Highly selective photocatalytic reduction of CO2 to CH4 on electron-rich Fe species cocatalyst under visible light irradiation

Qianying Lin , Jiwu Zhao , Pu Zhang , Shuo Wang , Ying Wang , Zizhong Zhang , Na Wen , Zhengxin Ding , Rusheng Yuan , Xuxu Wang , Jinlin Long

Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 435 -12.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 435 -12. DOI: 10.1002/cey2.435
RESEARCH ARTICLE

Highly selective photocatalytic reduction of CO2 to CH4 on electron-rich Fe species cocatalyst under visible light irradiation

Author information +
History +
PDF

Abstract

Efficient photocatalytic reduction of CO2 to high-calorific-value CH4, an ideal target product, is a blueprint for C1 industry relevance and carbon neutrality, but it also faces great challenges. Herein, we demonstrate unprecedented hybrid SiC photocatalysts modified by Fe-based cocatalyst, which are prepared via a facile impregnation-reduction method, featuring an optimized local electronic structure. It exhibits a superior photocatalytic carbon-based products yield of 30.0 µmol g-1 h-1 and achieves a record CH4 selectivity of up to 94.3%, which highlights the effectiveness of electron-rich Fe cocatalyst for boosting photocatalytic performance and selectivity. Specifically, the synergistic effects of directional migration of photogenerated electrons and strong π-back bonding on low-valence Fe effectively strengthen the adsorption and activation of reactants and intermediates in the CO2 → CH4 pathway. This study inspires an effective strategy for enhancing the multielectron reduction capacity of semiconductor photocatalysts with low-cost Fe instead of noble metals as cocatalysts.

Keywords

artificial synthesis of CH 4 / electronic structure optimization / Fe species cocatalyst / photocatalytic CO 2 reduction / SiC

Cite this article

Download citation ▾
Qianying Lin, Jiwu Zhao, Pu Zhang, Shuo Wang, Ying Wang, Zizhong Zhang, Na Wen, Zhengxin Ding, Rusheng Yuan, Xuxu Wang, Jinlin Long. Highly selective photocatalytic reduction of CO2 to CH4 on electron-rich Fe species cocatalyst under visible light irradiation. Carbon Energy, 2024, 6(1): 435-12 DOI:10.1002/cey2.435

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv Mater. 2018; 30 (10): 1706108.

[2]

Liu L, Wang Z, Zhang J, Ruzimuradov O, Dai K, Low J. Tunable interfacial charge transfer in a 2D-2D composite for efficient visible-light-driven CO2 conversion. Adv Mater. 2023; 35 (26): 2300643.

[3]

Wang G, Wu Y, Li Z, et al. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew Chem Int Ed. 2023; 62 (13): e202218460.

[4]

Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci. 2017; 392: 658- 686.

[5]

Zeng S, Kar P, Thakur UK, Shankar K. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology. 2018; 29 (5): 052001.

[6]

Xu Q, Xia Z, Zhang J, et al. Recent advances in solar-driven CO2 reduction over g-C3N4-based photocatalysts. Carbon Energy. 2022; 5 (2): e205.

[7]

Cheng C, Mao L, Kang X, et al. A high-cyano groups-content amorphous-crystalline carbon nitride isotype heterojunction photocatalyst for high-quantum-yield H2 production and enhanced CO2 reduction. Appl Catal B. 2023; 331: 122733.

[8]

Fu W, Fan J, Xiang Q. Ag2S quantum dots decorated on porous cubic-CdS nanosheets-assembled flowers for photocatalytic CO2 reduction. Chin J Struct Chem. 2022; 41 (6): 2206039- 2206047.

[9]

Wang P, Ba X, Zhang X, et al. Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH. Chem Eng J. 2023; 457: 141248.

[10]

Wang X, Wang Y, Gao M, et al. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl Catal B. 2020; 270: 118876.

[11]

Shi X, Huang Y, Bo Y, et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinumdecorated defective carbon nitride. Angew Chem Int Ed. 2022; 61 (27): e202203063.

[12]

Li Z, Wu D, Gong W, et al. Highly efficient photocatalytic CO2 methanation over Ru-doped TiO2 with tunable oxygen vacancies. Chin J Struct Chem. 2022; 41 (12): 2212043- 2212050.

