Reinforced SnO2 tensile-strength and “buffer-spring” interfaces for efficient inorganic perovskite solar cells

Yuanyuan Zhao , Lei Gao , Qiurui Wang , Qiang Zhang , Xiya Yang , Jingwei Zhu , Hao Huang , Jialong Duan , Qunwei Tang

Carbon Energy ›› 2024, Vol. 6 ›› Issue (6) : 468

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (6) : 468 DOI: 10.1002/cey2.468
RESEARCH ARTICLE

Reinforced SnO2 tensile-strength and “buffer-spring” interfaces for efficient inorganic perovskite solar cells

Author information +
History +
PDF

Abstract

Suppressing nonradiative recombination and releasing residual strain are prerequisites to improving the efficiency and stability of perovskite solar cells (PSCs). Here, long-chain polyacrylic acid (PAA) is used to reinforce SnO2 film and passivate SnO2 defects, forming a structure similar to “reinforced concrete” with high tensile strength and fewer microcracks. Simultaneously, PAA is also introduced to the SnO2/perovskite interface as a “buffer spring” to release residual strain, which also acts as a “dual-side passivation interlayer” to passivate the oxygen vacancies of SnO2 and Pb dangling bonds in halide perovskites. As a result, the best inorganic CsPbBr3 PSC achieves a champion power conversion efficiency of 10.83% with an ultrahigh open-circuit voltage of 1.674 V. The unencapsulated PSC shows excellent stability under 80% relative humidity and 80℃ over 120 days.

Keywords

charge recombination / defect passivation / inorganic perovskite solar cells / interfacial modification / strain relaxation

Cite this article

Download citation ▾
Yuanyuan Zhao, Lei Gao, Qiurui Wang, Qiang Zhang, Xiya Yang, Jingwei Zhu, Hao Huang, Jialong Duan, Qunwei Tang. Reinforced SnO2 tensile-strength and “buffer-spring” interfaces for efficient inorganic perovskite solar cells. Carbon Energy, 2024, 6(6): 468 DOI:10.1002/cey2.468

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009; 131 (17): 6050- 6051.

[2]

Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012; 338 (6107): 643- 647.

[3]

Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 2021; 598 (7881): 444- 450.

[4]

National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. Accessed March 21, 2023. Accessed March 21, 2023.

[5]

Siegler TD, Dunlap-Shohl WA, Meng Y, et al. Water-accelerated photooxidation of CH3NH3PbI3 perovskite. J Am Chem Soc. 2022; 144 (12): 5552- 5561.

[6]

Susic I, Gil-Escrig L, Palazon F, Sessolo M, Bolink HJ. Quadruple-cation wide-bandgap perovskite solar cells with enhanced thermal stability enabled by vacuum deposition. ACS Energy Lett. 2022; 7 (4): 1355- 1363.

[7]

Pearson AJ, Eperon GE, Hopkinson PE, et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms. Adv Energy Mater. 2016; 6 (13): 1600014.

[8]

Wang Z, Shi Z, Li T, Chen Y, Huang W. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angew Chem Int Ed. 2017; 56 (5): 1190- 1212.

[9]

Tai Q, Tang KC, Yan F. Recent progress of inorganic perovskite solar cells. Energy Environ Sci. 2019; 12 (8): 2375- 2405.

[10]

Ullah S, Wang J, Yang P, et al. All-inorganic CsPbBr3 perovskite: a promising choice for photovoltaics. Mater Adv. 2021; 2 (2): 646- 683.

[11]

Tong G, Chen T, Li H, et al. Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells. Nano Energy. 2019; 65: 104015.

[12]

Liang C, Gu H, Xia J, et al. High-performance flexible perovskite photodetectors based on single-crystal-like two-dimensional Ruddlesden-Popper thin films. Carbon Energy. 2023; 5 (2): e251.

[13]

Zhao Y, Duan J, Wang Y, Yang X, Tang Q. Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V. Nano Energy. 2020; 67: 104286.

[14]

Zhou Q, Duan J, Du J, et al. Tailored lattice “tape” to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1.702 V. Adv Sci. 2021; 8 (19): 2101418.

[15]

Schulz P, Cahen D, Kahn A. Halide perovskites: is it all about the interfaces? Chem Rev. 2019; 119 (5): 3349- 3417.

[16]

Yang D, Yang R, Wang K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun. 2018; 9: 3239.

[17]

Xie J, Huang K, Yu X, et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano. 2017; 11 (9): 9176- 9182.

[18]

Xiong L, Qin M, Chen C, et al. Fully high-temperature-processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells. Adv Funct Mater. 2018; 28 (10): 1706276.

[19]

Park SY, Zhu K. Advances in SnO2 for efficient and stable n-i-p perovskite solar cells. Adv Mater. 2022; 34 (27): 2110438.

[20]

Xiong L, Guo Y, Wen J, et al. Review on the application of SnO2 in perovskite solar cells. Adv Funct Mater. 2018; 28 (35): 1802757.

[21]

Wei J, Guo F, Wang X, et al. SnO2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability. Adv Mater. 2018; 30 (52): 1805153.

[22]

You S, Zeng H, Ku Z, et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv Mater. 2020; 32 (43): 2003990.

[23]

Zhao J, Deng Y, Wei H, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci Adv. 2017; 3 (11): eaao5616.

[24]

Wu J, Liu SC, Li Z, et al. Strain in perovskite solar cells: origins, impacts and regulation. Natl Sci Rev. 2021; 8 (8): nwab047.

[25]

Wu J, Cui Y, Yu B, et al. A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells. Adv Funct Mater. 2019; 29 (49): 1905336.

[26]

Xue DJ, Hou Y, Liu SC, et al. Regulating strain in perovskite thin films through charge-transport layers. Nat Commun. 2020; 11: 1514.

[27]

Chen Y, Lei Y, Li Y, et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature. 2020; 577 (7789): 209- 215.

[28]

Xiong Z, Lan L, Wang Y, et al. Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%. ACS Energy Lett. 2021; 6 (11): 3824- 3830.

[29]

Kim M, Jeong J, Lu H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science. 2022; 375 (6578): 302- 306.

[30]

Jung EH, Chen B, Bertens K, et al. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 2020; 5 (9): 2796- 2801.

[31]

Zhou Q, He D, Zhuang Q, et al. Revealing steric-hindrance-dependent buried interface defect passivation mechanism in efficient and stable perovskite solar cells with mitigated tensile stress. Adv Funct Mater. 2022; 32 (36): 2205507.

[32]

Yao X, He B, Zhu J, et al. Tailoring type-Ⅱ all-in-one buried interface for 1.635 V-voltage, all-inorganic CsPbBr3 perovskite solar cells. Nano Energy. 2022; 96: 107138.

[33]

Yan Y, Wang R, Dong Q, et al. Polarity and moisture induced trans-grain-boundaries 2D/3D coupling structure for flexible perovskite solar cells with high mechanical reliability and efficiency. Energy Environ Sci. 2022; 15 (12): 5168- 5180.

[34]

Chen W, Qiu L, Zhang P, et al. Simple fabrication of a highly conductive and passivated PEDOT:PSS film via cryo-controlled quasi-congealing spin-coating for flexible perovskite solar cells. J Mater Chem C. 2019; 7 (33): 10247- 10256.

[35]

Mela I, Poudel C, Anaya M, et al. Revealing nanomechanical domains and their transient behavior in mixed-halide perovskite films. Adv Funct Mater. 2021; 31 (23): 2100293.

[36]

Hou Z, Xia S, Niu C, et al. Tailoring the interaction of covalent organic framework with the polyether matrix toward high-performance solid-state lithium metal batteries. Carbon Energy. 2022; 4 (4): 506- 516.

[37]

Wei Z, Liu Y, Wang J, et al. Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies. Nanoscale. 2015; 7 (33): 13943- 13950.

[38]

Wei Z, Wang W, Li W, et al. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew Chem Int Ed. 2021; 60 (15): 8236- 8242.

[39]

Wang B, Ma J, Li Z, et al. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Res. 2022; 15 (2): 1069- 1078.

[40]

Zhang R, Fu Q, Zhou K, Yao Y, Zhu X. Ultra stretchable, tough and self-healable poly(acrylic acid) hydrogels cross-linked by self-enhanced high-density hydrogen bonds. Polymer. 2020; 199: 122603.

[41]

Zhan Y, Peng J, Cao C, Cheng Q. A biomineralization-inspired strategy of self-encapsulation for perovskite solar cells. Nano Energy. 2022; 101: 107575.

[42]

Zhu C, Niu X, Fu Y, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat Commun. 2019; 10: 815.

[43]

He R, Huang X, Chee M, Hao F, Dong P. Carbon-based perovskite solar cells: from single-junction to modules. Carbon Energy. 2019; 1 (1): 109- 123.

[44]

Wang Y, Zhang Z, Lan Y, Song Q, Li M, Song Y. Tautomeric molecule acts as a “sunscreen” for metal halide perovskite solar cells. Angew Chem Int Ed. 2021; 60 (16): 8673- 8677.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

211

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/