
Charting the course to solid-state dual-ion batteries
Habtom D. Asfaw, Antonia Kotronia, Nuria Garcia-Araez, Kristina Edström, Daniel Brandell
Carbon Energy ›› 2024, Vol. 6 ›› Issue (3) : 425.
An electrolyte destined for use in a dual-ion battery (DIB) must be stable at the inherently high potential required for anion intercalation in the graphite electrode, while also protecting the Al current collector from anodic dissolution. A higher salt concentration is needed in the electrolyte, in comparison to typical battery electrolytes, to maximize energy density, while ensuring acceptable ionic conductivity and operational safety. In recent years, studies have demonstrated that highly concentrated organic electrolytes, ionic liquids, gel polymer electrolytes (GPEs), ionogels, and water-in-salt electrolytes can potentially be used in DIBs. GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency, energy density, and long-term cycle life of DIBs. Furthermore, GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance. In this review, we highlight the latest advances in the application of different electrolytes in DIBs, with particular emphasis on GPEs.
anion intercalation / concentrated electrolytes / dual-ion battery / graphite / ionic liquids / polymer electrolyte
[1] |
Placke T, Heckmann A, Schmuch R, Meister P, Beltrop K, Winter M. Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule. 2018; 2 (12): 2528- 2550.
|
[2] |
Wang M, Tang Y. A review on the features and progress of Dual-ion batteries. Adv Energy Mater. 2018; 8 (19): 1703320.
|
[3] |
Kravchyk KV, Kovalenko MV. Aluminum electrolytes for Al dual-ion batteries. Commun Chem. 2020; 3 (1): 120.
|
[4] |
Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater. 2017; 29 (19): 1700519.
|
[5] |
Li J, Han C, Ou X, Tang Y. Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode. Angew Chem Int Ed. 2022; 61 (14): e202116668.
|
[6] |
Mu S, Liu Q, Kidkhunthod P, Zhou X, Wang W, Tang Y. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl Sci Rev. 2021; 8 (7): 178.
|
[7] |
Schafhaeutl C. On the compounds of carbon with silicon, iron, and other metals, which form the various galls of pig iron, steel, and wrought iron. J Prakt Chem. 1840; 21 (1): 129- 157.
|
[8] |
Brodie BC XIII. On the atomic weight of graphite. Philos Trans R Soc London. 1859; 149: 249- 259.
|
[9] |
Kohlschütter V, Haenni P. About the knowledge of graphitic carbon and graphitic acid. Z Anorg Allg Chem. 1919; 105 (1): 121- 144.
|
[10] |
Hassel O, Mark H. About the crystal structure of graphite. Z Phys. 1924; 25 (1): 317- 337.
|
[11] |
Bernal JD, Bragg WL. The structure of graphite. Proc R Soc A. 1924; 106 (740): 749- 773.
|
[12] |
Hofmann U, Frenzel A. Swelling of graphite and the formation of graphitic acid. Ber Dtsch Chem Ges. 1930; 63 (5): 1248- 1262.
|
[13] |
Rüdorff W, Hofmann U. About graphite salts. Z Anorg Allg Chem. 1938; 238 (1): 1- 50.
|
[14] |
Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958; 80 (6): 1339.
|
[15] |
Thiele H. The processes involved in expanding graphite. Z Anorg Allg Chem. 1932; 207 (4): 340- 352.
|
[16] |
Rüdorff W. Graphite intercalation compounds. In: Emeléus HJ, Sharpe AG, eds. Advances in Inorganic Chemistry and Radiochemistry. Academic Press; 1959: 223- 266.
|
[17] |
Rüdorff W, Stumpp E, Spriessler W, Siecke FW. Reactions of graphite with metal chlorides. Angew Chem Int Ed Engl. 1963; 2 (2): 67- 73.
|
[18] |
Stumpp E. The intercalation of metal chlorides and bromides into graphite. Mater Sci Eng. 1977; 31: 53- 59.
|
[19] |
Rüdorff W, Schulz H. On the incorporation of ferric chloride in the lattice of graphite. Z Anorg Allg Chem. 1940; 245 (2): 121- 156.
|
[20] |
Inagaki M, Wang ZD. Synthesis of cupric chloride-graphite intercalation compounds by the molten salt method. Synth Met. 1987; 20 (1): 1- 8.
|
[21] |
Rüdorff W, Zeller R. On aluminum chloride-graphite intercalation compounds. Z Anorg Allg Chem. 1955; 279 (3-4): 182- 193.
|
[22] |
Dzurus ML, Hennig GR. Graphite Compounds1,2. J Am Chem Soc. 1957; 79 (5): 1051- 1054.
|
[23] |
Hooley JG, Deitz VR. The intercalation of bromine in graphitized carbon fibers and its removal. Carbon. 1978; 16 (4): 251- 257.
|
[24] |
Rüdorff W, Sils V, Zeller R. On the behavior of graphite towards iodine monochloride and chromyl chloride. Z Anorg Allg Chem. 1956; 283 (1-6): 299- 303.
|
[25] |
Bartlett N, McQuillan B, Robertson AS. The synthesis of the first stage graphite salt C8+ AsF6- and its relationship to the first stage graphite/AsF5 intercalate. Mater Res Bull. 1978; 13 (12): 1259- 1264.
|
[26] |
McCarron EM, Bartlett N. Composition and staging in the graphite-AsF6 system and its relationship to graphite-AsF5. J Chem Soc Chem Commun. 1980; (9): 404- 406.
|
[27] |
Okino F, Bartlett N. Hexafluoroarsenates of graphite from its interaction with AsF5' AsF5+ F2' and O2AsF6' and the structure of C14AsF6. J Chem Soc Dalton Trans. 1993; (14): 2081- 2090.
|
[28] |
Okino F. Preparation and properties of graphite hexafluoroarsenates CxAsF6. J Fluorine Chem. 2000; 105 (2): 239- 248.
|
[29] |
Bottomley MJ, Parry GS, Ubbelohde AR, Young DA. 1083. Electrochemical preparation of salts from well-oriented graphite. J Chem Soc. 1963: 5674- 5680.
|
[30] |
Beck F, Junge H, Krohn H. Graphite intercalation compounds as positive electrodes in galvanic cells. Electrochim Acta. 1981; 26 (7): 799- 809.
|
[31] |
Besenhard J, Fritz HP. Über die stufenweise Oxidation von Graphit in nichtwäßrigen, neutralen elektrolyten/on the stage-wise oxidation of graphite in nonaqueous, neutral electrolytes. Z Naturforsch B. 1972; 27 (11): 1294- 1298.
|
[32] |
Deshpande SL, Bennion DN. Lithium dimethyl sulfite graphite cell. J Electrochem Soc. 1978; 125 (5): 687- 692.
|
[33] |
Ohzuku T, Takehara Z, Yoshizawa S. A graphite compound as cathode for rechargeable nonaqueous lithium battery. J Electrochem Soc. 1978; 46 (8): 438- 441.
|
[34] |
Matsuda Y, Morita M, Katsuma H. Charge-discharge characteristics of graphite as a positive electrode of lithium secondary cells. J Electrochem Soc. 1983; 51 (9): 744- 748.
|
[35] |
Fouletier M, Armand M. Electrochemical method for characterization of graphite-aluminium chloride intercalation compounds. Carbon. 1979; 17 (5): 427- 429.
|
[36] |
Gale RJ, Osteryoung RA. Electrochemical reduction of pyridinium ions in ionic aluminum chloride: alkylpyridinium halide ambient temperature liquids. J Electrochem Soc. 1980; 127 (10): 2167- 2172.
|
[37] |
Carpio RA, King LA, Lindstrom RE, Nardi JC, Hussey CL. Density, electric conductivity, and viscosity of several N-alkylpyridinium halides and their mixtures with aluminum chloride. J Electrochem Soc. 1979; 126 (10): 1644- 1650.
|
[38] |
Wilkes JS, Levisky JA, Wilson RA, Hussey CL. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg Chem. 1982; 21 (3): 1263- 1264.
|
[39] |
Gifford PR, Palmisano JB. An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte. J Electrochem Soc. 1988; 135 (3): 650- 654.
|
[40] |
McCullough FP, Beale AF, inventors; Secondary electrical energy storage device and electrode there of patent application. US patent ZA849438B. 1989.
|
[41] |
McCullough FP, Levine CA, Snelgrove RV, inventors; Secondary battery. US patent 4,830,938. 1989.
|
[42] |
Maeda Y. Temperature change of graphite surface due to electrochemical intercalation of ClO4- ion. Bull Chem Soc Japan. 1989; 62 (11): 3711- 3713.
|
[43] |
Maeda Y. Thermal behavior on graphite due to electrochemical intercalation. J Electrochem Soc. 1990; 137 (10): 3047- 3052.
