High-rate metal-free MXene microsupercapacitors on paper substrates

Han Xue, Po-Han Huang, Lee-Lun Lai, Yingchun Su, Axel Strömberg, Gaolong Cao, Yuzhu Fan, Sergiy Khartsev, Mats Göthelid, Yan-Ting Sun, Jonas Weissenrieder, Kristinn B. Gylfason, Frank Niklaus, Jiantong Li

Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 442.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (5) : 442. DOI: 10.1002/cey2.442
RESEARCH ARTICLE

High-rate metal-free MXene microsupercapacitors on paper substrates

Author information +
History +

Abstract

MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors (MSCs). Despite its superior electrochemical performance, only a few studies have reported MXene-based ultrahigh-rate (>1000 mV s−1) on-paper MSCs, mainly due to the reduced electrical conductance of MXene films deposited on paper. Herein, ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser scribing. With a footprint area of only 20 mm2, the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm−2 and long cycle life (>95% capacitance retention after 10,000 cycles) at a high scan rate of 1000 mV s−1, outperforming most of the present on-paper MSCs. Furthermore, the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays, which can also be simultaneously charged/discharged at 1000 mV s−1, showing scalable capacitive performance. The heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics.

Keywords

direct ink writing / femtosecond laser scribing / MXene / on-paper microsupercapacitors / PEDOT:PSS / ultrahigh rate capability

Cite this article

Download citation ▾
Han Xue, Po-Han Huang, Lee-Lun Lai, Yingchun Su, Axel Strömberg, Gaolong Cao, Yuzhu Fan, Sergiy Khartsev, Mats Göthelid, Yan-Ting Sun, Jonas Weissenrieder, Kristinn B. Gylfason, Frank Niklaus, Jiantong Li. High-rate metal-free MXene microsupercapacitors on paper substrates. Carbon Energy, 2024, 6(5): 442 https://doi.org/10.1002/cey2.442

