A 30-year overview of sodium-ion batteries

Yun Gao , Hang Zhang , Jian Peng , Lin Li , Yao Xiao , Li Li , Yang Liu , Yun Qiao , Shu-Lei Chou

Carbon Energy ›› 2024, Vol. 6 ›› Issue (6) : 464

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (6) : 464 DOI: 10.1002/cey2.464
REVIEW

A 30-year overview of sodium-ion batteries

Author information +
History +
PDF

Abstract

Sodium-ion batteries (NIBs) have emerged as a promising alternative to commercial lithium-ion batteries (LIBs) due to the similar properties of the Li and Na elements as well as the abundance and accessibility of Na resources. Most of the current research has been focused on the half-cell system (using Na metal as the counter electrode) to evaluate the performance of the cathode/anode/electrolyte. The relationship between the performance achieved in half cells and that obtained in full cells, however, has been neglected in much of this research. Additionally, the trade-off in the relationship between electrochemical performance and cost needs to be given more consideration. Therefore, systematic and comprehensive insights into the research status and key issues for the full-cell system need to be gained to advance its commercialization. Consequently, this review evaluates the recent progress based on various cathodes and highlights the most significant challenges for full cells. Several strategies have also been proposed to enhance the electrochemical performance of NIBs, including designing electrode materials, optimizing electrolytes, sodium compensation, and so forth. Finally, perspectives and outlooks are provided to guide future research on sodium-ion full cells.

Keywords

commercial application / electrode / electrolyte / sodium-ion full cell / strategies

Cite this article

Download citation ▾
Yun Gao, Hang Zhang, Jian Peng, Lin Li, Yao Xiao, Li Li, Yang Liu, Yun Qiao, Shu-Lei Chou. A 30-year overview of sodium-ion batteries. Carbon Energy, 2024, 6(6): 464 DOI:10.1002/cey2.464

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao Y, Zhang H, Liu X-H, et al. Low-cost polyanion-type sulfate cathode for sodium-ion battery. Adv Energy Mater. 2021; 11 (42): 2101751.

[2]

Zhang H, Gao Y, Liu X-H, et al. Organic cathode materials for sodium-ion batteries: from fundamental research to potential commercial application. Adv Funct Mater. 2021; 3 (4): 2107718.

[3]

Liu X-H, Peng J, Lai W-H, et al. Advanced characterization techniques paving the way for commercialization of low-cost prussian blue analog cathodes. Adv Funct Mater. 2021; 32 (7): 2108616.

[4]

He X-X, Zhao J-H, Lai W-H, et al. Soft-carbon-coated, free-standing, low-defect, hard-carbon anode to achieve a 94% initial coulombic efficiency for sodium-ion batteries. ACS Appl Mater Interfaces. 2021; 13 (37): 44358- 44368.

[5]

Deng Y-P, Wu Z-G, Liang R, et al. Layer-based heterostructured cathodes for lithium-ion and sodium-ion batteries. Adv Funct Mater. 2019; 29 (19): 1808522.

[6]

van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84 (2): 523- 538.

[7]

Roberts S, Kendrick E. The re-emergence of sodium ion batteries: testing, processing, and manufacturability. Nanotechnol Sci Appl. 2018; 11 (1): 23- 33.

[8]

Liu T, Zhang Y, Jiang Z, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ Sci. 2019; 12 (5): 1512- 1533.

[9]

Cheng Z, Zhao B, Guo Y-J, et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv Energy Mater. 2022; 12 (14): 2103461.

[10]

Li F, Fan K, Hou P, Huang H. Boosting the redox kinetics of high-voltage P2-type cathode by radially oriented {010} exposed nanoplates for high-power sodium-ion batteries. Small Struct. 2022; 3 (1): 2100123.

[11]

Peng B, Sun Z, Zhao L, Li J, Zhang G. Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V. Energy Stor. Mater. 2021; 35: 620- 629.

[12]

Gu Z-Y, Guo J-Z, Cao J-M, et al. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv Mater. 2022; 34 (14): e2110108.

[13]

Zhao A, Yuan T, Li P, et al. A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy. 2022; 91: 106680.

[14]

Liang L, Li X, Zhao F, et al. Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv Energy Mater. 2021; 11 (21): 2100287.

[15]

Wang W, Gang Y, Hu Z, et al. Reversible structural evolution of sodium-rich rhombohedral prussian blue for sodium-ion batteries. Nat Commun. 2020; 11: 980.

[16]

Wang W, Gang Y, Peng J, et al. Effect of eliminating water in prussian blue cathode for sodium-ion batteries. Adv Funct Mater. 2022; 32 (25): 2111727.

[17]

Ye M, You S, Xiong J, Yang Y, Zhang Y, Li CC. In-situ construction of a NaF-rich cathode-electrolyte interface on prussian blue toward a 3000-cycle-life sodium-ion battery. Mater Today Energy. 2022; 23: 100898.

[18]

Li X, Sun X, Hu X, et al. Review on comprehending and enhancing the initial coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020; 77: 105143.

[19]

Zhang J, Gai J, Song K, Chen W. Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells. Cell Rep Phys Sci. 2022; 3 (5): 100868.

[20]

Deng J, Luo W-B, Chou S-L, Liu H-K, Dou S-X. Sodium-ion batteries: from academic research to practical commercialization. Adv Energy Mater. 2018; 8 (4): 1701428.

[21]

Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv Energy Mater. 2018; 8 (17): 1702869.

[22]

Peng J, ZHANG W, Liu Q, et al. Prussian blue analogues for sodium-ion batteries: past, present and future. Adv Mater. 2021; 34 (15): 2108384.

[23]

Zhang R, Tang Z, Sun D, et al. Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries. Chem Commun. 2021; 57 (35): 4243- 4246.

[24]

Peng B, Sun Z, Zhao L, Zeng S, Zhang G. Shape-induced kinetics enhancement in layered P2-Na0.67Ni0.33Mn0.67O2 porous microcuboids enables high energy/power sodium-ion full battery. Batteries Supercaps. 2021; 4 (3): 456- 463.

[25]

Yuan S, Qi J, Jiang M, et al. Improved cycling performance of P2-Na0.67Ni0.33Mn0.67O2 based on sn substitution combined with polypyrrole coating. ACS Appl Mater Interfaces. 2021; 13 (3): 3793- 3804.

[26]

Liu Y, Wei G, Ma M, Qiao Y. Role of acid in tailoring prussian blue as cathode for high-performance sodium-ion battery. Chem Eur J. 2017; 23 (63): 15991- 15996.

[27]

Guo Y-J, Niu Y-B, Wei Z, et al. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery. ACS Appl Mater Interfaces. 2021; 13 (2): 2772- 2778.

[28]

Zhang Q, Gao X-W, Shi Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan. Energy Stor. Mater. 2021; 39: 54- 59.

[29]

Song Z, Zou K, Xiao X, et al. Presodiation strategies for the promotion of sodium-based energy storage systems. Chem Eur J. 2021; 27 (65): 16082- 16092.

[30]

Zou K, Deng W, Cai P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Adv Funct Mater. 2021; 31 (5): 2005581.

[31]

Zhu T, Hu P, Cai C, et al. Dual carbon decorated Na3MnTi(PO4)3: a high-energy-density cathode material for sodium-ion batteries. Nano Energy. 2020; 70: 104548.

[32]

Chen X, Zheng Y, Liu W, Zhang C, Li S, Li J. High-performance sodium-ion batteries with a hard carbon anode: transition from the half-cell to full-cell perspective. Nanoscale. 2019; 11 (46): 22196- 22205.

[33]

Liu Q, Hu Z, Chen M, et al. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs. Adv Funct Mater. 2020; 30 (14): 1909530.

[34]

Qian J, Wu C, Cao Y, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv Energy Mater. 2018; 8 (17): 1702619.

[35]

Xiao Y, Abbasi NM, Zhu Y-F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv Funct Mater. 2020; 30 (30): 2001334.

[36]

Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett. 2011; 2 (20): 2560- 2565.

[37]

Xu J, Ma C, Balasubramanian M, Meng YS. Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery. Chem Commun. 2014; 50 (83): 12564- 12567.

[38]

Fang Y, Xiao L, Qian J, et al. Graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv Energy Mater. 2016; 6 (19): 1502197.

[39]

Li D, Tang W, Yong CY, Tan ZH, Wang C, Fan C. Long-lifespan polyanionic organic cathodes for highly efficient organic sodium-ion batteries. ChemSusChem. 2020; 13 (8): 1991- 1996.

[40]

KOMABA S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater. 2011; 21 (20): 3859- 3867.

[41]

Kumar VK, Ghosh S, Biswas S, Martha SK. Practical realization of O3-type NaNi0.5Mn0.3Co0.2O2 cathodes for sodium-ion batteries. J Electrochem Soc. 2020; 167 (8): 080531.

[42]

Mu L, Xu S, Li Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv Mater. 2015; 27 (43): 6928- 6933.

[43]

Wang Y, Xiao R, Hu Y-S, Avdeev M, Chen L. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat Commun. 2015; 6: 6954.

