): 2000681.

[55]

Zhang Z, Liang J, Zhang X, Yang W, Dong X, Jung Y. Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries. Int J Hydrogen Energy. 2020; 45 (15): 8186- 8197.

[56]

Lin D, Li K, Wang Q, Lyu L, Li B, Zhou L. Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO2 nanowires. J Mater Chem A. 2019; 7 (33): 19297- 19304.

[57]

Tian Z, Sun S, Zhao X, Yang M, Xu C. Phoenix tree leaves-derived biomass carbons for sodium-ion batteries. Funct Mater Lett. 2018; 11 (6): 1840008.

[58]

Wang Z, Dong K, Wang D, et al. Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. J Power Sources. 2019; 441: 227191.

[59]

Suo G, Li D, Feng L, et al. Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance. J Mater Sci Technol. 2020; 55: 167- 172.

[60]

Wu S, Feng Y, Jiang W, et al. Reduced graphene oxide coated modified SnO2 forms excellent potassium storage properties. Ceram Int. 2023; 49 (10): 15741- 15750.

[61]

Cheng Y, Chen B, Chang L, et al. Electrochemical activation of oxygen atom of SnO2 to expedite efficient conversion reaction for alkaline-ion (Li+/Na+/K+) storages. Nano Res. 2023; 16 (1): 1642- 1650.

[62]

Suo G, Li D, Feng L, Hou X, Yang Y, Wang W. SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries. J Electroanal Chem. 2019; 833: 113- 118.

[63]

Hu Z, Wang M, Yang H, Liang C, Yu K. SnO2 nanosheets grow on sunflower shell carbon sphere used as anode material for high performance lithium-ion and potassium-ion batteries. Diamond Relat Mater. 2022; 126: 109090.

[64]

Huang Y, Ding S, Xu S, Ma ZF, Wang J, Yuan X. Highly effective solid electrolyte interface on SnO2@C enabling stable potassium storage performance. Chem Eng J. 2022; 446: 137265.

[65]

Xu Z, Huang H, Liu C, et al. Micrometer carbon ball-decorated nanowire-structured SnO2@C composites as an anode for potassium-ion batteries with enhanced performance. Energy Fuels. 2022; 36 (5): 2833- 2840.

[66]

Wu Q, Shao Q, Li Q, Duan Q, Li Y, Wang H. Dual carbon-confined SnO2 hollow nanospheres enabling high performance for the reversible storage of alkali metal ions. ACS Appl Mater Interfaces. 2018; 10 (18): 15642- 15651.

[67]

Huang Z, Chen Z, Ding S, Chen C, Zhang M. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater Lett. 2018; 219: 19- 22.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

244

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/