References

[1]
Zhu Y, Wang S, Ma J, Das P, Zheng S, Wu ZS. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Mater. 2022; 51: 500- 526.
[2]
Zhang YZ, Wang Y, Jiang Q, El-Demellawi JK, Kim H, Alshareef HN. MXene printing and patterned coating for device applications. Adv Mater. 2020; 32 (21): 1908486.
[3]
Yang J, Bao W, Jaumaux P, Zhang S, Wang C, Wang G. MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv Mater Interfaces. 2019; 6 (8): 1802004.
[4]
Zhang CJ, Kremer MP, Seral-Ascaso A, et al. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv Funct Mater. 2018; 28 (9): 1705506.
[5]
Li H, Li X, Liang J, Chen Y. Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance. Adv Energy Mater. 2019; 9 (15): 1803987.
[6]
Zhang C, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun. 2019; 10: 1795.
[7]
Kurra N, Ahmed B, Gogotsi Y, Alshareef HN. MXene-on-paper coplanar microsupercapacitors. Adv Energy Mater. 2016; 6 (24): 1601372.
[8]
Chen W, Gu J, Liu Q, et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat Nanotechnol. 2022; 17 (2): 153- 158.
[9]
Landers M, Elhadad A, Rezaie M, Choi S. Integrated papertronic techniques: highly customizable resistor, supercapacitor, and transistor circuitry on a single sheet of paper. ACS Appl Mater Interfaces. 2022; 14 (40): 45658- 45668.
[10]
Pan T, Liu S, Zhang L, Xie W. Flexible organic optoelectronic devices on paper. iScience. 2022; 25 (2): 103782.
[11]
Li Z, Ruiz V, Mishukova V, et al. Inkjet printed disposable high-rate on-paper microsupercapacitors. Adv Funct Mater. 2021; 32 (1): 2108773.
[12]
Shahzad F, Iqbal A, Kim H, Koo CM. 2D transition metal carbides (MXenes):applications as an electrically conducting material. Adv Mater. 2020; 32 (51): 2002159.
[13]
Zhang J, Kong N, Uzun S, et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater. 2020; 32 (23): 2001093.
[14]
Zang X, Shen C, Chu Y, et al. Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv Mater. 2018; 30 (26): 1800062.
[15]
Sollami Delekta S, Laurila MM, Mäntysalo M, Li J. Drying-mediated self-assembly of graphene for inkjet printing of high-rate micro-supercapacitors. Nano-Micro Lett. 2020; 12 (1): 40.
[16]
Gund GS, Park JH, Harpalsinh R, et al. MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule. 2019; 3 (1): 164- 176.
[17]
Zhang J, Seyedin S, Qin S, et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small. 2019; 15 (8): 1804732.
[18]
Guan X, Feng W, Wang X, Venkatesh R, Ouyang J. Significant enhancement in the seebeck coefficient and power factor of p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) through the incorporation of n-type MXene. ACS Appl Mater Interfaces. 2020; 12 (11): 13013- 13020.
[19]
Li L, Meng J, Bao X, et al. Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv Energy Mater. 2023; 13 (9): 2203683.
[20]
Li J, Levitt A, Kurra N, et al. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 2019; 20: 455- 461.
[21]
Kyeremateng NA, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat Nanotechnol. 2017; 12 (1): 7- 15.
[22]
Li J, Sollami Delekta S, Zhang P, et al. Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing. ACS Nano. 2017; 11 (8): 8249- 8256.
[23]
Li Q, Wang Q, Li L, et al. Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv Energy Mater. 2020; 10 (24): 2000470.
[24]
Enrico A, Hartwig O, Dominik N, et al. Ultrafast and resist-free nanopatterning of 2D materials by femtosecond laser irradiation. ACS Nano. 2023; 17 (9): 8041- 8052.
[25]
Dillon AD, Ghidiu MJ, Krick AL, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater. 2016; 26 (23): 4162- 4168.
[26]
Miranda A, Halim J, Barsoum MW, Lorke A. Electronic properties of freestanding Ti3C2Tx MXene monolayers. Appl Phys Lett. 2016; 108 (3): 033102.
[27]
Zang X, Wang J, Qin Y, et al. Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 2020; 12 (1): 77.
[28]
Jiao S, Zhou A, Wu M, Hu H. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv Sci. 2019; 6 (12): 1900529.
[29]
Ma R, Zhang X, Zhuo J, et al. Self-supporting, binder-free, and flexible Ti3C2Tx MXene-based supercapacitor electrode with improved electrochemical performance. ACS Nano. 2022; 16 (6): 9713- 9727.
[30]
Yang J, Pan Z, Zhong J, Li S, Wang J, Chen PY. Electrostatic self-assembly of heterostructured black phosphorus-MXene nanocomposites for flexible microsupercapacitors with high rate performance. Energy Storage Mater. 2021; 36: 257- 264.
[31]
Ma J, Zheng S, Cao Y, et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv Energy Mater. 2021; 11 (23): 2100746.
[32]
Taberna PL, Simon P, Fauvarque JF. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc. 2003; 150 (3): A292- A300.
[33]
Guo T, Zhou D, Deng S, et al. Rational design of Ti3C2Tx MXene inks for conductive, transparent films. ACS Nano. 2023; 17 (4): 3737- 3749.
[34]
Xia Y, Mathis TS, Zhao MQ, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature. 2018; 557 (7705): 409- 412.
[35]
Hu H, Hua T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. J Mater Chem A. 2017; 5 (37): 19639- 19648.
[36]
Quain E, Mathis TS, Kurra N, et al. Direct writing of additive-free MXene-in-water ink for electronics and energy storage. Adv Mater Technol. 2019; 4 (1): 1800256.
[37]
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017; 29 (18): 7633- 7644.
[38]
Li J, Ye F, Vaziri S, Muhammed M, Lemme MC, Östling M. Efficient inkjet printing of graphene. Adv Mater. 2013; 25 (29): 3985- 3992.
[39]
Mishukova V, Boulanger N, Iakunkov A, et al. Facile fabrication of graphene-based high-performance microsupercapacitors operating at a high temperature of 150℃. Nanoscale Adv. 2021; 3 (16): 4674- 4679.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/