|
[44] |
Carlin RT, De Long HC, Fuller J, Trulove PC. Dual intercalating molten electrolyte batteries. J Electrochem Soc. 1994; 141 (7): L73- L76.
|
[45] |
Carlin RT, Fuller J, Kuhn WK, Lysaght MJ, Trulove PC. Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes. J Appl Electrochem. 1996; 26 (11): 1147- 1160.
|
[46] |
Santhanam R, Noel M. Electrochemical intercalation of ionic species of tetrabutylammonium perchlorate on graphite electrodes. A potential dual-intercalation battery system. J Power Sources. 1995; 56 (1): 101- 105.
|
[47] |
Seel JA, Dahn JR. Electrochemical intercalation of PF6 into graphite. J Electrochem Soc. 2000; 147 (3): 892- 898.
|
[48] |
Dahn JR, Seel JA. Energy and capacity projections for practical dual-graphite cells. J Electrochem Soc. 2000; 147 (3): 899- 901.
|
[49] |
Zhang X, Sukpirom N, Lerner MM. Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents. Mater Res Bull. 1999; 34 (3): 363- 372.
|
[50] |
Yan W, Lerner MM. Electrochemical preparation of graphite bis(trifluoromethanesulfonyl) imide. J Electrochem Soc. 2001; 148 (6): D83- D87.
|
[51] |
Sutto TE, De Long HC, Trulove PC. Physical properties of substituted imidazolium based ionic liquids gel electrolytes. Z Naturforsch A. 2002; 57 (11): 839- 846.
|
[52] |
Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluorine Chem. 2003; 120 (2): 135- 141.
|
[53] |
Garcia B, Lavallée S, Perron G, Michot C, Armand M. Room temperature molten salts as lithium battery electrolyte. Electrochim Acta. 2004; 49 (26): 4583- 4588.
|
[54] |
Nakagawa H, Izuchi S, Kuwana K, Nukuda T, Aihara Y. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J Electrochem Soc. 2003; 150 (6): A695- A700.
|
[55] |
Sugimoto T, Kikuta M, Ishiko E, Kono M, Ishikawa M. Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J Power Sources. 2008; 183 (1): 436- 440.
|
[56] |
Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sources. 2006; 162 (1): 658- 662.
|
[57] |
Paillard E, Zhou Q, Henderson WA, Appetecchi GB, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. J Electrochem Soc. 2009; 156 (11): A891- A895.
|
[58] |
Placke T, Bieker P, Lux SF, et al. Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes. Z Phys Chem. 2012; 226 (5-6): 391- 407.
|
[59] |
Placke T, Fromm O, Lux SF, et al. Reversible intercalation of bis(trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J Electrochem Soc. 2012; 159 (11): A1755- A1765.
|
[60] |
Rothermel S, Meister P, Schmuelling G, et al. Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte. Energy Environ Sci. 2014; 7 (10): 3412- 3423.
|
[61] |
Fromm O, Meister P, Qi X, et al. Study of the electrochemical intercalation of different anions from non-aqueous electrolytes into a graphite-based cathode. ECS Trans. 2014; 58 (14): 55- 65.
|
[62] |
Schmuelling G, Placke T, Kloepsch R, et al. X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anions into graphite for dual-ion cells. J Power Sources. 2013; 239: 563- 571.
|
[63] |
Placke T, Schmuelling G, Kloepsch R, et al. In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications. Z Anorg Allg Chem. 2014; 640 (10): 1996- 2006.
|
[64] |
Lin M-C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015; 520 (7547): 324- 328.
|
[65] |
Zhang X, Tang Y, Zhang F, Lee C-S. A novel aluminum-graphite dual-ion battery. Adv Energy Mater. 2016; 6 (11): 1502588.
|
[66] |
Yang C, Chen J, Ji X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature. 2019; 569 (7755): 245- 250.
|
[67] |
Guo Q, Kim K-I, Li S, et al. Reversible insertion of I-Cl interhalogen in a graphite cathode for aqueous dual-ion batteries. ACS Energy Lett. 2021; 6 (2): 459- 467.
|
[68] |
Fukutsuka T, Yamane F, Miyazaki K, Abe T. Electrochemical intercalation of bis(fluorosulfonyl) amide anion into graphite. J Electrochem Soc. 2015; 163 (3): A499- A503.
|
[69] |
Ishihara T, Koga M, Matsumoto H, Yoshio M. Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery. Electrochem Solid State Lett. 2007; 10 (3): A74- A76.
|
[70] |
Miyoshi S, Nagano H, Fukuda T, et al. Dual-carbon battery using high concentration LiPF 6 in dimethyl carbonate (DMC) electrolyte. J Electrochem Soc. 2016; 163 (7): A1206- A1213.
|
[71] |
Read JA, Cresce AV, Ervin MH, Xu K. Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ Sci. 2014; 7 (2): 617- 620.
|
[72] |
Wrogemann JM, Künne S, Heckmann A, et al. Development of safe and sustainable dual-ion batteries through hybrid aqueous/nonaqueous electrolytes. Adv Energy Mater. 2020; 10 (8): 1902709.
|
[73] |
Kondo Y, Miyahara Y, Fukutsuka T, Miyazaki K, Abe T. Electrochemical intercalation of bis(fluorosulfonyl) amide anions into graphite from aqueous solutions. Electrochem Commun. 2019; 100: 26- 29.
|
[74] |
Kim K, Guo Q, Tang L, et al. Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries. Angew Chem Int Ed. 2020; 59 (45): 19924- 19928.
|
[75] |
Guo Q, Kim K, Jiang H, et al. A high-potential anion-insertion carbon cathode for aqueous zinc dual-ion battery. Adv Funct Mater. 2020; 30 (38): 2002825.
|
[76] |
Li L, Zhang D, Deng J, et al. Review—progress of research on the preparation of graphene oxide via electrochemical approaches. J Electrochem Soc. 2020; 167 (15): 155519.
|
[77] |
Yu C-J, Ri U-S, Ri G-C, Kim J-S. Revealing the formation and electrochemical properties of bis(trifluoromethanesulfonyl) imide intercalated graphite with first-principles calculations. Phys Chem Chem Phys. 2018; 20 (20): 14124- 14132.
|
[78] |
Zhang L, Wang H, Zhang X, Tang Y. A review of emerging dual-ion batteries: fundamentals and recent advances. Adv Funct Mater. 2021; 31 (20): 2010958.
|
[79] |
Hao J, Li X, Song X, Guo Z. Recent progress and perspectives on dual-ion batteries. EnergyChem. 2019; 1 (1): 100004.
|
[80] |
Kotronia A, Asfaw HD, Tai C-W, Hahlin M, Brandell D, Edström K. Nature of the cathode-electrolyte interface in highly concentrated electrolytes used in graphite dual-ion batteries. ACS Appl Mater Interfaces. 2021; 13 (3): 3867- 3880.
|
[81] |
Wang Y, Zhang Y, Dong S, et al. An all-fluorinated electrolyte toward high voltage and long cycle performance dual-ion batteries. Adv Energy Mater. 2022; 12 (19): 2103360.
|
[82] |
Asfaw HD, Kotronia A. A polymeric cathode-electrolyte interface enhances the performance of MoS2-graphite potassium dual-ion intercalation battery. Cell Rep Phys Sci. 2022; 3 (1): 100693.
|
[83] |
Song Y, Jiao S, Tu J, et al. A long-life rechargeable Al ion battery based on molten salts. J Mater Chem A. 2017; 5 (3): 1282- 1291.
|
[84] |
Tu J, Wang J, Zhu H, Jiao S. The molten chlorides for aluminum-graphite rechargeable batteries. J Alloys Compd. 2020; 821: 153285.
|
[85] |
Fukunaga A, Nohira T, Kozawa Y, et al. Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries. J Power Sources. 2012; 209: 52- 56.
|
[86] |
Chen C-Y, Matsumoto K, Kubota K, Hagiwara R, Xu Q. An energy-dense solvent-free dual-ion battery. Adv Funct Mater. 2020; 30 (39): 2003557.
|
[87] |
Yamada Y, Chiang CH, Sodeyama K, Wang J, Tateyama Y, Yamada A. Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem. 2015; 2 (11): 1687- 1694.
|
[88] |
Kühnel R-S, Lübke M, Winter M, Passerini S, Balducci A. Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. J Power Sources. 2012; 214: 178- 184.
|
[89] |
Matsumoto K, Nishiwaki E, Hosokawa T, Tawa S, Nohira T, Hagiwara R. Thermal, physical, and electrochemical properties of Li[N(SO2F)2]-[1-ethyl-3-methylimidazolium] [N(SO2F)2] ionic liquid electrolytes for Li secondary batteries operated at room and intermediate temperatures. J Phys Chem C. 2017; 121 (17): 9209- 9219.