[44]

Wang H, Gu M, Jiang J, Lai C, Ai X. An O3-type NaNi0.5Mn0.3Ti0.2O2 compound as new cathode material for room-temperature sodium-ion batteries. J Power Sources. 2016; 327: 653- 657.

[45]

Li Y, Yang Z, Xu S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci. 2015; 2 (6): 1500031.

[46]

Jo JH, Choi JU, Konarov A, et al. Sodium-ion batteries: building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate. Adv Funct Mater. 2018; 28 (14): 1705968.

[47]

Liang L, Xu Y, Wang C, et al. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ Sci. 2015; 8 (10): 2954- 2962.

[48]

Liu Y, Wang F, Fan L-Z. Self-standing Na-storage anode of Fe2O3 nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability. Nano Res. 2018; 11 (8): 4026- 4037.

[49]

Hwang J-Y, Myung S-T, Choi JU, Yoon CS, Yashiro H, Sun Y-K. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. J Mater Chem A. 2017; 5 (45): 23671- 23680.

[50]

Wang H, Xiao Y, Sun C, Lai C, Ai X. A type of sodium-ion full-cell with a layered NaNi 0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode. RSC Adv. 2015; 5 (129): 106519- 106522.

[51]

Li Y, Xu S, Wu X, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A. 2015; 3 (1): 71- 77.

[52]

Wu L, Buchholz D, Vaalma C, Giffin GA, Passerini S. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries. ChemElectroChem. 2016; 3 (2): 292- 298.

[53]

Deng J, Luo W-B, Lu X, et al. High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Adv Energy Mater. 2018; 8 (5): 1701610.

[54]

Mu L, Xu S, Li Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv Mater. 2015; 27 (43): 6928- 6933.

[55]

Hwang J-Y, Oh S-M, Myung S-T, Chung KY, Belharouak I, Sun Y-K. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat Commun. 2015; 6: 6865.

[56]

de la Llave E, Borgel V, Park K-J, et al. Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl Mater Interfaces. 2016; 8 (3): 1867- 1875.

[57]

Hasa I, Dou X, Buchholz D, et al. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J Power Sources. 2016; 310: 26- 31.

[58]

Wang H, Liao X-Z, Yang Y, Yan X, He Y-S, Ma Z-F. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J Electrochem Soc. 2016; 163 (3): A565- A570.

[59]

Martinez De Ilarduya J, Otaegui L, López del Amo JM, Armand M, Singh G. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery. J Power Sources. 2017; 337: 197- 203.

[60]

Kim D, Lee E, Slater M, Lu W, Rood S, Johnson CS. Layered Na[Ni 1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem Commun. 2012; 18: 66- 69.

[61]

Li X, Yan P, Engelhard MH, et al. The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. Nano Energy. 2016; 27: 664- 672.

[62]

Oh S-M, Myung S-T, Hwang J-Y, Scrosati B, Amine K, Sun Y-K. High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chem Mater. 2014; 26 (21): 6165- 6171.

[63]

Yu C-Y, Park J-S, Jung H-G, et al. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ Sci. 2015; 8 (7): 2019- 2026.

[64]

Chen H-Y, Bucher N, Hartung S, et al. A multi-walled carbon nanotube core with graphene oxide nanoribbon shell as anode material for sodium ion batteries. Adv Mater Interfaces. 2016; 3 (20): 1600357.

[65]

Dong Y, Li S, Zhao K, et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy Environ Sci. 2015; 8 (4): 1267- 1275.

[66]

Zhang Q, Gu Q-F, Li Y, et al. Surface stabilization of O3-type layered oxide cathode to protect the anode of sodium ion batteries for superior lifespan. iScience. 2019; 19: 244- 254.

[67]

Yu T-Y, Hwang J-Y, Bae IT, Jung H-G, Sun Y-K. High-performance Ti-doped O3-type Na[Ti-X(Ni0.6Co0.2Mn0.2)(1-X)]O2 cathodes for practical sodium-ion batteries. J Power Sources. 2019; 422: 1- 8.

[68]

Wang Q-C, Meng J-K, Yue X-Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries. J Am Chem Soc. 2019; 141 (2): 840- 848.

[69]

Park YJ, Choi JU, Jo JH, Jo C-H, Kim J, Myung S-T. A new strategy to build a high-performance P'2-type cathode material through titanium doping for sodium-ion batteries. Adv Funct Mater. 2019; 29 (28): 1901912.

[70]

Liu Y, Liu X, Bu F, et al. Boosting fast and durable sodium-ion storage by tailoring well-shaped Na0.44MnO2 nanowires cathode. Electrochim Acta. 2019; 313: 122- 130.

[71]

Chen T, Liu W, Liu F, et al. Benefits of copper and magnesium cosubstitution in Na0.5Mn0.6Ni0.4O2 as a superior cathode for sodium ion batteries. ACS Appl Energy Mater. 2019; 2 (1): 844- 851.

[72]

Zhang L, Yuan T, Soule L, et al. Enhanced ionic transport and structural stability of Nb-doped O3-NaFe0.55Mn0.45-XNbXO2 cathode material for long-lasting sodium-ion batteries. ACS Appl Energy Mater. 2020; 3 (4): 3770- 3778.

[73]

Zhang B, Zhang B, Wang L, et al. Li and Ti Co-doping to stabilize slabs of high-voltage P2-type Na0.560[Li0.041Mn0.642Ni0.221Ti0.095]O2. J Alloys Compd. 2020; 824: 153938.

[74]

Xiao Y, Zhu Y-F, Xiang W, et al. Deciphering an abnormal layered-tunnel heterostructure induced by chemical substitution for the sodium oxide cathode. Angew Chem Int Ed. 2020; 59 (4): 1491- 1495.

[75]

Wang P-F, Xiao Y, Piao N, et al. Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy. 2020; 69: 104474.

[76]

Shen Q, Zhao X, Liu Y, et al. Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode. Adv Sci. 2020; 7 (21): 124228.

[77]

Mariyappan S, Marchandier T, Rabuel F, et al. The role of divalent (Zn2+/Mg2+/Cu2+) substituents in achieving full capacity of sodium layered oxides for Na-ion battery applications. Chem Mater. 2020; 32 (4): 1657- 1666.

[78]

Liu Y, Shen Q, Zhao X, et al. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-Ion storage cathodes. Adv Funct Mater. 2020; 30 (6): 1907837.

[79]

Cao M-H, Shadike Z, Bak S-M, et al. Sodium storage property and mechanism of NaCr1/4Fe1/4Ni1/4Ti1/4O2 cathode at various cut-off voltages. Energy Stor. Mater. 2020; 24: 417- 425.

[80]

Wu S, Su B, Ni K, et al. Fluorinated carbonate electrolyte with superior oxidative stability enables long-term cycle stability of Na2/3Ni1/3Mn2/3O2 cathodes in sodium-ion batteries. Adv Energy Mater. 2021; 11 (9): 2002737.

[81]

Li F, Tian Y, Sun Y, Hou P, Wei X, Xu X. Suppressing the P2-O2 phase transformation and Na+/vacancy ordering of high-voltage manganese-based P2-type cathode by cationic codoping. J Colloid Interface Sci. 2022; 611: 752- 759.

[82]

Oh S-M, Oh P, Kim S-O, Manthiram A. A high-performance sodium-ion full cell with a layered oxide cathode and a phosphorous-based composite anode. J Electrochem Soc. 2017; 164 (2): A321- A326.

[83]

Li Q, Jiang K, Li X, et al. A high-crystalline NaV1.25Ti0.75O4 anode for wide-temperature sodium-ion battery. Adv Energy Mater. 2018; 8 (25): 1801162.

[84]

Guo S, Yu H, Liu P, et al. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ Sci. 2015; 8 (4): 1237- 1244.

[85]

Guo S, Liu P, Sun Y, et al. A high-voltage and ultralong-life sodium full cell for stationary energy storage. Angew Chem Int Ed. 2015; 127 (40): 11867- 11871.

[86]

Zhang S, Liu Y, Zhang N, Zhao K, Yang J, He S. O3-type NaNi0·33Li0·11Ti0·56O2-based electrode for symmetric sodium ion cell. J Power Sources. 2016; 329: 1- 7.

[87]

Zhou D, Slater M, Kim D, Lee E, Jorne J, Johnson C. SnSb carbon composite anode in a SnSb_C/NaNi1/3Mn1/3Fe1/3O2 Na-ion battery. ECS Trans. 2014; 58 (12): 59- 64.

[88]

Yang Q, Wang P-F, Guo J-Z, et al. Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode material with suppressed P2-O2 phase transition toward high-performance sodium-ion battery. ACS Appl Mater Interfaces. 2018; 10 (40): 34272- 34282.

[89]

Hasa I, Passerini S, Hassoun J. A rechargeable sodium-ion battery using a nanostructured Sb-C anode and P2-Type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 2015; 5 (60): 48928- 48934.

[90]

Shi L, Wang W, Ding J. Synthesis of sword-like CuSbS2 nanowires as an anode material for sodium-ion batteries. Ceram Int. 2018; 44 (12): 13609- 13612.

[91]

Wang W, Shi L, Lan D, Li Q. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration. J Power Sources. 2018; 377: 1- 6.

[92]

Zhu K, Guo S, Yi J, et al. A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries. J Mater Chem A. 2015; 3 (44): 22012- 22016.

[93]

Jo C-H, Choi JU, Myung S-T. Rocksalt-type metal sulfide anodes for high-rate sodium storage. J Mater Chem A. 2018; 6 (16): 6867- 6873.

[94]

Ni J, Fu S, Wu C, et al. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv Energy Mater. 2016; 6 (11): 1502568.

[95]

Li L, Peng S, Bucher N, et al. Large-scale synthesis of highly uniform Fe1−xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy. 2017; 37: 81- 89.

[96]

Zhang J, Yin Y-X, Guo Y-G. High-capacity Te anode confined in microporous carbon for long-life Na-ion batteries. ACS Appl Mater Interfaces. 2015; 7 (50): 27838- 27844.

[97]

Park K, Yu B-C, Goodenough JB. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery. Chem Mater. 2015; 27 (19): 6682- 6688.

[98]

Oh S-M, Myung S-T, Jang M-W, Scrosati B, Hassoun J, Sun Y-K. An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. Phys Chem Chem Phys. 2013; 15 (11): 3827- 3833.

[99]

Liu J, Yang Z, Wang J, Gu L, Maier J, Yu Y. Three-dimensionally interconnected nickel-antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy. 2015; 16: 389- 398.

[100]

Oh S-M, Myung S-T, Yoon CS, et al. Advanced Na [Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. Nano Lett. 2014; 14 (3): 1620- 1626.

[101]

Yuan D, Liang X, Wu L, et al. A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries. Adv Mater. 2014; 26 (36): 6301- 6306.

[102]

Liang L, Xu Y, Li Y, et al. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. J Mater Chem A. 2017; 5 (4): 1749- 1755.

[103]

Xie X, Kretschmer K, Zhang J, Sun B, Su D, Wang G. Sn@CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries. Nano Energy. 2015; 13: 208- 217.

[104]

Yu DYW, Prikhodchenko PV, Mason CW, et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun. 2013; 4: 2922.

[105]

Qu B, Ma C, Ji G, et al. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater. 2014; 26 (23): 3854- 3859.

[106]

Xiao Y, Hwang J-Y, Belharouak I, Sun Y-K. Na storage capability investigation of a carbon nanotube-encapsulated Fe1-XS composite. ACS Energy Lett. 2017; 2 (2): 364- 372.

[107]

Yuan S, Zhu Y-H, Li W, et al. Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv Mater. 2017; 29 (4): 1602469.

[108]

Ma P, Kang W, Wang Y, Cao D, Fan L, Sun D. Binary metal Co-substituted P2-type Na0.67Mn0.7Cu0.15Ni0.15O2 microspheres as robust cathode for high-power sodium ion battery. Appl Surf Sci. 2020; 529: 147105.

[109]

Peng B, Sun Z, Jiao S, Wang G, Zhang G. Electrochemical performance optimization of layered P2-type Na0.67MnO2 through simultaneous Mn-site doping and nanostructure engineering. Batteries Supercaps. 2020; 3 (2): 147- 154.

[110]

Sun C, Li S, Bai M, et al. Construction of the Na0.92Li0.40Ni0.73Mn0.24Co0.12O2 sodium-ion cathode with balanced high-power/energy-densities. Energy Stor. Mater. 2020; 27: 252- 260.

[111]

Peng B, Sun Z, Jiao S, et al. Facile self-templated synthesis of P2-type Na0.7CoO2 microsheets as a long-term cathode for high-energy sodium-ion batteries. J Mater Chem A. 2019; 7 (23): 13922- 13927.

[112]

Subramanian Y, Park M-S, Veerasubramani GK, Lee Y-S, Kim DW. Synthesis and electrochemical performance of carbon-coated Fe2GeO4 as an anode material for sodium-ion batteries. Mater Chem Phys. 2019; 224: 129- 136.

[113]

Zhang H, Ming H, Zhang W, Cao G, Yang Y. Coupled carbonization strategy toward advanced hard carbon for high-energy sodium-ion battery. ACS Appl Mater Interfaces. 2017; 9 (28): 23766- 23774.

[114]

Prosini PP, Carewska M, Cento C, et al. Tin-decorated reduced graphene oxide and NaLi0.2Ni0.25Mn0.75O as electrode materials for sodium-ion batteries. Materials. 2019; 12 (7): 1074.

[115]

Meng Y, An J, Chen L, et al. A NaNi0.5Mn0.5SnXO2 cathode with anti-structural deformation enhancing long lifespan and super power for a sodium ion battery. Chem Commun. 2020; 56 (58): 8079- 8082.

[116]

Jin T, Li H, Zhu K, Wang P-F, Liu P, Jiao L. Polyanion-type cathode materials for sodium-ion batteries. Chem Soc Rev. 2020; 49 (8): 2342- 2377.

[117]

Hasa I, Hassoun J, Sun Y-K, Scrosati B. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. Chemphyschem. 2014; 15 (10): 2152- 2155.

[118]

Yu L, Liu J, Xu X, et al. Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano. 2017; 11 (5): 5120- 5129.

[119]

Ren W, Yao X, Niu C, et al. Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. Nano Energy. 2016; 28: 216- 223.

[120]

Feng J, Luo S, Zhan Y, et al. Ingeniously designed yolk-shell-structured FeSe2@NDC nanoboxes as an excellent long-life and high-rate anode for half/full Na-ion batteries. ACS Appl Mater Interfaces. 2021; 13 (43): 51095- 51106.

[121]

Liu Q, Meng X, Wei Z, et al. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl Mater Interfaces. 2016; 8 (46): 31709- 31715.

[122]

Kumar PR, Jung YH, Kim DK. Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2x(PO4)2F3-2x. J Solid State Electrochem. 2017; 21 (1): 223- 232.

[123]

Kim H, Hong J, Park Y-U, Kim J, Hwang I, Kang K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater. 2015; 25 (4): 534- 541.

[124]

Gu Z-Y, Guo J-Z, Sun Z-H, et al. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci Bull. 2020; 65 (9): 702- 710.

[125]

Darwiche A, Dugas R, Fraisse B, Monconduit L. Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery. J Power Sources. 2016; 304: 1- 8.

[126]

Guo J-Z, Wang P-F, Wu X-L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv Mater. 2017; 29 (33): 1701968.

[127]

Yang X, Zhang R-Y, Zhao J, et al. Amorphous tin-based composite oxide: a high-rate and ultralong-life sodium-ion-storage material. Adv Energy Mater. 2018; 8 (8): 1701827.

[128]

Hou B-H, Wang Y-Y, Liu D-S, et al. N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv Funct Mater. 2018; 28 (47): 1805444.

[129]

Hou B-H, Wang Y-Y, Guo J-Z, et al. Pseudocapacitance-boosted ultrafast Na storage in a pie-Like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries. Nanoscale. 2018; 10 (19): 9218- 9225.

[130]

Niu Y, Xu M, Cheng C, et al. Na3.12Fe2.44(P2O7)2/multi-walled carbon nanotube composite as a cathode material for sodium-ion batteries. J Mater Chem A. 2015; 3 (33): 17224- 17229.

[131]

Li H, Chen X, Jin T, Bao W, Zhang Z, Jiao L. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Stor. Mater. 2019; 16: 383- 390.

[132]

Pu X, Wang H, Yuan T, et al. Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Stor. Mater. 2019; 22 (1): 330- 336.

[133]

Yao G, Zhang X, Yan Y, et al. Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries. J Energy Chem. 2020; 50: 387- 394.

[134]

Liu Y, Zhang N, Wang F, Liu X, Jiao L, Fan L-Z. Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries. Adv Funct Mater. 2018; 28 (30): 1801917.

[135]

Han P, Han X, Yao J, Liu Z, Cao X, Cui G. Flexible graphite film with laser drilling pores as novel integrated anode free of metal current collector for sodium ion battery. Electrochem Commun. 2015; 61: 84- 88.

[136]

Cabello M, Chyrka T, Klee R, et al. Treasure Na-ion anode from trash coke by adept electrolyte selection. J Power Sources. 2017; 347: 127- 135.

[137]

Cao X, Pan A, Liu S, et al. Chemical synthesis of 3D graphene-like cages for sodium-ion batteries applications. Adv Energy Mater. 2017; 7 (20): 1700797.

[138]

Shen F, Luo W, Dai J, et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater. 2016; 6 (14): 1600377.

[139]

Medabalmi V, Kuanr N, Ramanujam K. Sodium naphthalene dicarboxylate anode material for inorganic-organic hybrid rechargeable sodium-ion batteries. J Electrochem Soc. 2018; 165 (2): A175- A180.

[140]

Zhao J, Gao Y, Liu Q, et al. High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by in situ coating of carbon nanofibers for sodium-ion battery applications. Chem Eur J. 2018; 24 (12): 2913- 2919.

