Interpenetrating network-reinforced gel polymer electrolyte for ultra-stable lithium−iodine batteries

Ying Jiang , Peng Huang , Minman Tong , Bingxin Qi , Tao Sun , Zhongyun Xian , Wen Yan , Chao Lai

Carbon Energy ›› 2024, Vol. 6 ›› Issue (6) : 478

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (6) : 478 DOI: 10.1002/cey2.478
RESEARCH ARTICLE

Interpenetrating network-reinforced gel polymer electrolyte for ultra-stable lithium−iodine batteries

Author information +
History +
PDF

Abstract

Li−I2 batteries have attracted much interest due to their high capacity, exceptional rate performance, and low cost. Even so, the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li−I2 batteries need to be tackled. Herein, the interfacial reactions on the Li anode and I2 cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti–O/Si–O (GPETS). The interpenetrating network-reinforced GPETS with high ionic conductivity (1.88 × 10−3 S cm−1 at 25℃) and high mechanical strength endows uniform Li deposition/stripping over 1800 h (at 1.0 mA cm−2, with a plating capacity of 3.0 mAh cm−2). Moreover, the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics, thus synergistically mitigating the shuttle effect. Benefiting from these properties, the use of GPETS results in a high capacity of 207 mAh g−1 (1 C) and an ultra-low fading rate of 0.013% per cycle over 2000 cycles (5 C). The current study provides new insights into advanced electrolytes for Li−I2 batteries.

Keywords

electrode/electrolyte interface / gel polymer electrolytes / lithium dendrites / lithium−iodine batteries / polyiodide shuttle

Cite this article

Download citation ▾
Ying Jiang, Peng Huang, Minman Tong, Bingxin Qi, Tao Sun, Zhongyun Xian, Wen Yan, Chao Lai. Interpenetrating network-reinforced gel polymer electrolyte for ultra-stable lithium−iodine batteries. Carbon Energy, 2024, 6(6): 478 DOI:10.1002/cey2.478

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li X, Wang Y, Chen Z, et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery. Angew Chem Int Ed. 2022; 61 (9): e202113576.

[2]

Li P, Li X, Guo Y, et al. Highly thermally/electrochemically stable I/I3 bonded organic salts with high I content for long-life Li-I2 batteries. Adv Energy Mater. 2022; 12 (15): 2103648.

[3]

Su Z, Ling HY, Li M, et al. Honeycomb-like carbon materials derived from coffee extract via a “salty” thermal treatment for high-performance Li-I2 batteries. Carbon Energy. 2020; 2 (2): 265- 275.

[4]

Cheng Z, Pan H, Li F, et al. Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy. Nat Commun. 2022; 13: 125.

[5]

Zhao Q, Lu Y, Zhu Z, Tao Z, Chen J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015; 15 (9): 5982- 5987.

[6]

Sun C, Shi X, Zhang Y, Liang J, Qu J, Lai C. Ti3C2TX MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano. 2020; 14 (1): 1176- 1184.

[7]

Liu FC, Liu WM, Zhan MH, Fu ZW, Li H. An all solid-state rechargeable lithium-iodine thin film battery using LiI(3-hydroxypropionitrile)2 as an I ion electrolyte. Energy Environ Sci. 2011; 4 (4): 1261- 1264.

[8]

Tang X, Zhou D, Li P, et al. High-performance quasi-solid-state MXene-based Li-I batteries. ACS Cent Sci. 2019; 5 (2): 365- 373.

[9]

Zhou D, Tkacheva A, Tang X, et al. Stable conversion chemistry-based lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near-single ion conduction. Angew Chem Int Ed. 2019; 58 (18): 6001- 6006.

[10]

Li K, Hu Z, Ma J, Chen S, Mu D, Zhang J. A 3D and stable lithium anode for high-performance lithium-iodine batteries. Adv Mater. 2019; 31 (33): 1902399.

[11]

Ma J, Wang M, Zhang H, et al. Accelerating the electrochemical kinetics of metal-iodine batteries: progress and prospects. Mater Today Energy. 2022; 30: 101146.

[12]

Liu Y, Sun C, Lu Y, et al. Lamellar-structured anodes based on lithiophilic gradient enable dendrite-free lithium metal batteries with high capacity loading and fast-charging capability. Chem Eng J. 2023; 451 (2): 138570.