|
[90] |
Li Z, Li X, Zhang W. A high-performance graphite-graphite dual ion battery based on AlCl3/NaCl molten salts. J Power Sources. 2020; 475: 228628.
|
[91] |
Wang J, Tu J, Jiao H, Zhu H, Nanosheet-stacked flake graphite for high-performance Al storage in inorganic molten AlCl3-NaCl salt. Int J Miner Metall Mater. 2020; 27 (12): 1711- 1722.
|
[92] |
Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl) imide [FSI-]. J Power Sources. 2006; 160 (2): 1308- 1313.
|
[93] |
Lewandowski A, Świderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources. 2009; 194 (2): 601- 609.
|
[94] |
Beltrop K, Meister P, Klein S, et al. Does size really matter? New insights into the intercalation behavior of anions into a graphite-based positive electrode for dual-ion batteries. Electrochim Acta. 2016; 209: 44- 55.
|
[95] |
Wang W, Yang T, Li S, et al. 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) as an ionic liquid-type electrolyte additive to enhance the low-temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite batteries. Electrochim Acta. 2019; 317: 146- 154.
|
[96] |
Hubble D, Brown DE, Zhao Y, et al. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ Sci. 2022; 15 (2): 550- 578.
|
[97] |
Kunze M, Jeong S, Appetecchi GB, Schönhoff M, Winter M, Passerini S. Mixtures of ionic liquids for low temperature electrolytes. Electrochim Acta. 2012; 82: 69- 74.
|
[98] |
Lin R, Taberna P-L, Fantini S, et al. Capacitive energy storage from -50 to 100℃ using an ionic liquid electrolyte. J Phys Chem Lett. 2011; 2 (19): 2396- 2401.
|
[99] |
Tian J, Cui C, Xie Q, et al. EMIMBF4-GBL binary electrolyte working at -70℃ and 3.7 V for a high performance graphene-based capacitor. J Mater Chem A. 2018; 6 (8): 3593- 3601.
|
[100] |
Sun Y, Liu B, Liu L, Yan X. Ions transport in electrochemical energy storage devices at low temperatures. Adv Funct Mater. 2022; 32 (15): 2109568.
|
[101] |
Xiang HF, Yin B, Wang H, et al. Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. Electrochim Acta. 2010; 55 (18): 5204- 5209.
|
[102] |
Kühnel RS, Böckenfeld N, Passerini S, Winter M, Balducci A. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim Acta. 2011; 56 (11): 4092- 4099.
|
[103] |
Wu Y, Gong M, Lin M-C, et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv Mater. 2016; 28 (41): 9218- 9222.
|
[104] |
Wang D-Y, Wei C-Y, Lin M-C, et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun. 2017; 8: 14283.
|
[105] |
Zhu N, Zhang K, Wu F, Bai Y, Wu C. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy Mater Adv. 2021; 2021: 9204217.
|
[106] |
Lai PK, Skyllas-Kazacos M. Aluminium deposition and dissolution in aluminium chloride—n-butylpyridinium chloride melts. Electrochim Acta. 1987; 32 (10): 1443- 1449.
|
[107] |
Chao-Cheng Y. Electrodeposition of aluminum in molten AlCl3-n-butylpyridinium chloride electrolyte. Mater Chem Phys. 1994; 37 (4): 355- 361.
|
[108] |
Zhao Y, VanderNoot TJ. Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts. Electrochim Acta. 1997; 42 (1): 3- 13.
|
[109] |
Jiang T, Chollier Brym MJ, Dubé G, Lasia A, Brisard GM. Electrodeposition of aluminium from ionic liquids: part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf Coat Technol. 2006; 201 (1-2): 1- 9.
|
[110] |
Abbott AP, Harris RC, Hsieh Y-T, Ryder KS, Sun IW. Aluminium electrodeposition under ambient conditions. Phys Chem Chem Phys. 2014; 16 (28): 14675- 14681.
|
[111] |
Muñoz-Torrero D, Palma J, Marcilla R, Ventosa E. A critical perspective on rechargeable Al-ion battery technology. Dalton Trans. 2019; 48 (27): 9906- 9911.
|
[112] |
Kravchyk KV, Wang S, Piveteau L, Kovalenko MV. Efficient aluminum chloride-natural graphite battery. Chem Mater. 2017; 29 (10): 4484- 4492.
|
[113] |
Kravchyk KV, Kovalenko MV. Rechargeable dual-ion batteries with graphite as a cathode: key challenges and opportunities. Adv Energy Mater. 2019; 9 (35): 1901749.
|
[114] |
Chen C-Y, Tsuda T, Kuwabata S, Hussey CL. Rechargeable aluminum batteries utilizing a chloroaluminate inorganic ionic liquid electrolyte. Chem Commun. 2018; 54 (33): 4164- 4167.
|
[115] |
Yang C, Wang S, Zhang X, et al. Substituent effect of imidazolium ionic liquid: a potential strategy for high Coulombic efficiency al battery. J Phys Chem C. 2019; 123 (18): 11522- 11528.
|
[116] |
Xu C, Li J, Chen H, Zhang J. Benzyltriethylammonium chloride electrolyte for high-performance Al-ion batteries. ChemNanoMat. 2019; 5 (11): 1367- 1372.
|
[117] |
Lv Z, Han M, Sun J, et al. A high discharge voltage dual-ion rechargeable battery using pure (DMPI+)(AlCl4-) ionic liquid electrolyte. J Power Sources. 2019; 418: 233- 240.
|
[118] |
Kotobuki M, Lu L, Savilov SV, Aldoshin SM. Poly(vinylidene fluoride)-based Al ion conductive solid polymer electrolyte for Al battery. J Electrochem Soc. 2017; 164 (14): A3868- A3875.
|
[119] |
Li C, Patra J, Li J, Rath PC, Lin M-H, Chang J-K. A novel moisture-insensitive and low-corrosivity ionic liquid electrolyte for rechargeable aluminum batteries. Adv Funct Mater. 2020; 30 (12): 1909565.
|
[120] |
Zhang E, Wang B, Wang J, et al. Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries. Chem Eng J. 2020; 389: 124407.
|
[121] |
Wang H, Gu S, Bai Y, Chen S, Wu F, Wu C. High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery. ACS Appl Mater Interfaces. 2016; 8 (41): 27444- 27448.
|
[122] |
Wang A, Yuan W, Fan J, Li L. A dual-graphite battery with pure 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte. Energy Technol. 2018; 6 (11): 2172- 2178.
|
[123] |
Aladinli S, Bordet F, Ahlbrecht K, Tübke J, Holzapfel M. Anion intercalation into a graphite cathode from various sodium-based electrolyte mixtures for dual-ion battery applications. Electrochim Acta. 2017; 231: 468- 478.
|
[124] |
Meister P, Siozios V, Reiter J, et al. Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite. Electrochim Acta. 2014; 130: 625- 633.
|
[125] |
Meister P, Schmuelling G, Winter M, Placke T. New insights into the uptake/release of FTFSI- anions into graphite by means of in situ powder X-ray diffraction. Electrochem Commun. 2016; 71: 52- 55.
|
[126] |
Heckmann A, Meister P, Meyer HW, Rohrbach A, Winter M, Placke T. Synthesis of spherical graphite particles and their application as cathode material in dual-ion cells. ECS Trans. 2015; 66 (11): 1- 12.
|
[127] |
Heckmann A, Meister P, Kuo L-Y, Winter M, Kaghazchi P, Placke T. A route towards understanding the kinetic processes of bis(trifluoromethanesulfonyl) imide anion intercalation into graphite for dual-ion batteries. Electrochim Acta. 2018; 284: 669- 680.
|
[128] |
Balabajew M, Reinhardt H, Bock N, et al. In-situ Raman study of the intercalation of bis(trifluoromethylsulfonyl) imid ions into graphite inside a dual-ion cell. Electrochim Acta. 2016; 211: 679- 688.
|
[129] |
Cho E, Mun J, Chae OB, et al. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl) imide-based ionic liquid for lithium-ion batteries. Electrochem Commun. 2012; 22: 1- 3.
|
[130] |
Kühnel R-S, Balducci A. Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors. J Power Sources. 2014; 249: 163- 171.
|
[131] |
Fan J, Zhang Z, Liu Y, Wang A, Li L, Yuan W. An excellent rechargeable PP14TFSI ionic liquid dual-ion battery. Chem Commun. 2017; 53 (51): 6891- 6894.
|
[132] |
Li Z, Liu J, Li J, Kang F, Gao F. A novel graphite-based dual ion battery using PP14NTF2 ionic liquid for preparing graphene structure. Carbon. 2018; 138: 52- 60.
|
[133] |
Beltrop K, Qi X, Hering T, Röser S, Winter M, Placke T. Enabling bis(fluorosulfonyl) imide-based ionic liquid electrolytes for application in dual-ion batteries. J Power Sources. 2018; 373: 193- 202.