[141]

Wang Q, Zhu X, Liu Y, Fang Y, Zhou X, Bao J. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon. 2018; 127: 658- 666.

[142]

Hao M, Xiao N, Wang Y, et al. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes. Fuel Process Technol. 2018; 177: 328- 335.

[143]

Liu Y, Zhang N, Liu X, Chen C, Fan L-Z, Jiao L. Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. Energy Stor. Mater. 2017; 9: 170- 178.

[144]

Klee R, Wiatrowski M, Aragón MJ, et al. Improved surface stability of C+MXOY@Na3V2(PO4)3 prepared by ultrasonic method as cathode for sodium-ion batteries. ACS Appl Mater Interfaces. 2017; 9 (2): 1471- 1478.

[145]

Zhu Z, Cheng F, Hu Z, Niu Z, Chen J. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J Power Sources. 2015; 293: 626- 634.

[146]

Yuan Z, Si L, Zhu X. Three-dimensional hard carbon matrix for sodium-ion battery anode with superior-rate performance and ultralong cycle life. J Mater Chem A. 2015; 3 (46): 23403- 23411.

[147]

Yang T, Qian T, Wang M, et al. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater. 2016; 28 (3): 539- 545.

[148]

Guo C, Yang J, Cui Z, et al. In-Situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries. J Energy Chem. 2022; 65: 514- 523.

[149]

Cao Y, Cao X, Dong X, et al. All-climate iron-based sodium-ion full cell for energy storage. Adv Funct Mater. 2021; 31 (33): 2102856.

[150]

Cui G, Dong Q, Wang Z, et al. Achieving highly reversible and fast sodium storage of Na4VMn(PO4)3/C-RGO composite with low-fraction RGO via spray-drying technique. Nano Energy. 2021; 89: 106462.

[151]

Iarchuk AR, Sheptyakov DV, Abakumov AM. Hydrothermal microwave-assisted synthesis of Na3+xV2-yMny(PO4)2F3 solid solutions as potential positive electrodes for Na-Ion batteries. ACS Appl Energy Mater. 2021; 4 (5): 5007- 5014.

[152]

Liu B, Zhang Q, Li L, et al. Achieving highly electrochemically active maricite NaFePO4 with ultrafine NaFePO4@C subunits for high rate and low temperature sodium-ion batteries. Chem Eng J. 2021; 405: 126689.

[153]

Lv Z, Yue M, Ling M, et al. Controllable design coupled with finite element analysis of low-tortuosity electrode architecture for advanced sodium-ion batteries with ultra-high mass loading. Adv Energy Mater. 2021; 11 (17): 2003725.

[154]

Wang H, Pan Z, Zhang H, et al. A green and scalable synthesis of Na3Fe2(PO4)P2O7/rGO cathode for high-rate and long-life sodium-ion batteries. Small Methods. 2021; 5 (8): 2100372.

[155]

Zhang L, He X, Wang S, et al. Hollow-sphere-structured Na4Fe3(PO4)2(P2O7)/C as a cathode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2021; 13 (22): 25972- 25980.

[156]

Zhao L, Zhao H, Wang J, et al. Micro/nano Na3V2(PO4)3/N-doped carbon composites with a hierarchical porous structure for high-rate pouch-type sodium-ion full-cell performance. ACS Appl Mater Interfaces. 2021; 13 (7): 8445- 8454.

[157]

Cao Y, Liu Y, Zhao D, et al. Highly stable Na3Fe2(PO4)3@hard carbon sodium-ion full cell for low-cost energy storage. ACS Sustain. Chem Eng. 2020; 8 (3): 1380- 1387.

[158]

Chen M, Hua W, Xiao J, et al. Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries. Angew Chem Int Ed. 2020; 132 (6): 2470- 2477.

[159]

Criado A, Lavela P, Pérez-Vicente C, Ortiz GF, Tirado JL. Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries. J Electroanal Chem. 2020; 856: 113694.

[160]

Gu Z-Y, Sun Z-H, Guo J-Z, et al. High-rate and long-cycle cathode for sodium-ion batteries: enhanced electrode stability and kinetics via binder adjustment. ACS Appl Mater Interfaces. 2020; 12 (42): 47580- 47589.

[161]

Li F, Zhao Y, Xia L, Yang Z, Wei J, Zhou Z. Well-dispersed Na3V2(PO4)2F3@rGO with improved kinetics for high-power sodium-ion batteries. J Mater Chem A. 2020; 8 (25): 12391- 12397.

[162]

Li H, Xu M, Gao C, et al. Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries. Energy Stor. Mater. 2020; 26: 325- 333.

[163]

Li Y, Liang X, Chen G, et al. In-Situ constructing Na3V2(PO4)2F3/carbon nanocubes for fast ion diffusion with high-performance Na+-storage. Chem Eng J. 2020; 387: 123952.

[164]

Li Y, Liang X, Zhong G, et al. Fiber-shape Na3V2(PO4)2F3@N-doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries. ACS Appl Mater Interfaces. 2020; 12 (23): 25920- 25929.

[165]

Ling M, Lv Z, Li F, et al. Revisiting of tetragonal NaVPO4F: a high energy density cathode for sodium-ion batteries. ACS Appl Mater Interfaces. 2020; 12 (27): 30510- 30519.

[166]

Liu S, Cao X, Zhang Y, et al. Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries. J Mater Chem A. 2020; 8 (36): 18872- 18879.

[167]

Lyu T, Wang R, Liang L, et al. Hierarchical porous oviform carbon capsules with double-layer shells derived from mushroom spores for efficient sodium ion storage. J Electroanal Chem. 2020; 871: 114310.

[168]

Ma X, Cao X, Zhou Y, et al. Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Res. 2020; 13 (12): 3330- 3337.

[169]

Mirza S, Song Z, Zhang H, Hussain A, Zhang H, Li X. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na4V2(PO4)3 as the cathode material. J Mater Chem A. 2020; 8 (44): 23368- 23375.

[170]

Pei L, Yang L, Cao H, et al. Cost-effective and renewable paper derived hard carbon microfibers as superior anode for sodium-ion batteries. Electrochim Acta. 2020; 364: 137313.

[171]

Pi Y, Gan Z, Li Z, et al. Methanol-derived high-performance Na3V2(PO4)3/C: from kilogram-scale synthesis to pouch cell safety detection. Nanoscale. 2020; 12 (41): 21165- 21171.

[172]

Wang M-Y, Guo J-Z, Wang Z-W, et al. Isostructural and multivalent anion substitution toward improved phosphate cathode materials for sodium-ion batteries. Small. 2020; 16 (16): 1907645.

[173]

Wang Q, Zhao Y, Gao J, Geng H, Li J, Jin H. Triggering the reversible reaction of V3+/V4+/V5+ in Na3V2(PO4)3 by Cr3+ substitution. ACS Appl Mater Interfaces. 2020; 12 (45): 50315- 50323.

[174]

Xu L, Xiong P, Zeng L, et al. Facile fabrication of a vanadium nitride/carbon fiber composite for half/full sodium-ion and potassium-ion batteries with long-term cycling performance. Nanoscale. 2020; 12 (19): 10693- 10702.

[175]

Zhang J, Liu Y, Zhao X, et al. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv Mater. 2020; 32 (11): 1906348.

[176]

Zhao C-D, Guo J-Z, Gu Z-Y, et al. Robust three-dimensional carbon conductive network in a NaVPO4F cathode used for superior high-rate and ultralong-lifespan sodium-ion full batteries. J Mater Chem A. 2020; 8 (34): 17454- 17462.

[177]

Li S, Song X, Kuai X, et al. A nanoarchitectured Na6Fe5(SO4)8/CNTs cathode for building a low-cost 3.6 V sodium-ion full battery with superior sodium storage. J Mater Chem A. 2019; 7 (24): 14656- 14669.

[178]

Li W, Yao Z, Zhong Y, et al. Enhancement of the advanced Na storage performance of Na3V2(PO4)3 in a symmetric sodium full cell via a dual strategy design. J Mater Chem A. 2019; 7 (17): 10231- 10238.

[179]

Liu X, Tang L, Li Z, et al. An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. J Mater Chem A. 2019; 7 (32): 18940- 18949.

[180]

Ma X, Pan Z, Wu X, Shen PK. Na4Fe3(PO4)2(P2O7)@NaFePO4@C core-double-shell architectures on carbon cloth: a high-rate, ultrastable, and flexible cathode for sodium ion batteries. Chem Eng J. 2019; 365: 132- 141.

[181]

Ma X, Xia J, Wu X, Pan Z, Shen PK. Remarkable enhancement in the electrochemical activity of maricite NaFePO4 on high-surface-area carbon cloth for sodium-ion batteries. Carbon. 2019; 146: 78- 87.

[182]

Akçay T, Häringer M, Pfeifer K, et al. Na3V2(PO4)3—a highly promising anode and cathode material for sodium-ion batteries. ACS Appl Energy Mater. 2021; 4 (11): 12688- 12695.

