Revealing the atomic mechanism of diamond-iron interfacial reaction

Yalun Ku , Kun Xu , Longbin Yan , Kuikui Zhang , Dongsheng Song , Xing Li , Shunfang Li , Shaobo Cheng , Chongxin Shan

Carbon Energy ›› 2024, Vol. 6 ›› Issue (3) : 440

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (3) : 440 DOI: 10.1002/cey2.440
RESEARCH ARTICLE

Revealing the atomic mechanism of diamond-iron interfacial reaction

Author information +
History +
PDF

Abstract

Diamond, with ultrahigh hardness, high wear resistance, high thermal conductivity, and so forth, has attracted worldwide attention. However, researchers found emergent reactions at the interfaces between diamond and ferrous materials, which significantly affects the performance of diamond-based devices. Herein, combing experiments and theoretical calculations, taking diamond–iron (Fe) interface as a prototype, the counter-diffusion mechanism of Fe/carbon atoms has been established. Surprisingly, it is identified that Fe and diamond first form a coherent interface, and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites. Meanwhile, the relaxed carbon atoms diffuse into the Fe lattice, forming Fe3C. Moreover, graphite is observed at the Fe3C surface when Fe3C is over-saturated by carbon atoms. The present findings are expected to offer new insights into the atomic mechanism for diamond-ferrous material's interfacial reactions, benefiting diamond-based device applications.

Keywords

coherent interface / counter-diffusion / diamond / iron / phase transition

Cite this article

Download citation ▾
Yalun Ku, Kun Xu, Longbin Yan, Kuikui Zhang, Dongsheng Song, Xing Li, Shunfang Li, Shaobo Cheng, Chongxin Shan. Revealing the atomic mechanism of diamond-iron interfacial reaction. Carbon Energy, 2024, 6(3): 440 DOI:10.1002/cey2.440

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ekimov EA, Sidorov VA, Bauer ED, et al. Superconductivity in diamond. Nature. 2004; 428 (6982): 542- 545.

[2]

Yue Y, Gao Y, Hu W, et al. Hierarchically structured diamond composite with exceptional toughness. Nature. 2020; 582 (7812): 370- 374.

[3]

Wang H, Cui Y. Nanodiamonds for energy. Carbon Energy. 2019; 1 (1): 13- 18.

[4]

Dou W, Zhu C, Wu X, et al. Lightweight diamond/Cu interface tuning for outstanding heat conduction. Carbon Energy. In press;

[5]

Cotty WF. Diamond as a pinpoint radiation counter. Nature. 1956; 177 (4519): 1075- 1076.

[6]

Rath P, Khasminskaya S, Nebel C, Wild C, Pernice WHP. Diamond-integrated optomechanical circuits. Nat Commun. 2013; 4: 1690.

[7]

Sood A, Cheaito R, Bai T, et al. Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries. Nano Lett. 2018; 18 (6): 3466- 3472.

[8]

Field DE, Cuenca JA, Smith M, et al. Crystalline interlayers for reducing the effective thermal boundary resistance in GaN-on-Diamond. ACS Appl. Mater Interfaces. 2020; 12 (48): 54138- 54145.

[9]

Tomm JW, Gerhardt A, Elsaesser T, Lorenzen D, Hennig P. Simultaneous quantification of strain and defects in high-power diode laser devices. Appl. Phys Lett. 2002; 81 (17): 3269- 3271.

[10]

Coad EJ, Pickles CSJ, Jilbert GH, Field JE. Aerospace erosion of diamond and diamond coatings. Diam Relat Mater. 1996; 5 (6-8): 640- 643.

[11]

Losego MD, Grady ME, Sottos NR, Cahill DG, Braun PV. Effects of chemical bonding on heat transport across interfaces. Nat Mater. 2012; 11 (6): 502- 506.

[12]

Hohensee GT, Wilson RB, Cahill DG. Thermal conductance of metal-diamond interfaces at high pressure. Nat Commun. 2015; 6: 6578.

[13]

Lu J, Cao Z, Qi F, Qian M, Zhang W. Evolution of interface carbide diamond brazed with filler alloy containing Cr. Diam Relat Mater. 2018; 90: 116- 125.

[14]

Saito Y, Isozaki T, Masuda A, et al. Adhesion strength of diamond film on cemented carbide insert. Diam Relat Mater. 1993; 2 (11): 1391- 1395.

[15]

Shimada S, Tanaka H, Higuchi M, Yamaguchi T, Honda S, Obata K. Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals. CIRP Ann. 2004; 53 (1): 57- 60.

[16]

Ohashi T, Sugimoto W, Takasu Y. Catalytic etching of {100}-oriented diamond coating with Fe, Co, Ni, and Pt nanoparticles under hydrogen. Diam Relat Mater. 2011; 20 (8): 1165- 1170.

[17]

Ohashi T, Sugimoto W, Takasu Y. Catalytic etching of synthetic diamond crystallites by iron. Appl Surf Sci. 2012; 258 (20): 8128- 8133.

[18]

Wang J, Wan L, Chen J, Yan J. Anisotropy of synthetic diamond in catalytic etching using iron powder. Appl Surf Sci. 2015; 346: 388- 393.