|
[134] |
Nádherná M, Reiter J, Moškon J, Dominko R. Lithium bis (fluorosulfonyl) imide-PYR14TFSI ionic liquid electrolyte compatible with graphite. J Power Sources. 2011; 196 (18): 7700- 7706.
|
[135] |
Meister P, Küpers V, Kolek M, et al. Enabling Mg-based ionic liquid electrolytes for hybrid dual-ion capacitors. Batteries Supercaps. 2021; 4 (3): 504- 512.
|
[136] |
Shkrob IA, Marin TW, Zhu Y, Abraham DP. Why bis (fluorosulfonyl) imide is a “Magic Anion” for electrochemistry. J Phys Chem C. 2014; 118 (34): 19661- 19671.
|
[137] |
Beltrop K, Beuker S, Heckmann A, Winter M, Placke T. Alternative electrochemical energy storage: potassium-based dual-graphite batteries. Energy Environ Sci. 2017; 10 (10): 2090- 2094.
|
[138] |
Angell M, Pan C-J, Rong Y, et al. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc Natl Acad Sci USA. 2017; 114 (5): 834- 839.
|
[139] |
Jiao H, Wang C, Tu J, Tian D, Jiao S. A rechargeable Al-ion battery: l/molten AlCl3-urea/graphite. Chem Commun. 2017; 53 (15): 2331- 2334.
|
[140] |
Angell M, Zhu G, Lin M-C, Rong Y, Dai H. Ionic liquid analogs of AlCl3 with urea derivatives as electrolytes for aluminum batteries. Adv Funct Mater. 2020; 30 (4): 1901928.
|
[141] |
Li J, Tu J, Jiao H, Wang C, Jiao S. Ternary AlCl3-urea-[EMIm]Cl ionic liquid electrolyte for rechargeable aluminum-ion batteries. J Electrochem Soc. 2017; 164 (13): A3093- A3100.
|
[142] |
Wang C, Li J, Jiao H, Tu J, Jiao S. The electrochemical behavior of an aluminum alloy anode for rechargeable Al-ion batteries using an AlCl3-urea liquid electrolyte. RSC Adv. 2017; 7 (51): 32288- 32293.
|
[143] |
Ng KL, Malik M, Buch E, Glossmann T, Hintennach A, Azimi G. A low-cost rechargeable aluminum/natural graphite battery utilizing urea-based ionic liquid analog. Electrochim Acta. 2019; 327: 135031.
|
[144] |
Canever N, Bertrand N, Nann T. Acetamide: a low-cost alternative to alkyl imidazolium chlorides for aluminium-ion batteries. Chem Commun. 2018; 54 (83): 11725- 11728.
|
[145] |
Xu H, Bai T, Chen H, et al. Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy Stor Mater. 2019; 17: 38- 45.
|
[146] |
Gan F, Chen K, Li N, Wang Y, Shuai Y, He X. Low cost ionic liquid electrolytes for rechargeable aluminum/graphite batteries. Ionics. 2019; 25 (9): 4243- 4249.
|
[147] |
Tu J, Song W-L, Lei H, et al. Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives. Chem Rev. 2021; 121 (8): 4903- 4961.
|
[148] |
Pasta M, Wessells CD, Huggins RA, Cui Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat Commun. 2012; 3: 1149.
|
[149] |
Kim H, Hong J, Park K-Y, Kim H, Kim S-W, Kang K. Aqueous rechargeable Li and Na ion batteries. Chem Rev. 2014; 114 (23): 11788- 11827.
|
[150] |
Luo J-Y, Cui W-J, He P, Xia Y-Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem. 2010; 2 (9): 760- 765.
|
[151] |
Rodríguez-Pérez IA, Ji X. Anion hosting cathodes in dual-ion batteries. ACS Energy Lett. 2017; 2 (8): 1762- 1770.
|
[152] |
Suo L, Borodin O, Gao T, et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015; 350 (6263): 938- 943.
|
[153] |
Wang F, Borodin O, Ding MS, et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion. Joule. 2018; 2 (5): 927- 937.
|
[154] |
Yang C, Chen J, Qing T, et al. 4.0 V Aqueous Li-ion batteries. Joule. 2017; 1 (1): 122- 132.
|
[155] |
Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat Energy. 2016; 1 (10): 16129.
|
[156] |
Suo L, Oh D, Lin Y, et al. How solid-electrolyte interphase forms in aqueous electrolytes. J Am Chem Soc. 2017; 139 (51): 18670- 18680.
|
[157] |
Dong X, Yu H, Ma Y, et al. All-organic rechargeable battery with reversibility supported by “Water-in-Salt” electrolyte. Chem Eur J. 2017; 23 (11): 2560- 2565.
|
[158] |
Rodríguez-Pérez IA, Zhang L, Leonard DP, Ji X. Aqueous anion insertion into a hydrocarbon cathode via a water-in-salt electrolyte. Electrochem Commun. 2019; 109: 106599.
|
[159] |
Li H, Kurihara T, Yang D, Watanabe M, Ishihara T. A novel aqueous dual-ion battery using concentrated bisalt electrolyte. Energy Stor Mater. 2021; 38: 454- 461.
|
[160] |
Zhang H, Liu X, Qin B, Passerini S. Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. J Power Sources. 2020; 449: 227594.
|
[161] |
Rodríguez-Pérez IA, Zhang L, Wrogemann JM, et al. Enabling natural graphite in high-voltage aqueous graphite||Zn metal dual-ion batteries. Adv Energy Mater. 2020; 10 (41): 2001256.
|
[162] |
Wu X, Xu Y, Zhang C, et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J Am Chem Soc. 2019; 141 (15): 6338- 6344.
|
[163] |
Sandstrom SK, Chen X, Ji X. A review of halide charge carriers for rocking-chair and dual-ion batteries. Carbon Energy. 2021; 3 (4): 627- 653.
|
[164] |
Yang J, Liu Y, Zhang Y, et al. Recent advances and future perspectives of rechargeable chloride-based batteries. Nano Energy. 2023; 110: 108364.
|
[165] |
Xu J, Pollard TP, Yang C, et al. Lithium halide cathodes for Li metal batteries. Joule. 2023; 7 (1): 83- 94.
|
[166] |
Chen H, Guo F, Liu Y, et al. A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv Mater. 2017; 29 (12): 1605958.
|
[167] |
Huang Y, Liang Z, Wang H. A dual-ion battery has two sides: the effect of ion-pairs. Chem Commun. 2020; 56 (69): 10070- 10073.
|
[168] |
Huang Y, Fan H, Kamezaki H, Kang B, Yoshio M, Wang H. Facilitating tetrafluoroborate intercalation into graphite electrodes from ethylmethyl carbonate-based solutions. ChemElectroChem. 2019; 6 (11): 2931- 2936.
|
[169] |
Wang Y, Wang H. Intercalation of tetrafluoroborate anions into graphite electrodes from mixed sulfones. ACS Appl Energy Mater. 2022; 5 (2): 2366- 2374.
|
[170] |
Zhang L, Li J, Huang Y, Zhu D, Wang H. Synergetic effect of ethyl methyl carbonate and trimethyl phosphate on BF4- intercalation into a graphite electrode. Langmuir. 2019; 35 (11): 3972- 3979.
|
[171] |
Gao J, Yoshio M, Qi L, Wang H. Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J Power Sources. 2015; 278: 452- 457.
|
[172] |
Tian S, Qi L, Yoshio M, Wang H. Tetramethylammonium difluoro(oxalato) borate dissolved in ethylene/propylene carbonates as electrolytes for electrochemical capacitors. J Power Sources. 2014; 256: 404- 409.
|
[173] |
Tian S, Qi L, Wang H. Difluoro(oxalato) borate anion intercalation into graphite electrode from ethylene carbonate. Solid State Ion. 2016; 291: 42- 46.
|
[174] |
Wang Y, Wang S, Zhang Y, Lee P-K, Yu DYW. Unlocking the true capability of graphite-based dual-ion batteries with ethyl methyl carbonate electrolyte. ACS Appl Energy Mater. 2019; 2 (10): 7512- 7517.
|
[175] |
Fan H, Gao J, Qi L, Wang H. Hexafluorophosphate anion intercalation into graphite electrode from sulfolane/ethylmethyl carbonate solutions. Electrochim Acta. 2016; 189: 9- 15.
|
[176] |
Bordet F, Ahlbrecht K, Tübke J, et al. Anion intercalation into graphite from a sodium-containing electrolyte. Electrochim Acta. 2015; 174: 1317- 1323.
|
[177] |
Xiang L, Ou X, Wang X, Zhou Z, Li X, Tang Y. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery. Angew Chem Int Ed. 2020; 59 (41): 17924- 17930.
|
[178] |
Kravchyk KV, Bhauriyal P, Piveteau L, Guntlin CP, Pathak B, Kovalenko MV. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat Commun. 2018; 9: 4469.
|
[179] |
Santhanam R, Noel M. Effect of solvents on the intercalation/de-intercalation behaviour of monovalent ionic species from non-aqueous solvents on polypropylene-graphite composite electrode. J Power Sources. 1997; 66 (1-2): 47- 54.
|
[180] |
Kawamura T, Tanaka T, Egashira M, Watanabe I, Okada S, Yamaki J. Methyl difluoroacetate inhibits corrosion of aluminum cathode current collector for lithium ion cells. Electrochem Solid State Lett. 2005; 8 (9): A459.
|
[181] |
Tan H, Zhai D, Kang F, Zhang B. Synergistic PF6- and FSI- intercalation enables stable graphite cathode for potassium-based dual ion battery. Carbon. 2021; 178: 363- 370.
|
[182] |
Jiang C, Fang Y, Zhang W, et al. A multi-ion strategy towards rechargeable sodium-ion full batteries with high working voltage and rate capability. Angew Chem Int Ed. 2018; 57 (50): 16370- 16374.
|
[183] |
Lang J, Jiang C, Fang Y, Shi L, Miao S, Tang Y. Room-temperature rechargeable Ca-ion based hybrid batteries with high rate capability and long-term cycling life. Adv Energy Mater. 2019; 9 (29): 1901099.
|
[184] |
Qiao Y, Jiang K, Li X, et al. A hybrid electrolytes design for capacity-equivalent dual-graphite battery with superior long-term cycle life. Adv Energy Mater. 2018; 8 (24): 1801120.
|
[185] |
Wang F, Liu Z, Zhang P, et al. Dual-graphene rechargeable sodium battery. Small. 2017; 13 (47): 1702449.
|
[186] |
Ji B, Zhang F, Wu N, Tang Y. A dual-carbon battery based on potassium-ion electrolyte. Adv Energy Mater. 2017; 7 (20): 1700920.
|
[187] |
Yang K, Jia L, Liu X, et al. Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM. Nano Res. 2020; 13 (2): 412- 418.
|
[188] |
Ji B, Yao W, Tang Y. High-performance rechargeable zinc-based dual-ion batteries. Sustain Energy Fuels. 2020; 4 (1): 101- 107.
|
[189] |
Zhang L, Huang Y, Fan H, Wang H. Flame-retardant electrolyte solution for dual-ion batteries. ACS Appl Energy Mater. 2019; 2 (2): 1363- 1370.
|
[190] |
Yan T, Ding R, Ying D, et al. An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries. J Mater Chem A. 2019; 7 (40): 22884- 22888.
|
[191] |
Ying D, Ding R, Huang Y, et al. Conversion/alloying pseudocapacitance-dominated perovskite KZnF3 anode for advanced lithium-based dual-ion batteries. Chem Eur J. 2020; 26 (13): 2798- 2802.
|
[192] |
Li C, Xue J, Huang A, et al. Poly(N-vinylcarbazole) as an advanced organic cathode for potassium-ion-based dual-ion battery. Electrochim Acta. 2019; 297: 850- 855.
|
[193] |
Logan ER, Tonita EM, Gering KL, et al. A study of the transport properties of ethylene carbonate-free Li electrolytes. J Electrochem Soc. 2018; 165 (3): A705- A716.
|
[194] |
Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H-M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem. 2018; 10 (6): 667- 672.
|
[195] |
Liu Q, Chen S, Yu X, et al. Low cost and superior safety industrial grade lithium dual-ion batteries with a second life. Energy Technol. 2018; 6 (10): 1994- 2000.
|
[196] |
Zhang M, Shoaib M, Fei H, et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv Energy Mater. 2019; 9 (37): 1901663.
|
[197] |
Wang X, Wang S, Shen K, He S, Hou X, Chen F. Phosphorus-doped porous hollow carbon nanorods for high-performance sodium-based dual-ion batteries. J Mater Chem A. 2020; 8 (7): 4007- 4016.
|
[198] |
Li W-H, Liang H-J, Hou X-K, et al. Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery. J Energy Chem. 2020; 50: 416- 423.
|
[199] |
Yu A, Pan Q, Zhang M, Xie D, Tang Y. Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv Funct Mater. 2020; 30 (24): 2001440.
|
[200] |
Ou X, Li J, Tong X, Zhang G, Tang Y. Highly concentrated and nonflammable electrolyte for high energy density K-based dual-ion battery. ACS Appl Energy Mater. 2020; 3 (10): 10202- 10208.
|
[201] |
Wang Y, Zhang L, Zhang F, Ding X, Shin K, Tang Y. High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life. J Energy Chem. 2021; 58: 602- 609.
|
[202] |
Zhu D, Fan H, Wang H. PF6- intercalation into graphite electrode from propylene carbonate. ACS Appl Energy Mater. 2021; 4 (3): 2181- 2189.
|
[203] |
Wu S, Zhang F, Tang Y. A novel calcium-ion battery based on dual-carbon configuration with high working voltage and long cycling life. Adv Sci. 2018; 5 (8): 1701082.
|
[204] |
Fan H, Qi L, Yoshio M, Wang H. Hexafluorophosphate intercalation into graphite electrode from ethylene carbonate/ethylmethyl carbonate. Solid State Ion. 2017; 304: 107- 112.
|
[205] |
Zhao S, Huang Y, Wang Y, Zhu D, Zhang L, Wang H. Intercalation behavior of tetrafluoroborate anion in a graphite electrode from mixed cyclic carbonates. ACS Appl Energy Mater. 2021; 4 (1): 737- 744.
|
[206] |
Gao J, Tian S, Qi L, Wang H. Intercalation manners of perchlorate anion into graphite electrode from organic solutions. Electrochim Acta. 2015; 176: 22- 27.
|
[207] |
Gao J, Tian S, Qi L, Yoshio M, Wang H. Hexafluorophosphate intercalation into graphite electrode from gamma-butyrolactone solutions in activated carbon/graphite capacitors. J Power Sources. 2015; 297: 121- 126.
|
[208] |
Wang H, Yoshio M. Suppression of PF6- intercalation into graphite by small amounts of ethylene carbonate in activated carbon/graphite capacitors. Chem Commun. 2010; 46 (9): 1544- 1546.
|
[209] |
Rohatgi A. Webplotdigitizer: Version 4.4. WebPlotDigitizer; 2020.
|
[210] |
Fan H, Qi L, Wang H. Intercalation behavior of hexafluorophosphate into graphite electrode from propylene/ethylmethyl carbonates. J Electrochem Soc. 2017; 164 (9): A2262- A2267.
|
[211] |
Wang B, Wang Y, Huang Y, Zhang L, Ma S, Wang H. Hexafluorophosphate intercalation into the graphite electrode from mixed cyclic carbonates. ACS Appl Energy Mater. 2021; 4 (5): 5316- 5325.
|
[212] |
Zhu D, Huang Y, Zhang L, Fan H, Wang H. PF6- intercalation into graphite electrode from gamma-butyrolactone/ethyl methyl carbonate. J Electrochem Soc. 2020; 167 (7): 070513.
|
[213] |
Xi X-T, Li W-H, Hou B-H, Yang Y, Gu Z-Y, Wu X-L. Dendrite-free lithium anode enables the lithium//graphite dual-ion battery with much improved cyclic stability. ACS Appl Energy Mater. 2019; 2 (1): 201- 206.
|
[214] |
Xi X-T, Feng X, Nie X-J, et al. Dendrite-free deposition on lithium anode toward long-life and high-stable Li//graphite dual-ion battery. Chem Commun. 2019; 55 (58): 8406- 8409.
|
[215] |
Heckmann A, Thienenkamp J, Beltrop K, Winter M, Brunklaus G, Placke T. Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes. Electrochim Acta. 2018; 260: 514- 525.
|
[216] |
Holoubek J, Yin Y, Li M, et al. Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew Chem Int Ed. 2019; 58 (52): 18892- 18897.
|
[217] |
Han X, Zhang H, Liu T, et al. An interfacially self-reinforced polymer electrolyte enables long-cycle 5.35 V dual-ion batteries. J Mater Chem A. 2020; 8 (3): 1451- 1456.
|
[218] |
Xu K, Angell CA. Sulfone-based electrolytes for lithium-ion batteries. J Electrochem Soc. 2002; 149 (7): A920- A926.
|
[219] |
Su C-C, He M, Redfern PC, Curtiss LA, Shkrob IA, Zhang Z. Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries. Energy Environ Sci. 2017; 10 (4): 900- 904.
|
[220] |
Ren X, Chen S, Lee H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal. Chem. 2018; 4 (8): 1877- 1892.
