High-rate metal-free MXene microsupercapacitors on paper substrates
Han Xue , Po-Han Huang , Lee-Lun Lai , Yingchun Su , Axel Strömberg , Gaolong Cao , Yuzhu Fan , Sergiy Khartsev , Mats Göthelid , Yan-Ting Sun , Jonas Weissenrieder , Kristinn B. Gylfason , Frank Niklaus , Jiantong Li
Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 442
High-rate metal-free MXene microsupercapacitors on paper substrates
MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors (MSCs). Despite its superior electrochemical performance, only a few studies have reported MXene-based ultrahigh-rate (>1000 mV s−1) on-paper MSCs, mainly due to the reduced electrical conductance of MXene films deposited on paper. Herein, ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser scribing. With a footprint area of only 20 mm2, the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm−2 and long cycle life (>95% capacitance retention after 10,000 cycles) at a high scan rate of 1000 mV s−1, outperforming most of the present on-paper MSCs. Furthermore, the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays, which can also be simultaneously charged/discharged at 1000 mV s−1, showing scalable capacitive performance. The heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics.
direct ink writing / femtosecond laser scribing / MXene / on-paper microsupercapacitors / PEDOT:PSS / ultrahigh rate capability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |