In situ observation of the electrochemical behavior of Li–CO2/O2 batteries in an environmental transmission electron microscope

Peng Jia, Yunna Guo, Dongliang Chen, Jingming Yao, Xuedong Zhang, Jianguo Lu, Yuqing Qiao, Liqiang Zhang

Carbon Energy ›› 2024, Vol. 6 ›› Issue (4) : 424.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (4) : 424. DOI: 10.1002/cey2.424
RESEARCH ARTICLE

In situ observation of the electrochemical behavior of Li–CO2/O2 batteries in an environmental transmission electron microscope

Author information +
History +

Abstract

Li–CO2/O2 batteries, a promising energy storage technology, not only provide ultrahigh discharge capacity but also capture CO2 and turn it into renewable energy. Their electrochemical reaction pathways' ambiguity, however, creates a hurdle for their practical application. This study used copper selenide (CuSe) nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO2/O2 (mix CO2 as well as O2 at a volume ratio of 1:1) and Li–O2 batteries as well as Li–CO2 batteries. Primary discharge reactions take place successively in the Li–CO2/O2–CuSe nanobattery: (I) 4Li+ + O2 + 4e- → 2Li2O; (II) Li2O + CO2 → Li2CO3. The charge reaction proceeded via (III) 2Li2CO3 → 4Li+ + 2CO2 + O2 + 4e-. However, Li–O2 and Li–CO2 nanobatteries showed poor cycling stability, suggesting the difficulty in the direct decomposition of the discharge product. The fluctuations of the Li–CO2/O2 battery's electrochemistry were also shown to depend heavily on O2. The CuSe-based Li–CO2/O2 battery showed exceptional electrochemical performance. The Li–CO2/O2 battery offered a discharge capacity apex of 15,492 mAh g-1 and stable cycling 60 times at 100 mA g-1. Our research offers crucial insight into the electrochemical behavior of Li–CO2/O2, Li–O2, and Li–CO2 nanobatteries, which may help the creation of high-performance Li–CO2/O2 batteries for energy storage applications.

Keywords

CuSe nanosheets / electrochemical reaction / in situ environmental transmission electron microscopy / Li–CO2 battery / Li–CO2/O2 battery / Li–O2 battery

Cite this article

Download citation ▾
Peng Jia, Yunna Guo, Dongliang Chen, Jingming Yao, Xuedong Zhang, Jianguo Lu, Yuqing Qiao, Liqiang Zhang. In situ observation of the electrochemical behavior of Li–CO2/O2 batteries in an environmental transmission electron microscope. Carbon Energy, 2024, 6(4): 424 https://doi.org/10.1002/cey2.424

References

[1]
Ma Z, Yuan X, Li L, et al. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ Sci. 2015; 8 (8): 2144- 2198.
[2]
Wang L, Pan J, Zhang Y, Cheng X, Liu L, Peng H. A Li-air battery with ultralong cycle life in ambient air. Adv Mater. 2018; 30 (3): 1704378.
[3]
Chi X, Li M, Di J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature. 2021; 592 (7855): 551- 557.
[4]
Wang M, Yao Y, Yang F, et al. Double spatial confinement on ruthenium nanoparticles inside carbon frameworks as durable catalysts for a quasi-solid-state Li-O2 battery. Carbon Energy. In press.
CrossRef Google scholar
[5]
Gong H, Wang T, Chang K, et al. Revealing the illumination effect on the discharge products in high-performance Li-O2 batteries with heterostructured photocatalysts. Carbon Energy. 2022; 4 (6): 1169- 1181.
[6]
Sun Q, Dai L, Luo T, Wang L, Liang F, Liu S. Recent advances in solid-state metal-air batteries. Carbon Energy. 2023; 5 (2): e276.
[7]
Li C, Guo Z, Yang B, Liu Y, Wang Y, Xia Y. A rechargeable Li-CO2 battery with a gel polymer electrolyte. Angew Chem Int Ed. 2017; 56 (31): 9126- 9130.
[8]
Zhai Y, Tong H, Deng J, et al. Super-assembled atomic IR catalysts on te substrates with synergistic catalytic capability for Li-CO2 batteries. Energy Storage Mater. 2021; 43: 391- 401.
[9]
Wang H, Xie K, You Y, et al. Realizing interfacial electronic interaction within ZnS quantum dots/N-rGO heterostructures for efficient Li-CO2 batteries. Adv Energy Mater. 2019; 9 (34): 1901806.
[10]
Jin Y, Liu Y, Song L, et al. Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li-CO2 battery. Chem Eng J. 2022; 430: 133029.
[11]
Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020; 39 (3): 205- 217.
[12]
Huang Z, Deng Z, Zhong Y, et al. Progress and challenges of prelithiation technology for lithium-ion battery. Carbon Energy. 2022; 4 (6): 1107- 1132.
[13]
Zhang PF, Lu YQ, Wu YJ, et al. High-performance rechargeable Li-CO2/O2 battery with Ru/N-doped CNT catalyst. Chem Eng J. 2019; 363: 224- 233.
[14]
Peng L, Yin H, Zou L, Yu F. The influence of current density dependent Li2CO3 properties on the discharge and charge reactions of Li-CO2/O2 battery. Colloids Surf A. 2023; 657: 130480.
[15]
Ezeigwe ER, Dong L, Manjunatha R, et al. A review of lithium-O2/CO2 and lithium-CO2 batteries: advanced electrodes/materials/electrolytes and functional mechanisms. Nano Energy. 2022; 95: 106964.
[16]
Zhang PF, Zhang JY, Sheng T, et al. Synergetic effect of ru and NiO in the electrocatalytic decomposition of Li2CO3 to enhance the performance of a Li-CO2/O2 battery. ACS Catal. 2020; 10 (2): 1640- 1651.
[17]
Zou L, Jiang Y, Cheng J, et al. High-capacity and long-cycle lifetime Li-CO2/O2 battery based on dandelion-like Ni-Co2O4 hollow microspheres. ChemCatChem. 2019; 11 (13): 3117- 3124.
[18]
Liu Y, Wang R, Lyu Y, Li H, Chen L. Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery. Energy Environ Sci. 2014; 7 (2): 677- 681.
[19]
Zhang PF, Zhuo HY, Dong YY, et al. Pt nanoparticles confined in a 3D porous FeNC matrix as efficient catalysts for rechargeable Li-CO2/O2 batteries. ACS Appl Mater Interfaces. 2023; 15 (2): 2940- 2950.
[20]
Wang R, Zhang X, Cai Y, Nian Q, Tao Z, Chen J. Safetyreinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Res. 2019; 12 (10): 2543- 2548.
[21]
Wang C, Lu Y, Lu S, et al. Boosting Li-CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array. J Power Sources. 2021; 495: 229782.
[22]
Zhang BW, Jiao Y, Chao DL, et al. Targeted synergy between adjacent co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries. Adv Funct Mater. 2019; 29 (49): 1904206.
[23]
Lu S, Shang Y, Ma S, Lu Y, Liu QC, Li ZJ. Porous NiO nanofibers as an efficient electrocatalyst towards long cycling life rechargeable Li-CO2 batteries. Electrochim Acta. 2019; 319: 958- 965.
[24]
Li S, Liu Y, Zhou J, et al. Monodispersed MnO nanoparticles in graphene an interconnected n-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries. Energy Environ Sci. 2019; 12 (3): 1046- 1054.
[25]
Deng Q, Yang Y, Qu S, et al. Electron structure and reaction pathway regulation on porous cobalt-doped CeO2/graphene aerogel: a free-standing cathode for flexible and advanced Li-CO2 batteries. Energy Storage Mater. 2021; 42: 484- 492.
[26]
Wang C, Zhang Q, Zhang X, Wang XG, Xie Z, Zhou Z. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li-CO2 batteries. Small. 2018; 14 (28): 1800641.
[27]
Guo Z, Li J, Qi H, et al. A highly reversible long-life Li-CO2 battery with a RuP2-based catalytic cathode. Small. 2018; 15 (29): 1803246.
[28]
Zhang K, Li J, Zhai W, et al. Boosting cycling stability and rate capability of Li-CO2 batteries via synergistic photoelectric effect and plasmonic interaction. Angew Chem Int Ed. 2022; 61 (17): e202201718.
[29]
Hou Y, Wang J, Liu L, et al. Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries. Adv Funct Mater. 2017; 27 (27): 1700564.
[30]
Hu Z, Xie Y, Yu D, et al. Hierarchical Ti3C2Tx MXene/carbon nanotubes for low overpotential and long-life Li-CO2 batteries. ACS Nano. 2021; 15 (5): 8407- 8417.
[31]
Li X, Wang H, Chen Z, et al. Covalent-organic-frameworkbased Li-CO2 batteries. Adv Mater. 2019; 31 (48): 1905879.
[32]
Xu S, Das SK, Archer LA. The Li-CO2 battery: a novel method for CO2 capture and utilization. RSC Adv. 2013; 3 (18): 6656- 6660.
[33]
Guan DH, Wang XX, Li F, et al. All-solid-state photo-assisted Li-CO2 battery working at an ultra-wide operation temperature. ACS Nano. 2022; 16 (8): 12364- 12376.
[34]
Zhao Z, Su Y, Peng Z. Probing lithium carbonate formation in trace-O2-assisted aprotic Li-CO2 batteries using in situ surface-enhanced Raman spectroscopy. J Phys Chem Lett. 2019; 10 (3): 322- 328.
[35]
Kunanusont N, Shimoyama Y. Porous carbon cathode assisted with ionogel binder fabricated from supercritical fluid technique toward Li-O2/CO2 battery application. ACS Appl Energy Mater. 2020; 3 (5): 4421- 4431.
[36]
Wang Y, Hao L, Bai M. A modeling study of the cycling behavior of non-aqueous Li-O2/CO2 batteries. J Electrochem Soc. 2021; 168 (2): 020524.
[37]
Zou L, Kong W, Peng L, Wang F. First application of nitrogendoped carbon nanosheets derived from lotus leaves as the electrode catalyst for Li-CO2/O2 battery. Catalysts. 2023; 13 (3): 577.
[38]
Chen K, Du JY, Wang J, et al. Realizing stable carbonate electrolytes in Li-O2/CO2 batteries. Chin J Chem. 2023; 41 (3): 314- 321.
[39]
Takechi K, Shiga T, Asaoka T. A Li-O2/CO2 battery. Chem Commun. 2011; 47 (12): 3463- 3465.
[40]
Zhang PF, Sheng T, Zhou Y, et al. Li-CO2/O2 battery operating at ultra-low overpotential and low O2 content on Pt/CNT catalyst. Chem Eng J. 2022; 448: 137541.
[41]
Wang L, Dai W, Ma L, et al. Monodispersed Ru nanoparticles functionalized graphene nanosheets as efficient cathode catalysts for O2-assisted Li-CO2 battery. ACS Omega. 2017; 2 (12): 9280- 9286.
[42]
Chen Y, Pei Q, Liu X, et al. Template preparation of copperbased chalcogenides and their electrochemical performance for Li-ion batteries. ChemistrySelect. 2020; 5 (42): 12873- 12877.
[43]
Hong JH, Park GD, Jung DS, Kang YC. Lithium ion storage mechanism exploration of copper selenite as anode materials for lithium-ion batteries. J Alloys Compd. 2020; 827: 154309.
[44]
Yan C, Chen G, Zhang Y, Chen D, Pei J, Qiu Z. CuSe1-xSx nanosheets with an ordered superstructure as anode materials for lithium-ion batteries. New J Chem. 2016; 40 (8): 6588- 6592.
[45]
Jia P, Yu M, Zhang X, et al. In situ imaging the electrochemical reactions of Li-CO2 nanobatteries at high temperatures in an aberration corrected environmental transmission electron microscope. Nano Res. 2022; 15 (1): 542- 550.
[46]
Ye H, Gui S, Wang Z, et al. In situ measurements of the mechanical properties of electrochemically deposited Li2CO3 and Li2O nanorods. ACS Appl Mater Interfaces. 2021; 13 (37): 44479- 44487.
[47]
Yang T, Li H, Chen J, et al. In situ imaging electrocatalytic CO2 reduction and evolution reactions in all-solid-state Li-CO2 nanobatteries. Nanoscale. 2020; 12 (47): 23967- 23974.
[48]
Sun Z, Li M, Zheng Z, et al. Cycle-stable Si-based composite anode for lithium-ion batteries enabled by the synergetic combination of mixed lithium phosphates and void-preserving f-doped carbon. Mater Today Nano. 2023; 22: 100322.
[49]
Xiao B, Zhang H, Sun Z, et al. Achieving high-capacity and long-life K+ storage enabled by constructing yolk-shell Sb2S3@N, s-doped carbon nanorod anodes. J Energy Chem. 2023; 76: 547- 556.
[50]
Cai M, Zhang H, Zhang Y, et al. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci Bull. 2022; 67 (9): 933- 945.
[51]
Sun Z, Li M, Xiao B, et al. In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. eTransportation. 2022; 14: 100203.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/