Highly selective photocatalytic reduction of CO2 to CH4 on electron-rich Fe species cocatalyst under visible light irradiation
Qianying Lin , Jiwu Zhao , Pu Zhang , Shuo Wang , Ying Wang , Zizhong Zhang , Na Wen , Zhengxin Ding , Rusheng Yuan , Xuxu Wang , Jinlin Long
Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 435 -12.
Highly selective photocatalytic reduction of CO2 to CH4 on electron-rich Fe species cocatalyst under visible light irradiation
Efficient photocatalytic reduction of CO2 to high-calorific-value CH4, an ideal target product, is a blueprint for C1 industry relevance and carbon neutrality, but it also faces great challenges. Herein, we demonstrate unprecedented hybrid SiC photocatalysts modified by Fe-based cocatalyst, which are prepared via a facile impregnation-reduction method, featuring an optimized local electronic structure. It exhibits a superior photocatalytic carbon-based products yield of 30.0 µmol g-1 h-1 and achieves a record CH4 selectivity of up to 94.3%, which highlights the effectiveness of electron-rich Fe cocatalyst for boosting photocatalytic performance and selectivity. Specifically, the synergistic effects of directional migration of photogenerated electrons and strong π-back bonding on low-valence Fe effectively strengthen the adsorption and activation of reactants and intermediates in the CO2 → CH4 pathway. This study inspires an effective strategy for enhancing the multielectron reduction capacity of semiconductor photocatalysts with low-cost Fe instead of noble metals as cocatalysts.
artificial synthesis of CH 4 / electronic structure optimization / Fe species cocatalyst / photocatalytic CO 2 reduction / SiC
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |