Rational design of new in situ reduction of Ni(II) catalytic system for low-cost and large-scale preparation of porous aromatic frameworks

Shanshan Wang, Yue Wu, Wenxiang Zhang, Hao Ren, Guangshan Zhu, Heping Ma

Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 445.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 445. DOI: 10.1002/cey2.445
RESEARCH ARTICLE

Rational design of new in situ reduction of Ni(II) catalytic system for low-cost and large-scale preparation of porous aromatic frameworks

Author information +
History +

Abstract

Porous aromatic framework 1 (PAF-1) is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area. Currently, the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system, suffering from great instability and high cost. Herein, we developed an in situ reduction of the Ni(II) catalytic system to synthesize PAF-1 in low cost and high yield. The active Ni(0) species produced from the NiCl2/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer–Emmett–Teller (BET)-specific surface area up to 4948 m2 g−1 (Langmuir surface area, 6785 m2 g−1). The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail. The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs' synthesis. This work provides a cheap, facile, and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr.

Keywords

adsorption / carbon material / nickel catalysis / porous aromatic framework / porous organic polymer

Cite this article

Download citation ▾
Shanshan Wang, Yue Wu, Wenxiang Zhang, Hao Ren, Guangshan Zhu, Heping Ma. Rational design of new in situ reduction of Ni(II) catalytic system for low-cost and large-scale preparation of porous aromatic frameworks. Carbon Energy, 2024, 6(5): 445 https://doi.org/10.1002/cey2.445