|
[221] |
Tong X, Ou X, Wu N, Wang H, Li J, Tang Y. High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery. Adv Energy Mater. 2021; 11 (25): 2100151.
|
[222] |
Wang Y, Huang Y, Wang H. Tetrafluoroborate anion intercalation into graphite electrode from sulfolane. Chem Lett. 2021; 50 (5): 996- 998.
|
[223] |
Wang Y, Li J, Huang Y, Wang H. Anion storage behavior of graphite electrodes in LiBF4/sulfone/ethyl methyl carbonate solutions. Langmuir. 2019; 35 (46): 14804- 14811.
|
[224] |
Chiba K, Ueda T, Yamaguchi Y, Oki Y, Saiki F, Naoi K. Electrolyte systems for high withstand voltage and durability II. Alkylated cyclic carbonates for electric double-layer capacitors. J Electrochem Soc. 2011; 158 (12): A1320- A1327.
|
[225] |
Han P, Han X, Yao J, et al. Mesocarbon microbead based dual-carbon batteries towards low cost energy storage devices. J Power Sources. 2018; 393: 145- 151.
|
[226] |
Liu T, Han X, Zhang Z, et al. A high concentration electrolyte enables superior cycleability and rate capability for high voltage dual graphite battery. J Power Sources. 2019; 437: 226942.
|
[227] |
Wang X, Yasukawa E, Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: I. Fundamental properties. J Electrochem Soc. 2001; 148 (10): A1058- A1065.
|
[228] |
Xu K, Ding MS, Zhang S, Allen JL, Jow TR. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J Electrochem Soc. 2002; 149 (5): A622- A625.
|
[229] |
Zhang L, Wang H. Anion intercalation into a graphite electrode from trimethyl phosphate. ACS Appl Mater Interfaces. 2020; 12 (42): 47647- 47654.
|
[230] |
Zhang L, Wang Y, Wu Z, Wang H. Combining experiments and theoretical calculations to investigate the intercalation behavior of bis(trifluoromethanesulfonimide) anion into graphite electrodes from alkyl phosphates. ACS Appl Mater Interfaces. 2021; 13 (29): 34197- 34201.
|
[231] |
Jiang X, Liu X, Zeng Z, et al. A nonflammable Na+-based dual-carbon battery with low-cost, high voltage, and long cycle life. Adv Energy Mater. 2018; 8 (36): 1802176.
|
[232] |
Smart MC, Ratnakumar BV, Chin KB, Whitcanack LD. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance. J Electrochem Soc. 2010; 157 (12): A1361- A1374.
|
[233] |
Fan H, Qi L, Wang H. Hexafluorophosphate anion intercalation into graphite electrode from methyl propionate. Solid State Ion. 2017; 300: 169- 174.
|
[234] |
Zhang L, Fan H, Wang H. Methyl acetate-based solutions for dual-ion batteries. Electrochim Acta. 2020; 342: 135992.
|
[235] |
Zhang L, Wang H. Performance of graphite positive electrodes in LiPF6-methyl acetate/trimethyl phosphate solutions. J Electrochem Soc. 2020; 167 (10): 100506.
|
[236] |
Yu Z, Jiao S, Li S, et al. Flexible stable solid-state Al-ion batteries. Adv Funct Mater. 2019; 29 (1): 1806799.
|
[237] |
Kotronia A, Asfaw HD, Edström K. Evaluating electrolyte additives in dual-ion batteries: overcoming common pitfalls. Electrochim Acta. 2023; 459: 142517.
|
[238] |
Wang Y, Zhang Y, Duan Q, Lee P-K, Wang S, Yu DYW. Engineering cathode-electrolyte interface of graphite to enable ultra long-cycle and high-power dual-ion batteries. J Power Sources. 2020; 471: 228466.
|
[239] |
Edström K, Gustafsson T, Thomas JO. The cathode-electrolyte interface in the li-ion battery. Electrochim Acta. 2004; 50 (2-3): 397- 403.
|
[240] |
Kotronia A, van Ekeren WWA, Desta Asfaw H, Edström K. Impact of binders on self-discharge in graphite dual-ion batteriesy. Electrochem Commun. 2022; 107424.
|
[241] |
Wu L-N, Shen S-Y, Hong Y-H, et al. Novel MnO-graphite dual-ion battery and new insights into its reaction mechanism during initial cycle by operando techniques. ACS Appl Mater Interfaces. 2019; 11 (13): 12570- 12577.
|
[242] |
Wang S, Tu J, Xiao J, Zhu J, Jiao S. 3D skeleton nanostructured Ni3S2/Ni foam@RGO composite anode for high-performance dual-ion battery. J Energy Chem. 2019; 28: 144- 150.
|
[243] |
Qin P, Wang M, Li N, Zhu H, Ding X, Tang Y. Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries. Adv Mater. 2017; 29 (17): 1606805.
|
[244] |
Han X, Xu G, Zhang Z, et al. An in situ interface reinforcement strategy achieving long cycle performance of dual-ion batteries. Adv Energy Mater. 2019; 9 (16): 1804022.
|
[245] |
Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc. 1995; 142 (5): 1431- 1435.
|
[246] |
He Y-B, Li B, Liu M, et al. Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep. 2012; 2 (1): 913.
|
[247] |
Wu L-N, Peng J, Sun Y-K, et al. High-energy density Li metal dual-ion battery with a lithium nitrate-modified carbonate-based electrolyte. ACS Appl Mater Interfaces. 2019; 11 (20): 18504- 18510.
|
[248] |
Xing L, Zheng X, Schroeder M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries. Acc Chem Res. 2018; 51 (2): 282- 289.
|
[249] |
Zheng T, Xiong J, Zhu B, et al. From -20℃ to 150℃: a lithium secondary battery with a wide temperature window obtained via manipulated competitive decomposition in electrolyte solution. J Mater Chem A. 2021; 9 (14): 9307- 9318.
|
[250] |
Wang S, Jiao S, Tian D, et al. A novel ultrafast rechargeable multi-ions battery. Adv Mater. 2017; 29 (16): 1606349.
|
[251] |
Song C, Li Y, Li H, et al. A novel flexible fiber-shaped dual-ion battery with high energy density based on omnidirectional porous Al wire anode. Nano Energy. 2019; 60: 285- 293.
|
[252] |
Heidrich B, Heckmann A, Beltrop K, Winter M, Placke T. Unravelling charge/discharge and capacity fading mechanisms in dual-graphite battery cells using an electron inventory model. Energy Storage Mater. 2019; 21: 414- 426.
|
[253] |
Tong X, Zhang F, Ji B, Sheng M, Tang Y. Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater. 2016; 28 (45): 9979- 9985.
|
[254] |
Li C, Yang H, Xie J, Wang K, Li J, Zhang Q. Ferrocene-based mixed-valence metal-organic framework as an efficient and stable cathode for lithium-ion-based dual-ion battery. ACS Appl Mater Interfaces. 2020; 12 (29): 32719- 32725.
|
[255] |
Wu J, Wang X, Liu Q, et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat Commun. 2021; 12: 5746.
|
[256] |
Rowden B, Garcia-Araez N. A review of gas evolution in lithium ion batteries. Energy Rep. 2020; 6: 10- 18.
|
[257] |
Ryall N, Garcia-Araez N. Highly sensitive operando pressure measurements of Li-ion battery materials with a simply modified swagelok cell. J Electrochem Soc. 2020; 167 (11): 110511.
|
[258] |
Nozu R, Suzuki E, Kimura O, Onagi N, Ishihara T. Dual-ion battery using graphitic carbon and Li4Ti5O12: suppression of gas formation and increased cyclability. Electrochim Acta. 2020; 332: 135238.
|
[259] |
Nozu R, Suzuki E, Kimura O, Onagi N, Ishihara T. Tetraethylammonium tetrafluoroborate additives for suppressed gas formation and increased cycle stability of dual-ion battery. Electrochim Acta. 2020; 337: 135711.
|
[260] |
Wang S, Xiao X, Fu C, Tu J, Tan Y, Jiao S. Room temperature solid state dual-ion batteries based on gel electrolytes. J Mater Chem A. 2018; 6 (10): 4313- 4323.
|
[261] |
Krause LJ, Lamanna W, Summerfield J, et al. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J Power Sources. 1997; 68 (2): 320- 325.
|
[262] |
Morita M, Shibata T, Yoshimoto N, Ishikawa M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim Acta. 2002; 47 (17): 2787- 2793.
|
[263] |
Matsumoto K, Inoue K, Nakahara K, Yuge R, Noguchi T, Utsugi K. Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. J Power Sources. 2013; 231: 234- 238.
|
[264] |
McOwen DW, Seo DM, Borodin O, Vatamanu J, Boyle PD, Henderson WA. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ Sci. 2014; 7 (1): 416- 426.
|
[265] |
Wang J, Yamada Y, Sodeyama K, Chiang CH, Tateyama Y, Yamada A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat Commun. 2016; 7: 12032.
|
[266] |
Kühnel RS, Reber D, Remhof A, Figi R, Bleiner D, Battaglia C. “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries. Chem Commun. 2016; 52 (68): 10435- 10438.
|
[267] |
Heckmann A, Krott M, Streipert B, Uhlenbruck S, Winter M, Placke T. Suppression of aluminum current collector dissolution by protective ceramic coatings for better high-voltage battery performance. ChemPhysChem. 2017; 18 (1): 156- 163.
|
[268] |
Wang S, Kravchyk KV, Filippin AN, et al. Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements. Adv Sci. 2018; 5 (4): 1700712.
|
[269] |
Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem. 2019; 5 (9): 2326- 2352.
|
[270] |
Song JY, Wang YY, Wan CC. Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources. 1999; 77 (2): 183- 197.
|
[271] |
Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem. 1975; 5 (1): 63- 69.
|
[272] |
Osada I, de Vries H, Scrosati B, Passerini S. Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem Int Ed. 2016; 55 (2): 500- 513.
|
[273] |
Meyer WH. Polymer electrolytes for lithium-ion batteries. Adv Mater. 1998; 10 (6): 439- 448.
|
[274] |
Armand M. Polymers with ionic conductivity. Adv Mater. 1990; 2 (6-7): 278- 286.
|
[275] |
Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion. 1983; 11 (1): 91- 95.
|
[276] |
Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci. 2018; 81: 114- 143.
|
[277] |
Pal P, Ghosh A. Robust succinonitrile plastic crystal-based ionogel for all-solid-state Li-ion and dual-ion batteries. ACS Appl Energy Mater. 2020; 3 (5): 4295- 4304.
|
[278] |
Yu Z, Jiao S, Tu J, et al. Gel electrolytes with a wide potential window for high-rate Al-ion batteries. J Mater Chem A. 2019; 7 (35): 20348- 20356.
|
[279] |
Xu X, Lin K, Zhou D, et al. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem. 2020; 6 (4): 902- 918.
|
[280] |
Kim I, Jang S, Lee KH, Tak Y, Lee G. In situ polymerized solid electrolytes for superior safety and stability of flexible solid-state Al-ion batteries. Energy Storage Mater. 2021; 40: 229- 238.
|
[281] |
Kotronia A, Edström K, Brandell D, Asfaw HD. Ternary ionogel electrolytes enable quasi-solid-state potassium dual-ion intercalation batteries. Adv Energy Sustain Res. 2022; 3 (1): 2100122.
|
[282] |
Chen G, Zhang F, Zhou Z, Li J, Tang Y. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv Energy Mater. 2018; 8 (25): 1801219.
|
[283] |
Liu Z, Wang X, Liu Z, et al. Low-cost gel polymer electrolyte for high-performance aluminum-ion batteries. ACS Appl Mater Interfaces. 2021; 13 (24): 28164- 28170.
|
[284] |
Zhai S, Wang N, Tan X, et al. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv Funct Mater. 2021; 31 (13): 2008894.
|
[285] |
Lv Z, Zhou S, Huang H, et al. A flexible [(DMPI+)(AlCl4-)]/PVDF-HFP polymer gel electrolyte and its electrochemical performance for dual-graphite batteries. Mater Chem Phys. 2022; 289: 126468.
|
[286] |
Elia GA, Acevedo CI, Kazemi R, Fantini S, Lin R, Hahn R. A gel polymer electrolyte for aluminum batteries. Energy Technol. 2021; 9 (8): 2100208.
|
[287] |
Costa CM, Gomez Ribelles JL, Lanceros-Méndez S, Appetecchi GB, Scrosati B. Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. J Power Sources. 2014; 245: 779- 786.
|
[288] |
Sun H, Fu X, Xie S, Jiang Y, Peng H. Electrochemical capacitors with high output voltages that mimic electric eels. Adv Mater. 2016; 28 (10): 2070- 2076.
|
[289] |
Qiao J, Fu J, Lin R, Ma J, Liu J. Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer. 2010; 51 (21): 4850- 4859.
|
[290] |
Lu W, Henry K, Turchi C, Pellegrino J. Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J Electrochem Soc. 2008; 155 (5): A361- A367.
|
[291] |
Sun X-G, Fang Y, Jiang X, Yoshii K, Tsuda T, Dai S. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries. Chem Commun. 2016; 52 (2): 292- 295.
|
[292] |
Xie D, Zhang M, Wu Y, Xiang L, Tang Y. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2020; 30 (5): 1906770.
|
[293] |
Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998; 394 (6692): 456- 458.
|
[294] |
Cheng X, Pan J, Zhao Y, Liao M, Peng H. Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater. 2018; 8 (7): 1702184.
|
[295] |
Zhang Y, Zhao Y, Cheng X, et al. Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew Chem Int Ed. 2015; 54 (38): 11177- 11182.
|
[296] |
Weng W, Sun Q, Zhang Y, et al. A gum-like lithium-ion battery based on a novel arched structure. Adv Mater. 2015; 27 (8): 1363- 1369.
|
[297] |
Lu Q, He Y-B, Yu Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater. 2017; 29 (13): 1604460.
|
[298] |
Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev. 2011; 40 (5): 2525- 2540.
|
[299] |
Ferrara C, Dall'Asta V, Berbenni V, Quartarone E, Mustarelli P. Physicochemical characterization of AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid electrolytes for aluminum rechargeable batteries. J Phys Chem C. 2017; 121 (48): 26607- 26614.
|
[300] |
Lee KH, Zhang S, Lodge TP, Frisbie CD. Electrical impedance of spin-coatable ion gel films. J Phys Chem B. 2011; 115 (13): 3315- 3321.
|
[301] |
Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B. 2004; 108 (42): 16593- 16600.
|
[302] |
Sung H, Wang Y, Wan C. Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries. J Electrochem Soc. 1998; 145 (4): 1207- 1211.
|
[303] |
Mohamed NS, Arof AK. Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J Power Sources. 2004; 132 (1-2): 229- 234.
|
[304] |
Wandrey C, Hernández-Barajas J, Hunkeler D. Diallyldimethylammonium chloride and its polymers. In: Capek I, Hernfández-Barajas J, Hunkeler D, Reddinger JL, Reynolds JR, Wandrey C, eds. Radical Polymerisation Polyelectrolytes. Berlin, Heidelberg: Springer; 1999: 123- 183.
|
[305] |
Chen N, Zhang H, Li L, Chen R, Guo S. Ionogel electrolytes for high-performance lithium batteries: a review. Adv Energy Mater. 2018; 8 (12): 1702675.
|
[306] |
Li X, Li S, Zhang Z, Huang J, Yang L, Hirano S. High-performance polymeric ionic liquid-silica hybrid ionogel electrolytes for lithium metal batteries. J Mater Chem A. 2016; 4 (36): 13822- 13829.
|
[307] |
Guyomard-Lack A, Abusleme J, Soudan P, Lestriez B, Guyomard D, Bideau JL. Hybrid silica-polymer ionogel solid electrolyte with tunable properties. Adv Energy Mater. 2014; 4 (8): 1301570.
|
[308] |
Yuan J, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: an update. Prog Polym Sci. 2013; 38 (7): 1009- 1036.
|
[309] |
Pont A-L, Marcilla R, De Meatza I, Grande H, Mecerreyes D. Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources. 2009; 188 (2): 558- 563.
|
[310] |
Appetecchi GB, Kim GT, Montanino M, et al. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources. 2010; 195 (11): 3668- 3675.
|
[311] |
Zhao Y, Xue K, Tan T, Yu DYW. Thermal stability of graphite electrode as cathode for dual-ion batteries. ChemSusChem. 2023; 16 (4): e202201221.
|
[312] |
Wandt J, Freiberg ATS, Ogrodnik A, Gasteiger HA. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater Today. 2018; 21 (8): 825- 833.
|
[313] |
Jung R, Metzger M, Maglia F, Stinner C, Gasteiger HA. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J Phys Chem Lett. 2017; 8 (19): 4820- 4825.
|
[314] |
Imhof R, Novák P. Oxidative electrolyte solvent degradation in lithium-ion batteries: an in situ differential electrochemical mass spectrometry investigation. J Electrochem Soc. 1999; 146 (5): 1702- 1706.
|
[315] |
Zhu Y, Wang Z, Bian H, et al. Critical conditions for the thermal runaway propagation of lithium-ion batteries in air and argon environments. J Therm Anal Calorim. 2022; 147 (23): 13699- 13710.
|
[316] |
Wang J, Yamada Y, Sodeyama K, et al. Fire-extinguishing organic electrolytes for safe batteries. Nat Energy. 2018; 3 (1): 22- 29.
|
[317] |
Wang Z, Zhang F, Sun Y, et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv Energy Mater. 2021; 11 (17): 2003752.
|
[318] |
Zhang L, Wang H. Dual-graphite batteries with flame-retardant electrolyte solutions. ChemElectroChem. 2019; 6 (17): 4637- 4644.
|
[319] |
Zhu J, Xu Y, Fu Y, et al. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries. Small. 2020; 16 (17): 1905838.
|
[320] |
Matsumoto K, Endo T. Confinement of ionic liquid by networked polymers based on multifunctional epoxy resins. Macromolecules. 2008; 41 (19): 6981- 6986.
|
[321] |
Shirshova N, Bismarck A, Carreyette S, et al. Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems. J Mater Chem A. 2013; 1 (48): 15300- 15309.
|
[322] |
Le Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials. Chem Soc Rev. 2011; 40 (2): 907- 925.
|
[323] |
Gayet F, Viau L, Leroux F, et al. Unique combination of mechanical strength, thermal stability, and high ion conduction in PMMA-silica nanocomposites containing high loadings of ionic liquid. Chem Mater. 2009; 21 (23): 5575- 5577.
|
[324] |
Lee H, Erwin A, Buxton ML, et al. Shape persistent, highly conductive ionogels from ionic liquids reinforced with cellulose nanocrystal network. Adv Funct Mater. 2021; 31 (38): 2103083.
|
[325] |
Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M. Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J Phys Condens Matter. 1995; 7 (34): 6823- 6832.
|
[326] |
Stolz L, Hochstädt S, Röser S, Hansen MR, Winter M, Kasnatscheew J. Single-ion versus dual-ion conducting electrolytes: the relevance of concentration polarization in solid-state batteries. ACS Appl Mater Interfaces. 2022; 14 (9): 11559- 11566.
|
[327] |
Huesker J, Froböse L, Kwade A, Winter M, Placke T. In situ dilatometric study of the binder influence on the electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anions into graphite. Electrochim Acta. 2017; 257: 423- 435.
|
[328] |
Grazioli D, Verners O, Zadin V, Brandell D, Simone A. Electrochemical-mechanical modeling of solid polymer electrolytes: impact of mechanical stresses on Li-ion battery performance. Electrochim Acta. 2019; 296: 1122- 1141.
|
[329] |
Snyder JF, Carter RH, Wetzel ED. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem Mater. 2007; 19 (15): 3793- 3801.
|
[330] |
Greenhalgh E, Ankersen J, Asp L, et al. Mechanical, electrical and microstructural characterisation of multifunctional structural power composites. J Compos Mater. 2014; 49 (15): 1823- 1834.
|
[331] |
Asp LE. Multifunctional composite materials for energy storage in structural load paths. Plast Rubber Compos. 2013; 42 (4): 144- 149.
|
[332] |
Snyder JF, Wetzel ED, Watson CM. Improving multifunctional behavior in structural electrolytes through copolymerization of structure- and conductivity-promoting monomers. Polymer. 2009; 50 (20): 4906- 4916.
|
[333] |
Willgert M, Kjell MH, Jacques E, Behm M, Lindbergh G, Johansson M. Photoinduced free radical polymerization of thermoset lithium battery electrolytes. Eur Polym J. 2011; 47 (12): 2372- 2378.
|
[334] |
Johansson IL, Brandell D, Mindemark J. Mechanically stable UV-crosslinked polyester-polycarbonate solid polymer electrolyte for high-temperature batteries. Batteries Supercaps. 2020; 3 (6): 527- 533.
|
[335] |
Glynos E, Papoutsakis L, Pan W, et al. Nanostructured polymer particles as additives for high conductivity, high modulus solid polymer electrolytes. Macromolecules. 2017; 50 (12): 4699- 4706.
|
[336] |
Bergfelt A, Hernández G, Mogensen R, et al. Mechanically robust yet highly conductive diblock copolymer solid polymer electrolyte for ambient temperature battery applications. ACS Appl Polym Mater. 2020; 2 (2): 939- 948.
|
[337] |
Young W-S, Kuan W-F, Epps III TH. Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci Part B Polym Phys. 2014; 52 (1): 1- 16.
|
[338] |
Singh M, Odusanya O, Wilmes GM, et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules. 2007; 40 (13): 4578- 4585.
|
[339] |
Manuel Stephan A. Review on gel polymer electrolytes for lithium batteries. Eur Polym J. 2006; 42 (1): 21- 42.
|
[340] |
Young W-S, Epps III TH. Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules. 2012; 45 (11): 4689- 4697.
|
[341] |
Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA. 25th Anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv Mater. 2014; 26 (2): 201- 234.
|
[342] |
Manuel Stephan A, Nahm KS. Review on composite polymer electrolytes for lithium batteries. Polymer. 2006; 47 (16): 5952- 5964.
|
[343] |
Zhang P, Yang LC, Li LL, Ding ML, Wu YP, Holze R. Enhanced electrochemical and mechanical properties of P (VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J Membr Sci. 2011; 379 (1-2): 80- 85.
|
[344] |
Klongkan S, Pumchusak J. Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim Acta. 2015; 161: 171- 176.
|
[345] |
Angell CA, Liu C, Sanchez E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature. 1993; 362 (6416): 137- 139.
|
[346] |
Tong B, Song Z, Wu H, et al. Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: a perspective. Mater Futures. 2022; 1 (4): 042103.
|
[347] |
Yoon H-K, Chung W-S, Jo N-J. Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3-SO3. Electrochim Acta. 2004; 50 (2-3): 289- 293.
|
[348] |
Wang X, Chen F, Girard GMA, et al. Poly(ionic liquid) s-in-salt electrolytes with Co-coordination-assisted lithium-ion transport for safe batteries. Joule. 2019; 3 (11): 2687- 2702.
|
[349] |
Okumura T, Nishimura S. Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ion. 2014; 267: 68- 73.
|
[350] |
Hernández G, Johansson IL, Mathew A, Sångeland C, Brandell D, Mindemark J. Going beyond sweep voltammetry: alternative approaches in search of the elusive electrochemical stability of polymer electrolytes. J Electrochem Soc. 2021; 168 (10): 100523.
|
[351] |
Xu C, Sun B, Gustafsson T, Edström K, Brandell D, Hahlin M. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J Mater Chem A. 2014; 2 (20): 7256- 7264.
|
[352] |
Homann G, Stolz L, Nair J, Laskovic IC, Winter M, Kasnatscheew J. Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure. Sci Rep. 2020; 10 (1): 4390.
|
[353] |
Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater. 2019; 31 (50): 1902029.
|
[354] |
Chen R, Liu F, Chen Y, et al. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J Power Sources. 2016; 306: 70- 77.
|
[355] |
Alarco P-J, Abu-Lebdeh Y, Abouimrane A, Armand M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater. 2004; 3 (7): 476- 481.
|
[356] |
Ha H-J, Kwon YH, Kim JY, Lee S-Y. A self-standing, UV-cured polymer networks-reinforced plastic crystal composite electrolyte for a lithium-ion battery. Electrochim Acta. 2011; 57: 40- 45.
|
[357] |
Hu P, Chai J, Duan Y, Liu Z, Cui G, Chen L. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J Mater Chem A. 2016; 4 (26): 10070- 10083.
|
[358] |
Wang P, Chai J, Zhang Z, et al. An intricately designed poly (vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J Mater Chem A. 2019; 7 (10): 5295- 5304.
|
[359] |
Seki S, Kobayashi Y, Miyashiro H, Mita Y, Iwahori T. Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept. Chem Mater. 2005; 17 (8): 2041- 2045.
|
[360] |
Zhao C-Z, Zhao Q, Liu X, et al. Rechargeable lithium metal batteries with an In-built Solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode. Adv Mater. 2020; 32 (12): 1905629.
|
[361] |
Chen H, Zheng M, Qian S, et al. Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy. 2021; 3 (6): 929- 956.
|
[362] |
Fan LZ, Hu YS, Bhattacharyya AJ, Maier J. Succinonitrile as a versatile additive for polymer electrolytes. Adv Funct Mater. 2007; 17 (15): 2800- 2807.
|
[363] |
Kobayashi Y, Seki S, Yamanaka A, Miyashiro H, Mita Y, Iwahori T. Development of high-voltage and high-capacity all-solid-state lithium secondary batteries. J Power Sources. 2005; 146 (1-2): 719- 722.
|
[364] |
Miyashiro H, Kobayashi Y, Seki S, et al. Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2. Chem Mater. 2005; 17 (23): 5603- 5605.
|
[365] |
Johansson IL, Sångeland C, Uemiya T, et al. Improving the electrochemical stability of a polyester-polycarbonate solid polymer electrolyte by zwitterionic additives. ACS Appl Energy Mater. 2022; 5 (8): 10002- 10012.
|
/
〈 |
|
〉 |