[183]

Zhang Z, Du Y, Wang Q-C, et al. A yolk-shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew Chem Int Ed. 2020; 59 (40): 17504- 17510.

[184]

Zhao Y, Gao X, Gao H, Jin H, Goodenough JB. Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries. Adv Funct Mater. 2020; 30 (10): 1908680.

[185]

Li H, Peng L, Zhu Y, Chen D, Zhang X, Yu G. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ Sci. 2016; 9 (11): 3399- 3405.

[186]

Kumar PR, Jung YH, Wang JE, Kim DK. Na3V2O2(PO4)2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries. J Power Sources. 2016; 324: 421- 427.

[187]

Wang N, Bai Z, Qian Y, Yang J. One-dimensional yolk-shell Sb@Ti-O-P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries. ACS Appl Mater Interfaces. 2017; 9 (1): 447- 454.

[188]

Wang X, Kajiyama S, Iinuma H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun. 2015; 6: 6544.

[189]

Ren W, Zheng Z, Xu C, et al. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy. 2016; 25: 145- 153.

[190]

Klee R, Aragón MJ, Lavela P, Alcántara R, Tirado JL. Na3V2(PO4)3/C nanorods with improved electrode-electrolyte interface as cathode material for sodium-ion batteries. ACS Appl Mater Interfaces. 2016; 8 (35): 23151- 23159.

[191]

Sun Y, Zhao L, Pan H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun. 2013; 4: 1870.

[192]

Deng B, Yue N, Dong H, Gui Q, Xiao L, Liu J. Surface-assembled highly flexible Na3(VOPO4)2F nanocube cathode for high-rate binder-free Na-ion batteries. Chin Chem Lett. 2021; 32 (2): 826- 829.

[193]

Hou J, Wang W, Feng P, Wang K, Jiang K. A surface chemistry assistant strategy to high power/energy density and cost-effective cathode for sodium ion battery. J Power Sources. 2020; 453: 227879.

[194]

Ghosh S, Kiran Kumar V, Kumar SK, Biswas S, Martha SK. An insight of sodium-ion storage, diffusivity into TiO2 nanoparticles and practical realization to sodium-ion full cell. Electrochim Acta. 2019; 316: 69- 78.

[195]

Thangavel R, Samuthira Pandian A, Ramasamy HV, Lee Y-S. Rapidly synthesized, few-layered pseudocapacitive SnS2 anode for high-power sodium ion batteries. ACS Appl Mater Interfaces. 2017; 9 (46): 40187- 40196.

[196]

Yao X, Zhu Z, Li Q, et al. 3.0 V high energy density symmetric sodium-ion battery: Na4V2(PO4)3∥Na3V2(PO4)3. ACS Appl Mater Interfaces. 2018; 10 (12): 10022- 10028.

[197]

López MC, Aragón MJ, Ortiz GF, Lavela P, Alcántara R, Tirado JL. High performance full sodium-ion cell based on a nanostructured transition metal oxide as negative electrode. Chem Eur J. 2015; 21 (42): 14879- 14885.

[198]

Zhang J, Fang Y, Xiao L, et al. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl Mater Interfaces. 2017; 9 (8): 7177- 7184.

[199]

Liu DH, Li WH, Liang HJ, et al. Coaxial α-MnSe@N-doped carbon double nanotubes as superior anode materials in Li/Na-ion half/full batteries. J Mater Chem A. 2018; 6 (32): 15797- 15806.

[200]

Wang L, Ni Y, Lei K, Dong H, Tian S, Li F. 3D porous tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries. ChemSusChem. 2018; 11 (19): 3376- 3381.

[201]

Ming J, Ming H, Yang W, et al. A sustainable iron-based sodium ion battery of porous carbon-Fe3O4/Na2FeP2O7 with high performance. RSC Adv. 2015; 5 (12): 8793- 8800.

[202]

Ding X, Huang X, Jin J, Ming H, Wang L, Ming J. Sustainable solid-state strategy to hierarchical core-shell structured Fe3O4@graphene towards a Safer and green sodium ion full battery. Electrochim Acta. 2018; 260 (1): 882- 889.

[203]

Moretti A, Secchiaroli M, Buchholz D, Giuli G, Marassi R, Passerini S. Exploring the low voltage behavior of V2O5 aerogel as intercalation host for sodium ion battery. J Electrochem Soc. 2015; 162 (14): A2723- A2728.

[204]

Liu Y, Zhang N, Yu C, Jiao L, Chen J. MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 2016; 16 (5): 3321- 3328.

[205]

Hou B-H, Wang Y-Y, Guo J-Z, et al. A scalable strategy to develop advanced anode for sodium-ion batteries: commercial Fe3O4-derived Fe3O4@FeS with superior full-cell performance. ACS Appl Mater Interfaces. 2018; 10 (4): 3581- 3589.

[206]

Tang J, Ni S, Chen Q, Han W, Yang X, Zhang L. The electrochemical performance of NiO nanowalls/Ni anode in half-cell and full-cell sodium ion batteries. Mater Lett. 2017; 195: 127- 130.

[207]

Sun W, Rui X, Yang D, et al. Two-dimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano. 2015; 9 (11): 11371- 11381.

[208]

Xie Y, Fan M, Shen T, Liu Q, Chen Y. SnS2 nanoplates as stable anodes for sodium ion and lithium ion batteries. Mater Technol. 2016; 31 (11): 646- 652.

[209]

Guo Q, Ma Y, Chen T, et al. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for Sodium-Ion batteries. ACS Nano. 2017; 11 (12): 12658- 12667.

[210]

Shi L, Li D, Yao P, et al. SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small. 2018; 14 (41): e1802716.

[211]

Ye H, Wang L, Deng S, et al. Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-ion batteries with large gravimetric, areal, and volumetric capacities. Adv Energy Mater. 2017; 7 (5): 1601602.

[212]

Zhang K, Hu Z, Liu X, Tao Z, Chen J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv Mater. 2015; 27 (21): 3305- 3309.

[213]

Zhao F, Shen S, Cheng L, et al. Improved sodium-ion storage performance of ultrasmall iron selenide nanoparticles. Nano Lett. 2017; 17 (7): 4137- 4142.

[214]

Xu X, Dou Z, Gu E, Si L, Zhou X, Bao J. Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage. J Mater Chem A. 2017; 5 (26): 13411- 13420.

[215]

Wan F, Guo J-Z, Zhang X-H, et al. In situ binding Sb nanospheres on graphene via oxygen bonds as superior anode for ultrafast sodium-ion batteries. ACS Appl Mater Interfaces. 2016; 8 (12): 7790- 7799.

[216]

Wang N, Bai Z, Qian Y, Yang J. Double-walled Sb@TiO2-X nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv Mater. 2016; 28 (21): 4126- 4133.

[217]

Fan M, Chen Y, Xie Y, et al. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv Funct Mater. 2016; 26 (28): 5019- 5027.

[218]

Li W, Ke L, Wei Y, et al. Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage. J Mater Chem A. 2017; 5 (9): 4413- 4420.

[219]

Lu Y, Zhou P, Lei K, Zhao Q, Tao Z, Chen J. Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries. Adv Energy Mater. 2017; 7 (7): 1601973.

[220]

Li W, Hu C, Zhou M, et al. Carbon-coated Mo3Sb7 composite as anode material for sodium ion batteries with long cycle life. J Power Sources. 2016; 307: 173- 180.

[221]

Lu Y, Dimov N, Okada S, Bui T. SnSb alloy blended with hard carbon as anode for Na-ion batteries. Energies. 2018; 11 (6): 1614.

[222]

Walter M, Doswald S, Kovalenko MV. Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries. J Mater Chem A. 2016; 4 (18): 7053- 7059.

[223]

Ramesh Kumar P, Hwa Jung Y, Kamala Bharathi K, Lim CH, Kim DK. high capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials. Electrochim Acta. 2014; 146: 503- 510.

[224]

Peng S, Han X, Li L, et al. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small. 2016; 12 (10): 1359- 1368.

[225]

Zhang K, Park M, Zhou L, et al. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew Chem Int Ed. 2016; 55 (41): 12822- 12826.

[226]

Zhang K, Park M, Zhou L, et al. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv Funct Mater. 2016; 26 (37): 6728- 6735.

[227]

Hariharan S, Saravanan K, Balaya P. Α-MoO3: a high performance anode material for sodium-ion batteries. Electrochem Commun. 2013; 31: 5- 9.

[228]

Huang Q, Liu C, Chen Y, Wang Y, Guo L. Construction of simultaneous modified Na3V2(PO4)3/C cathode with K/Zr substitution and carbon nanotubes enwrapping for high performance sodium ion battery. Ceram Int. 2022; 48 (1): 397- 406.

[229]

Yu X, Chen C, Li R, Yang T, Wang W, Dai Y. Construction of SnS2@MoS2@rGO heterojunction anode and their half/full sodium ion storage performances. J Alloys Compd. 2022; 896: 162784.