References

[1]
Tian Y, Zhu G. Porous aromatic frameworks (PAFs). Chem Rev. 2020; 120 (16): 8934- 8986.
[2]
Yuan Y, Zhu G. Porous aromatic frameworks as a platform for multifunctional applications. ACS Cent Sci. 2019; 5 (3): 409- 418.
[3]
Zhang S, Taylor MK, Jiang L, Ren H, Zhu G. Light hydrocarbon separations using porous organic framework materials. Chem Eur J. 2020; 26 (15): 3205- 3221.
[4]
Wang X, Zhang G, Yin W, et al. Metal-organic framework-derived phosphide nanomaterials for electrochemical applications. Carbon Energy. 2022; 4 (2): 246- 281.
[5]
Zhao G, Mei Z, Duan L, et al. COF-based single Li+ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Carbon Energy. 2023; 5 (2): e248.
[6]
Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed. 2009; 48 (50): 9457- 9460.
[7]
Lyndon R, Konstas K, Evans RA, Keddie DJ, Hill MR, Ladewig BP. Tunable photodynamic switching of DArE@PAF-1 for carbon capture. Adv Funct Mater. 2015; 25 (28): 4405- 4411.
[8]
Li B, Sun Q, Zhang Y, et al. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS Appl Mater Interfaces. 2017; 9 (14): 12511- 12517.
[9]
Jing L-P, Sun J-S, Sun F, Chen P, Zhu G. Porous aromatic framework with mesopores as a platform for a super-efficient heterogeneous Pd-based organometallic catalysis. Chem Sci. 2018; 9 (14): 3523- 3530.
[10]
Lee S, Barin G, Ackerman CM, et al. Copper capture in a thioether-functionalized porous polymer applied to the detection of Wilson's disease. J Am Chem Soc. 2016; 138 (24): 7603- 7609.
[11]
Yue Y, Zhang C, Tang Q, et al. A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater. Ind Eng Chem Res. 2016; 55 (15): 4125- 4129.
[12]
Yuan R, Ren H, Yan Z, Wang A, Zhu G. Robust tri(4-ethynylphenyl)amine-based porous aromatic frameworks for carbon dioxide capture. Polym Chem. 2014; 5 (7): 2266- 2272.
[13]
Ma H, Ren H, Zou X, Meng S, Sun F, Zhu G. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures. Polym Chem. 2014; 5 (1): 144- 152.
[14]
Yan Z, Ren H, Ma H, et al. Construction and sorption properties of pyrene-based porous aromatic frameworks. Microporous Mesoporous Mater. 2013; 173: 92- 98.
[15]
Yan Z, Yuan Y, Tian Y, Zhang D, Zhu G. Addendum: highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites. Angew Chem Int Ed. 2015; 54 (48): 14215.
[16]
Meng S, Zou X, Liu C, et al. Synthesis and catalytic properties of new metalloporphyrin-based porous organic framework materials with single and accessible sites. ChemCatChem. 2016; 8 (14): 2393- 2400.
[17]
Zhang L, Sun J-S, Sun F, Chen P, Liu J, Zhu G. Facile synthesis of ultrastable porous aromatic frameworks by Suzuki-Miyaura coupling reaction for adsorption removal of organic dyes. Chem Eur J. 2019; 25 (15): 3903- 3908.
[18]
Jing X, Sun F, Ren H, et al. Targeted synthesis of micro-mesoporous hybrid material derived from octaphenylsilsesquioxane building units. Microporous Mesoporous Mater. 2013; 165: 92- 98.
[19]
Meng S, Ma H, Jiang L, Ren H, Zhu G. A facile approach to prepare porphyrinic porous aromatic frameworks for small hydrocarbon separation. J Mater Chem A. 2014; 2 (35): 14536- 14541.
[20]
Hou S, Razzaque S, Tan B. Effects of synthesis methodology on microporous organic hyper-cross-linked polymers with respect to structural porosity, gas uptake performance and fluorescence properties. Polym Chem. 2019; 10 (11): 1299- 1311.
[21]
Li B, Guan Z, Yang X, et al. Multifunctional microporous organic polymers. J Mater Chem A. 2014; 2 (30): 11930- 11939.
[22]
Li L, Ren H, Yuan Y, Yu G, Zhu G. Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization. J Mater Chem A. 2014; 2 (29): 11091- 11098.
[23]
Tran VT, Li ZQ, Apolinar O, et al. Ni(COD)(DQ):an air-stable 18-electron nickel(0)-olefin precatalyst. Angew Chem Int Ed. 2020; 59 (19): 7409- 7413.
[24]
Nattmann L, Saeb R, Nöthling N, Cornella J. An air-stable binary Ni(0)-olefin catalyst. Nat Catal. 2020; 3 (1): 6- 13.
[25]
Dander JE, Weires NA, Garg NK. Benchtop delivery of Ni(cod)2 using paraffin capsules. Org Lett. 2016; 18 (15): 3934- 3936.
[26]
Yamamoto T. C-C coupling promoted by a NiCl2/bpy/Mg system in DMF and its application to dehalogenative polycondensation. Chem Lett. 2012; 41 (11): 1422- 1424.
[27]
Yamamoto T. Homocoupling of aryl halides promoted by an NiCl2/bpy/Mg system in DMF. Appl Organomet Chem. 2014; 28 (8): 598- 604.
[28]
Ueda M, Ichikawa F. Synthesis of aromatic poly(ether ketone)s by nickel-catalyzed coupling polymerization of aromatic dichlorides. Macromolecules. 1990; 23 (4): 926- 930.
[29]
Wang Y, Quirk RP. Synthesis and characterization of poly(benzoyl-1,4-phenylene)s. 2. catalyst coligand effects on polymer properties. Macromolecules. 1995; 28 (10): 3495- 3501.
[30]
Yamamoto T. Electrically conducting and thermally stable π-conjugated poly(arylene)s prepared by organometallic processes. Prog Polym Sci. 1992; 17 (6): 1153- 1205.
[31]
Tatsumi K, Nakamura A, Komiya S, Yamamoto A, Yamamoto T. An associative mechanism for reductive elimination of d8 NiR2(PR3)2. J Am Chem Soc. 1984; 106 (26): 8181- 8188.
[32]
Colon I, Kelsey DR. Coupling of aryl chlorides by nickel and reducing metals. J Org Chem. 1986; 51 (14): 2627- 2637.
[33]
Tsou TT, Kochi JK. Nickel catalysis in halogen exchange with aryl and vinylic halides. J Org Chem. 1980; 45 (10): 1930- 1937.
[34]
Takagi K, Hayama N, Okamoto T. Synthesis of aryl iodides from aryl halides and potassium iodide by means of nickel catalyst. Chem Lett. 1978; 7 (2): 191- 192.
[35]
Suginome M, Matsuda T, Yoshimoto T, Ito Y. Nickel-catalyzed silaboration of small-ring vinylcycloalkanes: regio- and stereoselective (E)-allylsilane formation via C−C bond cleavage. Organometallics. 2002; 21 (8): 1537- 1539.
[36]
Khemchyan LL, Ivanova JV, Zalesskiy SS, Ananikov VP, Beletskaya IP, Starikova ZA. Unprecedented control of selectivity in nickel-catalyzed hydrophosphorylation of alkynes: efficient route to mono- and bisphosphonates. Adv Synth Catal. 2014; 356 (4): 771- 780.
[37]
Rollin Y, Troupel M, Tuck DG, Perichon J. The coupling of organic groups by the electrochemical reduction of organic halides: catalysis by 2,2′-bipyridinenickel complexes. J Organomet Chem. 1986; 303 (1): 131- 137.
[38]
Yuan D, Lu W, Zhao D, Zhou H-C. Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater. 2011; 23 (32): 3723- 3725.
[39]
Ren H, Ben T, Sun F, et al. Synthesis of a porous aromatic framework for adsorbing organic pollutants application. J Mater Chem. 2011; 21 (28): 10348- 10353.
[40]
Pei C, Ben T, Cui Y, Qiu S. Storage of hydrogen, methane, carbon dioxide in electron-rich porous aromatic framework (JUC-Z2). Adsorption. 2012; 18 (5-6): 375- 380.
[41]
Aminu MD, Nabavi SA, Rochelle CA, Manovic V. A review of developments in carbon dioxide storage. Appl Energy. 2017; 208: 1389- 1419.
[42]
Leung DYC, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renewable Sustainable Energy. 2014; 39: 426- 443.
[43]
Lin Y, Kong C, Zhang Q, Chen L. Metal-organic frameworks for carbon dioxide capture and methane storage. Adv Energy Mater. 2017; 7 (4): 1601296.
[44]
Rani S, Padmanabhan E, Prusty BK. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage. J Pet Sci Eng. 2019; 175: 634- 643.
[45]
Mason JA, Veenstra M, Long JR. Evaluating metal-organic frameworks for natural gas storage. Chem Sci. 2014; 5 (1): 32- 51.
[46]
Bracco S, Piga D, Bassanetti I, Perego J, Comotti A, Sozzani P. Porous 3D polymers for high pressure methane storage and carbon dioxide capture. J Mater Chem A. 2017; 5 (21): 10328- 10337.
[47]
Jia J, Chen Z, Jiang H, et al. Extremely hydrophobic POPs to access highly porous storage media and capturing agent for organic vapors. Chem. 2019; 5 (1): 180- 191.
[48]
Elsaidi SK, Mohamed MH, Helal AS, et al. Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel. Nat Commun. 2020; 11: 3103.
[49]
Banerjee D, Cairns AJ, Liu J, et al. Potential of metal-organic frameworks for separation of xenon and krypton. Acc Chem Res. 2015; 48 (2): 211- 219.
[50]
Riley BJ, Vienna JD, Strachan DM, McCloy JS, Jerden JL. Materials and processes for the effective capture and immobilization of radioiodine: a review. J Nucl Mater. 2016; 470: 307- 326.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/