[13]

Ma J, Liu M, He Y, Zhang J. Iodine redox chemistry in rechargeable batteries. Angew Chem Int Ed. 2021; 60 (23): 12636- 12647.

[14]

Cai Y, Wu H, Yan W, et al. A stretchable and highly conductive sulfonic pendent single-ion polymer electrolyte derived from multifunctional tri-block polyether. ACS Appl Polym Mater. 2021; 3 (6): 3254- 3263.

[15]

Zhuang Z, Zhang F, Gandla D, et al. Metal−organic framework-derived ZnO, N dually doped nanocages as an efficient host for stable Li metal anodes. ACS Appl Mater Interfaces. 2023; 15 (32): 38530- 38539.

[16]

Fu L, Wang X, Chen Z, et al. Insights on“nitrate salt” in lithium anode for stabilized solid electrolyte interphase. Carbon Energy. 2022; 4 (1): 12- 20.

[17]

Chen T, Kong W, Zhang Z, et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy. 2018; 54: 17- 25.

[18]

Yan W, Wei J, Chen T, et al. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy. 2021; 80: 105510.

[19]

Zhuang Z, Yang L, Ju B, et al. Ameliorating interfacial issues of LiNi0.5Co0.2Mn0.3O2/poly(propylene carbonate) by introducing graphene interlayer for all-solid-state lithium batteries. ChemistrySelect. 2020; 5 (7): 2291- 2299.

[20]

Zhang H, Zhou L, Du X, et al. Cyanoethyl cellulose-based eutectogel electrolyte enabling high-voltage-tolerant andion-conductive solid-state lithium metal batteries. Carbon Energy. 2022; 4 (6): 1093- 1106.

[21]

Ding C, Fu X, Li H, et al. An ultrarobust composite gel electrolyte stabilizing ion deposition for long-life lithium metal batteries. Adv Funct Mater. 2019; 29 (43): 1904547.

[22]

Fu X, Hurlock MJ, Ding C, Li X, Zhang Q, Zhong W-H. MOF-enabled ion-regulating gel electrolyte for long-cycling lithium metal batteries under high voltage. Small. 2022; 18 (9): 2106225.

[23]

Zhong Y, Huang P, Yan W, et al. Ion-conductive polytitanosiloxane networks enable a robust solid-electrolyte interface for long-cycling lithium metal anodes. Adv Funct Mater. 2022; 32 (9): 2110347.

[24]

Perdew JP, Ruzsinszky A, Csonka GI, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 2008; 100 (13): 136406.

[25]

Sancho-García JC, Brédas JL, Cornil J. Assessment of the reliability of the Perdew-Burke-Ernzerhof functionals in the determination of torsional potentials in π-conjugated molecules. Chem Phys Lett. 2003; 377 (1-2): 63- 68.

[26]

Zheng J, Yang Z, He Z, Tong H, Yu W, Zhang J. In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Nano Energy. 2018; 53: 613- 621.

[27]

Wang Y, Wang Z, Zhao L, et al. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv Mater. 2021; 33 (14): 2008133.

[28]

Wang H, Zhang X, Li Y, Xu L-W. Siloxane-based organosilicon materials in electrochemical energy storage devices. Angew Chem Int Ed. 2022; 61 (49): e202210851.

[29]

Xue P, Sun C, Li H, Liang J, Lai C. Superlithiophilic amorphous SiO2-TiO2 distributed into porous carbon skeleton enabling uniform lithium deposition for stable lithium metal batteries. Adv Sci. 2019; 6 (18): 1900943.

[30]

Ren J, Li Z, Liu S, Xing Y, Xie K. Silica-titania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and surface acidic properties. Catal Lett. 2008; 124 (3-4): 185- 194.

[31]

Li H, Pan Y, Lai J, Wang L, Feng S. Strong high entropy alloy-support interaction enables efficient electrocatalytic water splitting at high current density. Chin J Struct Chem. 2022; 41 (8): 2208003- 2208011.

[32]

Long X, Meng J, Gu J, et al. Interfacial engineering of NiFeP/NiFe-LDH heterojunction for efficient overall water splitting. Chin J Struct Chem. 2022; 41 (4): 2204046- 2204053.

[33]

Jiang T, He P, Wang G, Shen Y, Nan C-W, Fan L-Z. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater. 2020; 10 (12): 1903376.