[13]

Xu H, Wang Z, Liao H, et al. Proximity of defects and Ti-H on hydrogenated SrTiO3 mediated photocatalytic reduction of CO2 to C2H2. Appl Catal B. 2023; 336: 122935.

[14]

Lin H, Liu Y, Wang Z, et al. Enhanced CO2 photoreduction through spontaneous charge separation in end-capping assembly of heterostructured covalent-organic frameworks. Angew Chem Int Ed. 2022; 61 (50): e202214142.

[15]

Wang Z, Zhu J, Zu X, et al. Selective CO2 photoreduction to CH4 via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets. Angew Chem Int Ed. 2022; 61 (30): e202203249.

[16]

Zhang P, Sui X, Wang Y, et al. Surface Ru-H bipyridine complexes-grafted TiO2 nanohybrids for efficient photocatalytic CO2 methanation. J Am Chem Soc. 2023; 145 (10): 5769- 5777.

[17]

Huang H, Zhao J, Weng B, et al. Site-sensitive selective CO2 photoreduction to CO over gold nanoparticles. Angew Chem Int Ed. 2022; 61 (28): e202204563.

[18]

Cheng J, Xie B, Zhou J, Song W, Cen K. Cogeneration of H2 and CH4 from water hyacinth by two-step anaerobic fermentation. Int J Hydrogen Energy. 2010; 35 (7): 3029- 3035.

[19]

Mnatsakanov TT, Levinshtein ME, Pomortseva LI, Yurkov SN. Carrier mobility model for simulation of SiC-based electronic devices. Semicond Sci Technol. 2002; 17 (9): 974- 977.

[20]

Nishino S, Powell JA, Will HA. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices. Appl Phys Lett. 1983; 42 (5): 460- 462.

[21]

Guo X, Tong X, Wang Y, Chen C, Jin G, Guo XY. High photoelectrocatalytic performance of a MoS2-SiC hybrid structure for hydrogen evolution reaction. J Mater Chem A. 2013; 1 (15): 4657- 4661.

[22]

Zhou X, Gao Q, Li X, et al. Ultra-thin SiC layer covered graphene nanosheets as advanced photocatalysts for hydrogen evolution. J Mater Chem A. 2015; 3 (20): 10999- 11005.

[23]

Xie Y, Yang J, Chen Y, et al. Promising application of SiC without co-catalyst in photocatalysis and ozone integrated process for aqueous organics degradation. Catal Today. 2018; 315: 223- 229.

[24]

Wang Y, Zhang Z, Zhang L, et al. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@ 2D-MoS2 heterostructure. J Am Chem Soc. 2018; 140 (44): 14595- 14598.

[25]

Wang Y, Zhang L, Zhang X, et al. Openmouthed β-SiC hollowsphere with highly photocatalytic activity for reduction of CO2 with H2O. Appl Catal B. 2017; 206: 158- 167.

[26]

Wang B, Guo X, Jin G, Guo X. Visible-light-enhanced photocatalytic Sonogashira reaction over silicon carbide supported Pd nanoparticles. Catal Commun. 2017; 98: 81- 84.

[27]

Zhu Y, Xu Z, Lang Q, et al. Grain boundary engineered metal nanowire cocatalysts for enhanced photocatalytic reduction of carbon dioxide. Appl Catal B. 2017; 206: 282- 292.

[28]

Meng X, Ouyang S, Kako T, et al. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem Commun. 2014; 50 (78): 11517- 11519.

[29]

He F, Song Z, Wang Z, Peng S, Li Y. In situ photoreduction synthesis of Fe (0)/melamine core-shell submicrocubes for efficient photocatalytic H2 evolution. ACS Appl Energy Mater. 2018; 1 (6): 2483- 2489.

[30]

Zhao Y, Cui G, Wang J, Fan M. Effects of ionic liquids on the characteristics of synthesized nano Fe(0) particles. Inorg Chem. 2009; 48 (21): 10435- 10441.

[31]

Liu L, Dong X, Yang F. Photocatalytic removal of nitrate from water using Fe0/TiO2. Int Conf Bioinf Biomed Eng IEEE. 2008; 2: 3657- 3660.