[230]

Gilankar A, Mitra A, Singh J, Das S, Majumder SB. Investigations on different strategies towards improving the electrochemical properties of Na2VTi(PO4)3 for symmetrical sodium-ion batteries. J Alloys Compd. 2021; 851: 156813.

[231]

Gu Z-Y, Guo J-Z, Zhao X-X, et al. High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat. 2021; 3 (6): 694- 704.

[232]

Luo Y, Shi L, He H, et al. Vertical growth of nickel sulfide nanosheets on graphene oxide for advanced sodium-ion storage. Carbon. 2021; 182: 194- 202.

[233]

Zhou Q, Wang L, Li W, et al. Carbon-decorated Na3V2(PO4)3 as ultralong lifespan cathodes for high-energy-density symmetric sodium-ion batteries. ACS Appl Mater Interfaces. 2021; 13 (21): 25036- 25043.

[234]

Das A, Majumder SB, Roy Chaudhuri A. K+ and Mg2+ Co-doped bipolar Na3V2(PO4)3: an ultrafast electrode for symmetric sodium ion full cell. J Power Sources. 2020; 461: 228149.

[235]

Essehli R, Amin R, Abouimrane A, et al. Temperature-dependent battery performance of a Na3V2(PO4)2F3@MWCNT cathode and in-situ heat generation on cycling. ChemSusChem. 2020; 13 (18): 5031- 5040.

[236]

Guo S, Li H, Lu Y, Liu Z, Hu X. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers. Energy Stor. Mater. 2020; 27: 270- 278.

[237]

Hu X, Liu Y, Li J, et al. Self-Assembling of conductive interlayer-expanded WS2 nanosheets into 3D hollow hierarchical microflower bud hybrids for fast and stable sodium storage. Adv Funct Mater. 2020; 30 (5): 1907677.

[238]

Ihsan-Ul-Haq M, Huang H, Wu J, et al. Thin solid electrolyte interface on chemically bonded Sb2Te3/CNT composite anodes for high performance sodium ion full cells. Nano Energy. 2020; 71: 104613.

[239]

Liu T, Gao L, Chen J, et al. Revealing the structural reversibility of high-performance surface-enhanced NVOPF cathode materials for sodium ion batteries. J Phys Chem C. 2020; 124 (50): 27378- 27386.

[240]

Plewa A, Kulka A, Hanc E, et al. Facile aqueous synthesis of high performance Na2FeM(SO4)3 (M = Fe, Mn, Ni) alluaudites for low cost Na-ion batteries. J Mater Chem A. 2020; 8 (5): 2728- 2740.

[241]

Tang L, Zhang J, Li Z, et al. Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. J Power Sources. 2020; 451: 227734.

[242]

Zhang Y, Wu M, Zhang R, Huang Y. A facile synthesis of monodispersed Na3V2(PO4)3 nanospheres anchored on cellular graphene oxide as a self-supporting cathode for high-rate sodium storage. ACS Appl Energy Mater. 2020; 3 (3): 2867- 2872.

[243]

Chen C, Li T, Tian H, Zou Y, Sun J. Building highly stable and industrial NaVPO4F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries. J Mater Chem A. 2019; 7 (31): 18451- 18457.

[244]

Huang Y, Wan X, Luo D, Tian G, Xiang X, Sun M. Superior cycling stability and fast reaction kinetics of NaV2.9Mg0.1(PO4)3/C anode for sodium-ion batteries. Energy Technol. 2019; 7 (11): 1900741.

[245]

Jiang Y, Shen Y, Dong J, et al. Surface pseudocapacitive mechanism of molybdenum phosphide for high-energy and high-power sodium-ion capacitors. Adv Energy Mater. 2019; 9 (27): 1900967.

[246]

Panda MR, Raj K A, Ghosh A, et al. Blocks of molybdenum ditelluride: a high rate anode for sodium-ion battery and full cell prototype study. Nano Energy. 2019; 64: 103951.

[247]

Tian J, Li J, Zhang Y, Yu X-Y, Hong Z. Carbon-coated CoSe2 nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. J Mater Chem A. 2019; 7 (37): 21404- 21409.

[248]

Liu J, Xu Y-G, Kong LB. High-capacity and fast Na-ion diffusion rate three-dimensional MoS2/SnS2-RGO anode for advanced sodium-ion batteries and sodium-ion capacitors. Solid State Ionics. 2020; 355: 115416.

[249]

Wu X, Sun M, Shen Y, et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem. 2014; 7 (2): 407- 411.

[250]

Shang Y, Li X, Song J, et al. Unconventional Mn vacancies in Mn-Fe prussian blue analogs: suppressing Jahn-Teller distortion for ultrastable sodium storage. Chem. 2020; 6 (7): 1804- 1818.

[251]

Rudola A, Du K, Balaya P. Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodiumion batteries. J Electrochem Soc. 2017; 164 (6): A1098- A1109.

[252]

Xu Y, Chang M, Fang C, et al. In situ FTIR-assisted synthesis of nickel hexacyanoferrate cathodes for long-life sodium-ion batteries. ACS Appl Mater Interfaces. 2019; 11 (33): 29985- 29992.

[253]

Song J, Wang L, Lu Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc. 2015; 137 (7): 2658- 2664.

[254]

Wang L, Song J, Qiao R, et al. Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. J Am Chem Soc. 2015; 137 (7): 2548- 2554.

[255]

Chen L, Li W, Wang Y, Wang C, Xia Y. Polyimide as anode electrode material for rechargeable sodium batteries. RSC Adv. 2014; 4 (48): 25369- 25373.

[256]

Ye H, Wang Y, Zhao F, et al. Iron-based sodium-ion full batteries. J Mater Chem A. 2016; 4 (5): 1754- 1761.

[257]

Jiang Y, Yu S, Wang B, et al. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv Funct Mater. 2016; 26 (29): 5315- 5321.

[258]

Yang D, Xu J, Liao X-Z, He Y-S, Liu H, Ma Z-F. Structure optimization of prussian blue analogue cathode materials for advanced sodium ion batteries. Chem Commun. 2014; 50 (87): 13377- 13380.

[259]

Wang H, Xu E, Yu S, et al. Reduced graphene oxide-anchored manganese hexacyanoferrate with low interstitial H2O for superior sodium-ion batteries. ACS Appl Mater Interfaces. 2018; 10 (40): 34222- 34229.

[260]

Hao R, Yang Y, Wang H, et al. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy. 2018; 45: 220- 228.

[261]

Peng J, Wang J, Yi H, et al. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs. Adv Energy Mater. 2018; 8 (11): 1702856- 1702864.

[262]

Xu Y, Wan J, Huang L, et al. Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. Energy Stor. Mater. 2020; 33 (1): 432- 441.

[263]

Subasinghe LU, Satyanarayana Reddy G, Rudola A, Balaya P. Analysis of heat generation and impedance characteristics of prussian blue analogue cathode-based 18650-type sodium-ion cells. J Electrochem Soc. 2020; 167 (11): 110504.

[264]

Hu J, Tao H, Chen M, et al. Interstitial water improves structural stability of iron hexacyanoferrate for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2022; 14 (10): 12234- 12242.

[265]

Niu L, Chen L, Zhang J, Jiang P, Liu Z. Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. J Power Sources. 2018; 380: 135- 141.

[266]

Wang Z, Huang Y, Luo R, et al. Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability. J Power Sources. 2019; 436: 226868.

[267]

Tang Y, Li W, Feng P, et al. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv Funct Mater. 2020; 30 (10): 1908754.

[268]

Shen L, Jiang Y, Liu Y, Ma J, Sun T, Zhu N. High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodium ion battery. Chem Eng J. 2020; 388: 124228.

[269]

Zhao X, Vail SA, Lu Y, et al. Antimony/graphitic carbon composite anode for high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2016; 8 (22): 13871- 13878.

[270]

Guo J-Z, Gu Z-Y, Zhao X-X, et al. Flexible Na/K-ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode. Adv Energy Mater. 2019; 9 (38): 1902056.

[271]

Sun J, Ye H, Oh JAS, et al. Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na+ insertion/extraction for full sodium ion battery. Nano Res. 2022; 15 (3): 2123- 2129.

[272]

Xu Y, Wan J, Huang L, et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries. Adv Energy Mater. 2019; 9 (4): 1803158- 1803167.

[273]

Shao M, Wang B, Liu M, et al. A high-voltage and cycle stable aqueous rechargeable Na-ion battery based on Na2Zn3[Fe(CN)6]2-NaTi2(PO4)3 intercalation chemistry. ACS Appl Energy Mater. 2019; 2 (8): 5809- 5815.

[274]

Xu Y, Ou M, Liu Y, et al. Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries. Nano Energy. 2020; 67: 104250.

[275]

Ge P, Li S, Shuai H, et al. Ultrafast sodium full batteries derived from X-Fe (X = Co, Ni, Mn) prussian blue analogs. Adv Mater. 2019; 31 (3): 1806092.

[276]

Qian J, Zhou M, Cao Y, Ai X, Yang H. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries. Adv Energy Mater. 2012; 2 (4): 410- 414.