[34]

Yang H, Shi X, Chu S, Shao Z, Wang Y. Design of block-copolymer nanoporous membranes for robust and safer lithium-ion battery separators. Adv Sci. 2021; 8 (7): 2003096.

[35]

Liu S, Liu W, Ba D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv Mater. 2023; 35 (2): 2110423.

[36]

Reinoso DM, Frechero MA. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 2022; 52: 430- 464.

[37]

Chai J, Liu Z, Ma J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv Sci. 2017; 4 (2): 1600377.

[38]

Zhou P, Zhang X, Xiang Y, Liu K. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 2023; 16 (6): 8055- 8071.

[39]

Huang F, Ma G, Wen Z, Jin J, Xu S, Zhang J. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J Mater Chem A. 2018; 6 (4): 1612- 1620.

[40]

Chen D, Zhu T, Zhu M, et al. In-situ constructing “ceramer” electrolytes with robust-flexible interfaces enabling long-cycling lithium metal batteries. Energy Storage Mater. 2022; 53: 937- 945.

[41]

Liu S, Wang A, Li Q, et al. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule. 2018; 2 (1): 184- 193.

[42]

Zhai P, Yang Z, Wei Y, Guo X, Gong Y. Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries. Adv Energy Mater. 2022; 12 (42): 2200967.

[43]

Guo S, Piao N, Wang L, et al. PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Appl Energy Mater. 2020; 3 (7): 7191- 7199.

[44]

Yang H, Zhang B, Jing M, et al. In situ catalytic polymerization of a highly homogeneous PDOL composite electrolyte for long-cycle high-voltage solid-state lithium batteries. Adv Energy Mater. 2022; 12 (39): 2201762.

[45]

Zhao Q, Deng Y, Utomo NW, et al. On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity. Nat Commun. 2021; 12: 6034.

[46]

Zhai Y, Hou W, Tao M, et al. Enabling high-voltage “superconcentrated ionogel-in-ceramic” hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv Mater. 2022; 34 (39): 2205560.

[47]

Pei X, Li Y, Ou T, et al. Li−N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries. Angew Chem Int Ed. 2022; 61 (31): e202205075.

[48]

Chen D, Zhu M, Kang P, et al. Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv Sci. 2022; 9 (4): 2103663.

[49]

Kim D, Liu X, Yu B, et al. Amine-functionalized boron nitride nanosheets: a new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number. Adv Funct Mater. 2020; 30 (15): 1910813.

[50]

Zhang T, Li J, Li X, et al. A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv Mater. 2022; 34 (41): 2205575.

[51]

Li Q, Chen A, Wang D, Pei Z, Zhi C. “Soft shorts” hidden in zinc metal anode research. Joule. 2022; 6 (2): 273- 279.

[52]

Petkov V, Holzhüter G, Tröge U, Gerber T, Himmel B. Atomic-scale structure of amorphous TiO2 by electron, X-ray diffraction and reverse Monte Carlo simulations. J Non-Cryst Solids. 1998; 231 (1-2): 17- 30.

[53]

Martínez JR, Palomares-Sánchez S, Ortega-Zarzosa G, Ruiz F, Chumakov Y. Rietveld refinement of amorphous SiO2 prepared via sol-gel method. Mater Lett. 2006; 60 (29-30): 3526- 3529.

[54]

Xi K, He D, Harris C, et al. Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv Sci. 2019; 6 (6): 1800815.

[55]

Shen Z, Jin X, Tian J, et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries. Nat Catal. 2022; 5 (6): 555- 563.

[56]

Li J, Li Y, Xue Q, Gao Y, Ma Y. Phytate-coordination triggered enrichment of surface NiOOH species on nickel foam for efficient urea electrooxidation. Chin J Struct Chem. 2022; 41 (7): 2207035- 2207039.

[57]

Wu Z, Xu J, Zhang Q, et al. LiI embedded meso-micro porous carbon polyhedrons for lithium iodine battery with superior lithium storage properties. Energy Storage Mater. 2018; 10: 62- 68.

[58]

Kim S, Kim S-K, Sun P, Oh N, Braun PV. Reduced graphene oxide/LiI composite lithium ion battery cathodes. Nano Lett. 2017; 17 (11): 6893- 6899.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

434

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/