[32]

Wang Y, Zhang Y, Gao Y, Wang D. Modulating Lewis acidic active sites of Fe doped Bi2MoO6 nanosheets for enhanced electrochemical nitrogen fixation. J Colloid Interface Sci. 2023; 646: 176- 184.

[33]

Chen K, Jiang T, Liu T, et al. Zn dopants synergistic oxygen vacancy boosts ultrathin CoO layer for CO2 photoreduction. Adv Funct Mater. 2022; 32 (15): 2109336.

[34]

Hocking RK, Wasinger EC, de Groot FMF, Hodgson KO, Hedman B, Solomon EI. Fe L-edge XAS studies of K4[Fe(CN)6] and K3[Fe(CN)6]: a direct probe of back-bonding. J Am Chem Soc. 2006; 128 (32): 10442- 10451.

[35]

Wang Y, Zhao J, Wang T, et al. CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: surface species and their reactivity. J Catal. 2016; 337: 293- 302.

[36]

Song H, Li Y, Lou Z, et al. Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal B. 2015; 166-167: 112- 120.

[37]

Liu J, Zhang J, Xing L, et al. Magnetic Fe3O4/attapulgite hybrids for Cd(II) adsorption: performance, mechanism and recovery. J Hazard Mater. 2021; 412: 125237.

[38]

Xu J, Li J, Peng X, et al. Rapid degradation of RhB using mesoporous α-Fe2O3 nanowires incorporated in SBA-15 under visible light irradiation. J Mater Sci Mater Electron. 2023; 34 (7): 580.

[39]

Ardizzone S, Bianchi CL, Fadoni M, Vercelli B. Magnesium salts and oxide: an XPS overview. Appl Surf Sci. 1997; 119 (3-4): 253- 259.

[40]

Ma QB, Ziegler J, Kaiser B, et al. Solar water splitting with p-SiC film on. p-Si: photoelectrochemical behavior and XPS characterization. Int J Hydrogen Energy. 2014; 39 (4): 1623- 1629.

[41]

Binner J, Zhang Y. Characterization of silicon carbide and silicon powders by XPS and zeta potential measurement. J Mater Sci Lett. 2001; 20 (2): 123- 126.

[42]

Li Z, Zhu Y. Surface-modification of SiO2 nanoparticles with oleic acid. Appl Surf Sci. 2003; 211 (1-4): 315- 320.

[43]

Fredriksson W, Edström K. XPS study of duplex stainless steel as a possible current collector in a Li-ion battery. Electrochim Acta. 2012; 79: 82- 94.

[44]

Mayer T. Black spots on carbon steel after contact to lubricating oil with extreme pressure additives: an XPS study. Appl Surf Sci. 2001; 179 (1-4): 257- 262.

[45]

Zhao C, Fan J, Chen D, Xu Y, Wang T. Microfluidicsgenerated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water. Nano Res. 2016; 9 (3): 866- 875.

[46]

Zhang X, Zhang Z, Huang H, et al. Oxygen vacancy modulation of two-dimensional γ-Ga2O3 nanosheets as efficient catalysts for photocatalytic hydrogen evolution. Nanoscale. 2018; 10 (45): 21509- 21517.

[47]

Guo Y, Wang P, Qian J, Ao Y, Wang C, Hou J. Phosphate group grafted twinned BiPO4 with significantly enhanced photocatalytic activity: synergistic effect of improved charge separation efficiency and redox ability. Appl Catal B. 2018; 234: 90- 99.

[48]

Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010; 2 (12): 1015- 1024.

[49]

Ji Y, Luo Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2 (101) surface. ACS Catal. 2016; 6 (3): 2018- 2025.

[50]

Das B, Thapper A, Ott S, Colbran SB. Structural features of molecular electrocatalysts in multi-electron redox processes for renewable energy-recent advances. Sustainable Energy Fuels. 2019; 3 (9): 2159- 2175.

[51]

Wang X, Zhao X, Zhang D, Li G, Li H. Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Appl Catal B. 2018; 228: 47- 53.

[52]

Shen J, Kortlever R, Kas R, et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun. 2015; 6: 8177.

RIGHTS & PERMISSIONS

2024 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/