[277]

Lim CQX, Tan Z-K. Prussian white with near-maximum specific capacity in sodium-ion batteries. ACS Appl Energy Mater. 2021; 4 (6): 6214- 6220.

[278]

Deng W, Liang X, Wu X, et al. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci Rep. 2013; 3 (1): 2671.

[279]

Zhong H, Wang G, Song Z, et al. Organometallic polymer material for energy storage. Chem Commun. 2014; 50 (51): 6768- 6770.

[280]

Banda H, Damien D, Nagarajan K, Hariharan M, Shaijumon MM. A polyimide based all-organic sodium ion battery. J Mater Chem A. 2015; 3 (19): 10453- 10458.

[281]

Wang S, Wang L, Zhu Z, Hu Z, Zhao Q, Chen J. All organic sodium-ion batteries with Na4C8H2O6. Angew Chem Int Ed. 2014; 53 (23): 5892- 5896.

[282]

Li A, Feng Z, Sun Y, Shang L, Xu L. Porous organic polymer/RGO composite as high performance cathode for half and full sodium ion batteries. J Power Sources. 2017; 343: 424- 430.

[283]

Lee M, Hong J, Lopez J, et al. High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate. Nat Energy. 2017; 2 (11): 861- 868.

[284]

Wang Y, Fang C, Huang Y, et al. Porous carbon adsorption layer enabling highly reversible redox-reaction of a high potential organic electrode material for sodium ion batteries. RSC Adv. 2018; 8 (44): 24900- 24905.

[285]

Wang C, Chu R, Guan Z, et al. Tailored polyimide as positive electrode and polyimide-derived carbon as negative electrode for sodium ion full batteries. Nanoscale. 2020; 12 (7): 4729- 4735.

[286]

Shi R, Liu L, Lu Y, et al. In situ polymerized conjugated poly(pyrene-4,5,9,10-tetraone)/carbon nanotubes composites for high-performance cathode of sodium batteries. Adv Energy Mater. 2021; 11 (6): 2002917.

[287]

Wang J, Liu X, Jia H, et al. A high-voltage organic framework for high-performance Na- and K-ion batteries. ACS Energy Lett. 2022; 7 (2): 668- 674.

[288]

Zhang H, Gao Y, Chen M, et al. Organic small molecules with electrochemical-active phenolic enolate groups for ready-to-charge organic sodium-ion batteries. Small Methods. 2022; 6 (7): e2200455.

[289]

Arjunan P, Kouthaman M, Kannan K, Diwakar K, Subadevi R, Sivakumar M. Improved electrochemical properties of P2 type layer electrode through extended diffusion path by using post-transition metal doping. Mater Charact. 2021; 175: 111078.

[290]

Bao S, Huang Y, Wang J, Luo S, Su G, Lu J. High-operating voltage, long-life layered oxides for sodium ion batteries enabled by cosubstitution of titanium and magnesium. ACS Sustain. Chem Eng. 2021; 9 (6): 2534- 2542.

[291]

Li Z-Y, Ma X, Guo H, et al. Complementary effect of Ti and Ni incorporation in improving the electrochemical performance of a layered sodium manganese oxide cathode for sodium-ion batteries. ACS Appl Energy Mater. 2021; 4 (6): 5687- 5696.

[292]

Zhang Y, Dong Y, Wei R, et al. Rod-like Ni0.5Co0.5C2O4·2H2O in-situ formed on RGO by an interface induced engineering: extraordinary rate and cycle performance as an anode in lithium-ion and sodium-Ion half/full cells. J Colloid Interface Sci. 2022; 607 (2): 1153- 1162.

[293]

Xie Y, Xu G-L, Che H, et al. Probing thermal and chemical stability of NaXNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem Mater. 2018; 30 (15): 4909- 4918.

[294]

Chen J, Mohrhusen L, Ali G, et al. Electrochemical mechanism investigation of Cu2MoS4 hollow nanospheres for fast and stable sodium ion storage. Adv Funct Mater. 2019; 29 (7): 1807753.

[295]

Cao Y, Xia X, Liu Y, et al. Scalable synthesizing nanospherical Na4Fe3(PO4)2(P2O7) growing on MCNTs as a high-performance cathode material for sodium-ion batteries. J Power Sources. 2020; 461: 228130.

[296]

Kumar VK, Ghosh S, Biswas S, Martha SK. Pitch-derived soft-carbon-wrapped NaVPO4F composite as a potential cathode material for sodium-ion batteries. ACS Appl Energy Mater. 2021; 4 (4): 4059- 4069.

[297]

Subramanyan K, Lee Y-S, Aravindan V. Impact of carbonate-based electrolytes on the electrochemical activity of carbon-coated Na3V2(PO4)2F3 cathode in full-cell assembly with hard carbon anode. J Colloid Interface Sci. 2021; 582 (Pt A): 51- 59.

[298]

Zuo W, Liu R, Ortiz GF, et al. Sodium storage behavior of Na0.66Ni0.33-XZnXMn0.67O2 (X = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. J Power Sources. 2018; 400: 317- 324.

[299]

Ba D, Gui Q, Liu W, Wang Z, Li Y, Liu J. Robust cathode-ether electrolyte interphase on interfacial redox assembled fluorophosphate enabling high-rate and ultrastable sodium ion full cells. Nano Energy. 2022; 94: 106918.

[300]

Dong R, Zheng L, Bai Y, et al. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv Mater. 2021; 33 (36): e2008810.

[301]

Liang H-J, Gu Z-Y, Zhao X-X, et al. Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries. Angew Chem Int Ed. 2021; 60 (51): 26837- 26846.

[302]

Tang Y, Wei Y, Hollenkamp AF, et al. Electrolyte/structure-dependent cocktail mediation enabling high-rate/low-plateau metal sulfide anodes for sodium storage. Nano Micro Lett. 2021; 13 (1): 178.

[303]

Shi J, Ding L, Wan Y, et al. Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. J Energy Chem. 2021; 57: 650- 655.

[304]

Hwang J, Sivasengaran AN, Yang H, et al. Improvement of electrochemical stability using the eutectic composition of a ternary molten salt system for highly concentrated electrolytes for Na-ion batteries. ACS Appl Mater Interfaces. 2021; 13 (2): 2538- 2546.

[305]

Li H, Zhang H, Diemant T, et al. Reversible copper sulfide conversion in nonflammable trimethyl phosphate electrolytes for safe sodium-ion batteries. Small Struct. 2021; 2 (8): 2100035.

[306]

De Sloovere D, Vanpoucke DEP, Paulus A, et al. Deep eutectic solvents as nonflammable electrolytes for durable sodium-ion batteries. Adv Energy Sustain Res. 2022; 3 (3): 2100159.

[307]

Desai P, Huang J, Hijazi H, Zhang L, Mariyappan S, Tarascon J-M. Deciphering interfacial reactions via optical sensing to tune the interphase chemistry for optimized Na-ion electrolyte formulation. Adv Energy Mater. 2021; 11 (36): 2101490.

[308]

Deng L, Goh K, Yu F-D, et al. Self-optimizing weak solvation effects achieving faster low-temperature charge transfer kinetics for high-voltage Na3V2(PO4)2F3 cathode. Energy Stor. Mater. 2022; 44: 82- 92.

[309]

Hu Y, Yu Q, Tang W, et al. Ultra-stable, ultra-long-lifespan and ultra-high-rate Na-ion batteries using small-molecule organic cathodes. Energy Stor. Mater. 2021; 41: 738- 747.

[310]

Jin T, Ji X, Wang P-F, et al. High-energy aqueous sodium-ion batteries. Angew Chem Int Ed. 2021; 60 (21): 11943- 11948.

[311]

Hwang J, Yang H, Matsumoto K, Hagiwara R. Benefits of the mixtures of ionic liquid and organic electrolytes for sodium-ion batteries. J Electrochem Soc. 2021; 168 (3): 030508.

[312]

Wang Z, Xu Y, Peng J, et al. A high rate and stable hybrid Li/Na-ion battery based on a hydrated molten inorganic salt electrolyte. Small. 2021; 17 (40): 2101650.

[313]

Du K, Wang C, Balaya P, Gajjela SR, Law M. A fire-retarding electrolyte using triethyl phosphate as a solvent for sodium-ion batteries. Chem Commun. 2022; 58 (4): 533- 536.

[314]

Liu X, Zheng X, Deng Y, et al. Implanting a fire-extinguishing alkyl in sodium metal battery electrolytes via a functional molecule. Adv Funct Mater. 2022; 32 (5): 2109378.

[315]

Sun M-Y, Yu F-D, Xia Y, et al. Trigger Na+-solvent Co-intercalation to achieve high-performance sodium-ion batteries at subzero temperature. Chem Eng J. 2022; 430: 132750.

[316]

Yang Z, He J, Lai W-H, et al. Fire-retardant, stable-cycling and high-safety sodium ion battery. Angew Chem Int Ed. 2021; 133 (52): 27292- 27300.

[317]

Westman K, Dugas R, Jankowski P, et al. Diglyme based electrolytes for sodium-ion batteries. ACS Appl Energy Mater. 2018; 1 (6): 2671- 2680.