[19]

Zou L, Zhou M. Experimental investigation and numerical simulation on interfacial carbon diffusion of diamond tool and ferrous metals. J Wuhan Univ Technol Mater Sci Ed. 2016; 31 (2): 307- 314.

[20]

Zenkin S, Gaydaychuk A, Okhotnikov V, Linnik S. CVD diamond interaction with Fe at elevated temperatures. Materials. 2018; 11 (12): 2505.

[21]

Zou L, Yin J, Huang Y, Zhou M. Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals. Diam Relat Mater. 2018; 86: 29- 40.

[22]

Paul E, Evans CJ, Mangamelli A, McGlauflin ML, Polvani RS. Chemical aspects of tool wear in single point diamond turning. Precis Eng. 1996; 18 (1): 4- 19.

[23]

Narulkar R, Bukkapatnam S, Raff LM, Komanduri R. Graphitization as a precursor to wear of diamond in machining pure iron: A molecular dynamics investigation. Comput Mater Sci. 2009; 45 (2): 358- 366.

[24]

Liu K, Lv Z, Dai B, et al. High-selectivity anisotropic etching of single-crystal diamond by H plasma using iron catalysis. Diam Relat Mater. 2018; 86: 186- 192.

[25]

Li XJ, He LL, Li YS, Yang Q. Catalytic graphite mechanism during CVD diamond film on iron and cobalt alloys in CH4-H2 atmospheres. Surf Coat Technol. 2019; 360: 20- 28.

[26]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystal. 2011; 44 (6): 1272- 1276.

[27]

Barthel J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy. 2018; 193: 1- 11.

[28]

Dai Y, Zhang X, Cui Y, et al. Theoretical insights into strong intrinsic piezoelectricity of blue-phosphorus-like group-IV monochalcogenides. Nano Res. 2021; 15 (1): 209- 216.

[29]

Gao L, Zhang YF, Du S. Semiconducting M2X (M = Cu, Ag, Au; X = S, Se, Te) monolayers: a broad range of band gaps and high carrier mobilities. Nano Res. 2021; 14 (8): 2826- 2830.

[30]

Feng Y, Peng R, Dai Y, Huang B, Duan L, Ma Y. Antiferromagnetic ferroelastic multiferroics in single-layer VOX (X = Cl, Br) predicted from first-principles. Appl Phys Lett. 2021; 119 (17): 173103.

[31]

Cao L, Deng X, Tang Z, Zhou G, Ang YS. Designing high-efficiency metal and semimetal contacts to two-dimensional semiconductor γ-GeSe. Appl Phys Lett. 2022; 121 (11): 113104.

[32]

Guo SD, Guo XS, Zhu YT, Ang YS. Predicted ferromagnetic monolayer CrSCl with large vertical piezoelectric response: a first-principles study. Appl Phys Lett. 2022; 121 (6): 062403.

[33]

Wang K, Ren K, Zhang D, Cheng Y, Zhang G. Phonon properties of biphenylene monolayer by first-principles calculations. Appl Phys Lett. 2022; 121 (4): 042203.

[34]

Zhu J, Muthe KP, Pandey R. Stability and electronic properties of carbon in α-Al2O3. J Phys Chem Solids. 2014; 75 (3): 379- 383.

[35]

Rodríguez-Manzo JA, Pham-Huu C, Banhart F. Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano. 2011; 5 (2): 1529- 1534.

[36]

Hamon AL, Verbeeck J, Schryvers D, Benedikt J, van de Sanden RMCM. ELNES study of carbon K-edge spectra of plasma deposited carbon films. J Mater Chem. 2004; 14 (13): 2030- 2035.

[37]

Zeng Z, Yang L, Zeng Q, et al. Synthesis of quenchable amorphous diamond. Nat Commun. 2017; 8: 322.

[38]

He K, Brown A, Brydson R, Edmonds DV. Analytical electron microscope study of the dissolution of the Fe3C iron carbide phase (cementite) during a graphitisation anneal of carbon steel. J Mater Sci. 2006; 41 (16): 5235- 5241.

[39]

Wang H, Jin Z, Shi Z, Gao J, Guo J. The adsorption and migration behaviors of Fe atoms on the diamond (111) surface. Appl Surf Sci. 2021; 543: 148766.

[40]

Breuer SJ, Briddon PR. Ab initio investigation of the native defects in diamond and self-diffusion. Phys Rev B. 1995; 51 (11): 6984- 6994.

[41]

Goss JP, Rayson MJ, Briddon PR, Baker JM. Metastable Frenkel pairs and the W11-W14 electron paramagnetic resonance centers in diamond. Phys Rev B. 2007; 76 (4): 045203.

[42]

Meng Y, Yan C, Lai J, et al. Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing. Proc Natl Acad Sci USA. 2008; 105 (46): 17620- 17625.

[43]

Shi W, Lu C, Yang S, Deng J. Study on adsorption and diffusion of lithium on nitrogen doped silicon carbide nanotubes by density functional theory. Comput Theor Chem. 2017; 1115: 169- 174.

RIGHTS & PERMISSIONS

2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

520

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/