[318]

Sadan MK, Kim H, Kim C, et al. Enhanced rate and cyclability of a porous Na3V2(PO4)3 cathode using dimethyl ether as the electrolyte for application in sodium-ion batteries. J Mater Chem A. 2020; 8 (19): 9843- 9849.

[319]

Yu D, Zhu Q, Cheng L, et al. Anion solvation regulation enables long cycle stability of graphite cathodes. ACS Energy Lett. 2021; 6 (3): 949- 958.

[320]

Cometto C, Yan G, Mariyappan S, Tarascon J-M. Means of using cyclic voltammetry to rapidly design a stable DMC-based electrolyte for Na-ion batteries. J Electrochem Soc. 2019; 166 (15): A3723- A3730.

[321]

Jiang X, Liu X, Zeng Z, et al. A bifunctional fluorophosphate electrolyte for Safer sodium-ion batteries. iScience. 2018; 10: 114- 122.

[322]

Manohar CV, Mendes TC, Kar M, et al. Ionic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate composites. Chem Commun. 2018; 54 (28): 3500- 3503.

[323]

Firouzi A, Qiao R, Motallebi S, et al. Monovalent manganese based anodes and Co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat Commun. 2018; 9: 861.

[324]

Yin X, Zhao Y, Wang X, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage. Small. 2022; 18 (5): 2105568.

[325]

Moeez I, Jung H-G, Lim H-D, Chung KY. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries. ACS Appl Mater Interfaces. 2019; 11 (44): 41394- 41401.

[326]

Xie X, Yin Z, Li Y, et al. Zn-O-C bonds for efficient electron/ion bridging in ZnSe/C composites boosting the sodium-ion storage. J Mater Chem A. 2022; 10 (7): 3732- 3742.

[327]

Yue L, Peng C, Guo C, et al. Na3V2-XFeX(PO4)2O2F: an advanced cathode material with ultra-high stability for superior sodium storage. Chem Eng J. 2022; 441: 136132.

[328]

Pi Y, Gan Z, Yan M, et al. Insight into pre-sodiation in Na3V2(PO4)2F3/C@hard carbon full cells for promoting the development of sodium-ion battery. Chem Eng J. 2021; 413: 127565.

[329]

Xu Y, Sun H, Ma C, Gai J, Wan Y, Chen W. Pre-sodiation strategy for superior sodium storage batteries. Chin J Chem Eng. 2021; 39: 261- 268.

[330]

Liao J, Zhang F, Lu Y, et al. Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes. Chem Eng J. 2022; 437: 135275.

[331]

Liu X, Tan Y, Wang W, Wei P, Seh ZW, Sun Y. Ultrafine sodium sulfide clusters confined in carbon nano-polyhedrons as high-efficiency presodiation reagents for sodium-ion batteries. ACS Appl Mater Interfaces. 2021; 13 (23): 27057- 27065.

[332]

Bloi LM, Pampel J, Dörfler S, Althues H, Kaskel S. Sodium sulfide cathodes superseding hard carbon pre-sodiation for the production and operation of sodium-sulfur batteries at room temperature. Adv Energy Mater. 2020; 10 (7): 1903245.

[333]

Liu M, Zhang J, Guo S, et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries. ACS Appl Mater Interfaces. 2020; 12 (15): 17620- 17627.

[334]

Jo JH, Choi JU, Park YJ, Ko JK, Yashiro H, Myung S-T. A new pre-sodiation additive for sodium-ion batteries. Energy Storage Mater. 2020; 32: 281- 289.

[335]

Pan X, Chojnacka A, Jeżowski P, Béguin F. Na2S sacrificial cathodic material for high performance sodium-ion capacitors. Electrochim Acta. 2019; 318: 471- 478.

[336]

Shen B, Zhan R, Dai C, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells. J Colloid Interface Sci. 2019; 553: 524- 529.

[337]

Zou K, Cai P, Tian Y, et al. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods. 2020; 4 (3): 1900763.

[338]

Niu Y-B, Guo Y-J, Yin Y-X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries. Adv Mater. 2020; 32 (33): 2001419.

[339]

Zou K, Song Z, Liu H, et al. Electronic effect and regiochemistry of substitution in pre-sodiation chemistry. J Phys Chem Lett. 2021; 12 (49): 11968- 11979.

[340]

Mun J, Yim T, Gap Kwon Y, Jae Kim K. Self-assembled nano-silica-embedded polyethylene separator with outstanding physicochemical and thermal properties for advanced sodium ion batteries. Chem Eng J. 2021; 405: 125844.

[341]

Jo JH, Jo C-H, Qiu Z, et al. Nature-derived cellulose-based composite separator for sodium-ion batteries. Front Chem. 2020; 8: 153.

[342]

Zhao J, Yang X, Yao Y, et al. Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery. Adv Sci. 2018; 5 (4): 1700768.

[343]

Chen W, Zhang L, Liu C, et al. Electrospun flexible cellulose acetate-based separators for sodium-ion batteries with ultralong cycle stability and excellent wettability: the role of interface chemical groups. ACS Appl Mater Interfaces. 2018; 10 (28): 23883- 23890.

[344]

Zhang L, Feng G, Li X, et al. Synergism of surface group transfer and in-situ growth of silica-aerogel induced high-performance modified polyacrylonitrile separator for lithium/sodium-ion batteries. J Membr Sci. 2019; 577: 137- 144.

[345]

Kucinskis G, Kruze B, Korde P, et al. Enhanced electrochemical properties of Na0.67MnO2 cathode for Na-ion batteries prepared with novel tetrabutylammonium alginate binder. Batteries. 2022; 8 (1): 6.

[346]

Kumar PR, Jung YH, Ahad SA, Kim DK. A high rate and stable electrode consisting of a Na3V2O2X(PO4)2F3-2X-RGO composite with a cellulose binder for Sodium-Ion batteries. RSC Adv. 2017; 7 (35): 21820- 21826.

[347]

Fan M, Yu H, Chen Y. High-capacity sodium ion battery anodes based on CuO nanosheets and carboxymethyl cellulose binder. Mater Technol. 2017; 32 (10): 598- 605.

[348]

Zhang Y, Zhu X, Kai D, Jiang Y, Yan Q, Chen B. Konjac glucomannan biopolymer as a multifunctional binder to build a solid permeable interface on Na3V2(PO4)3/C cathodes for high-performance sodium ion batteries. J Mater Chem A. 2021; 9 (15): 9864- 9874.

[349]

Liu P, Liu W, Liu K. Rational modulation of emerging MXene materials for zinc-ion storage. Carbon Energy. 2022; 4 (1): 60- 76.

[350]

Malchik F, Shpigel N, Levi MD, et al. MXene conductive binder for improving performance of sodium-ion anodes in water-in-salt electrolyte. Nano Energy. 2021; 79: 105433.

[351]

Yuan Z, Cao J, Valerii S, Xu H, Wang L, Han W. MXene-bonded hollow MoS2/carbon sphere strategy for high-performance flexible sodium ion storage. Chem Eng J. 2022; 430: 132755.

[352]

Ren Y, Liu Y, Wang S, et al. Stretchable supercapacitor based on a hierarchical PPy/CNT electrode and hybrid hydrogel electrolyte with a wide operating temperature. Carbon Energy. 2022; 4 (4): 527- 538.

[353]

Zhang H, Gao Y, Liu X, et al. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems. Adv Energy Mater. 2023; 13 (23): 2300149.

[354]

Ahsan MT, Ali Z, Usman M, Hou Y. Unfolding the structural features of NASICON materials for sodium-ion full cells. Carbon Energy. 2022; 4 (5): 776- 819.

[355]

Berg EJ, Villevieille C, Streich D, Trabesinger S, Novák P. Rechargeable batteries: grasping for the limits of chemistry. J Electrochem Soc. 2015; 162 (14): A2468- A2475.

[356]

Baumann M, Häringer M, Schmidt M, et al. Prospective sustainability screening of sodium-ion battery cathode materials. Adv Energy Mater. 2022; 12 (46): 2202636.

[357]

Guo X, Guo S, Wu C, Li J, Liu C, Chen W. Intelligent monitoring for safety-enhanced lithium-ion/sodium-ion batteries. Adv Energy Mater. 2023; 13 (10): 2203903.

[358]

Yang C, Xin S, Mai L, You Y. Materials design for high-safety sodium-ion battery. Adv Energy Mater. 2021; 11 (2): 2000974.

[359]

Shadike Z, Zhao E, Zhou Y-N, et al. Advanced characterization techniques for sodium-ion battery studies. Adv Energy Mater. 2018; 8 (17): 1702588.

[360]

Wang T, He D, Yao H, Guo X, Sun B, Wang G. Development of proteins for high-performance energy storage devices: opportunities, challenges, and strategies. Adv Energy Mater. 2022; 12 (44): 2202568.

[361]

Gong Y, Gu L. Degrees of freedom for energy storage material. Carbon Energy. 2022; 4 (4): 633- 644.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

486

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/