
Carbon-based interface engineering and architecture design for high-performance lithium metal anodes
Na Zhu, Yuxiang Yang, Yu Li, Ying Bai, Junfeng Rong, Chuan Wu
Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 423.
Carbon-based interface engineering and architecture design for high-performance lithium metal anodes
Metallic lithium (Li) is considered the “Holy Grail” anode material for the next-generation of Li batteries with high energy density owing to the extraordinary theoretical specific capacity and the lowest negative electrochemical potential. However, owing to inhomogeneous Li-ion flux, Li anodes undergo uncontrollable Li deposition, leading to limited power output and practical applications. Carbon materials and their composites with controllable structures and properties have received extensive attention to guide the homogeneous growth of Li to achieve high-performance Li anodes. In this review, the correlation between the behavior of Li anode and the properties of carbon materials is proposed. Subsequently, we review emerging strategies for rationally designing high-performance Li anodes with carbon materials, including interface engineering (stabilizing solid electrolyte interphase layer and other functionalized interfacial layer) and architecture design of host carbon (constructing three-dimension structure, preparing hollow structure, introducing lithiophilic sites, optimizing geometric effects, and compositing with Li). Based on the insights, some prospects on critical challenges and possible future research directions in this field are concluded. It is anticipated that further innovative works on the fundamental chemistry and theoretical research of Li anodes are needed.
carbon materials / dendrites / hosts / interfacial layers / Li metal anodes
[1] |
Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414 (6861): 359- 367.
|
[2] |
Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017; 117 (15): 10403- 10473.
|
[3] |
Zhou L, Zhao M, Chen X, Zhou J, Wu M, Wu N. A hydrophobic artificial solid-interphase-protective layer with fast self-healable capability for stable lithium metal anodes. Sci China Chem. 2022; 65 (9): 1817- 1821.
|
[4] |
Shen X, Zhang XQ, Ding F, et al. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Mater Adv. 2021; 2021: 1205324.
|
[5] |
Huang Z, Deng Z, Zhong Y, et al. Progress and challenges of prelithiation technology for lithium-ion battery. Carbon Energy. 2022; 4 (6): 1107- 1132.
|
[6] |
Liu DH, Bai Z, Li M, et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem Soc Rev. 2020; 49 (15): 5407- 5445.
|
[7] |
Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev. 2020; 120 (24): 13312- 13348.
|
[8] |
Cheng XB, Yan C, Huang JQ, et al. The gap between long lifespan Li-S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater. 2017; 6: 18- 25.
|
[9] |
Yuan Y, Wu F, Chen G, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J Energy Chem. 2019; 37: 197- 203.
|
[10] |
Zhang H, Zhou L, Du X, et al. Cyanoethyl cellulose-based eutectogel electrolyte enabling high-voltage-tolerant and ionconductive solid-state lithium metal batteries. Carbon Energy. 2022; 4 (6): 1093- 1106.
|
[11] |
Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017; 12 (3): 194- 206.
|
[12] |
Bi CX, Hou LP, Li Z, et al. Protecting lithium metal anodes in lithium-sulfur batteries: a review. Energy Mater Adv. 2023; 4: 0010.
|
[13] |
Wang M, Yao Y, Yang F, et al. Double spatial confinement on ruthenium nanoparticles inside carbon frameworks as durable catalysts for a quasi-solid-state Li-O2 battery. Carbon Energy. In press;
CrossRef
Google scholar
|
[14] |
Ye H, Xin S, Yin YX, Li JY, Guo YG, Wan LJ. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc. 2017; 139 (16): 5916- 5922.
|
[15] |
Wang Q, Liu B, Shen Y, et al. Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci. 2021; 8 (17): 2101111.
|
[16] |
Li F, He J, Liu J, et al. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew Chem Int Ed. 2021; 60 (12): 6600- 6608.
|
[17] |
Yan X, Lin L, Chen Q, et al. Multifunctional roles of carbonbased hosts for Li-metal anodes: a review. Carbon Energy. 2021; 3 (2): 303- 329.
|
[18] |
Meng X, Lau KC, Zhou H, Ghosh SK, Benamara M, Zou M. Molecular layer deposition of crosslinked polymeric lithicone for superior lithium metal anodes. Energy Mater Adv. 2021; 2021: 9786201.
|
[19] |
Yang A, Yang C, Xie K, et al. Benchmarking the safety performance of organic electrolytes for rechargeable lithium batteries: a thermochemical perspective. ACS Energy Lett. 2023; 8 (1): 836- 843.
|
[20] |
Li K, Shen W, Xu T, et al. Fibrous gel polymer electrolyte for an ultrastable and highly safe flexible lithium-ion battery in a wide temperature range. Carbon Energy. 2021; 3 (6): 916- 928.
|
[21] |
Shen Z, Cheng Y, Sun S, Ke X, Liu L, Shi Z. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy. 2021; 3 (3): 482- 508.
|
[22] |
Zhang X, Chen S, Zhu J, Gao Y. A critical review of thermal runaway prediction and early-warning methods for lithiumion batteries. Energy Mater Adv. 2023; 4: 0008.
|
[23] |
Jiang FN, Cheng XB, Yang SJ, et al. Thermoresponsive electrolytes for safe lithium-metal batteries. Adv Mater. 2023; 35 (12): 2209114.
|
[24] |
Yang SJ, Yao N, Jiang FN, et al. Thermally stable polymerrich solid electrolyte interphase for safe lithium metal pouch cells. Angew Chem. 2022; 134 (51): e202214545.
|
[25] |
Adams BD, Zheng J, Ren X, Xu W, Zhang JG. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv Energy Mater. 2018; 8 (7): 1702097.
|
[26] |
Huang J, Li F, Wu M, et al. Electrolyte chemistry for lithium metal batteries. Sci China Chem. 2022; 65 (5): 840- 857.
|
[27] |
Yu Y, Liu Y, Xie J. Building better Li metal anodes in liquid electrolyte: challenges and progress. ACS Appl Mater Interfaces. 2021; 13 (1): 18- 33.
|
[28] |
Li Q, Zhang J, Zeng Y, et al. Lithium reduction reaction for interfacial regulation of lithium metal anode. Chem Commun. 2022; 58 (16): 2597- 2611.
|
[29] |
Yuan S, Kong T, Zhang Y, et al. Advanced electrolyte design for high-energy-density Li metal batteries under practical conditions. Angew Chem. 2021; 133 (49): 25828- 25842.
|
[30] |
Qin K, Holguin K, Mohammadiroudbari M, et al. Strategies in structure and electrolyte design for high-performance lithium metal batteries. Adv Funct Mater. 2021; 31 (15): 2009694.
|
[31] |
Sun YY, Zhang Q, Yan L, Wang TB, Hou PY. A review of interfaces within solid-state electrolytes: fundamentals, issues and advancements. Chem Eng J. 2022; 437: 135179.
|
[32] |
Liu J, Yuan H, Liu H, et al. Unlocking the failure mechanism of solid state lithium metal batteries. Adv Energy Mater. 2022; 12 (4): 2100748.
|
[33] |
Tufail MK, Zhai P, Jia M, Zhao N, Guo X. Design of solid electrolytes with fast ion transport: computation-driven and practical approaches. Energy Mater Adv. 2023; 4: 0015.
|
[34] |
Wu F, Zhang K, Liu Y, et al. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Storage Mater. 2020; 33: 26- 54.
|
[35] |
Li H, Xu Z, Yang J, Wang J, Hirano S. Polymer electrolytes for rechargeable lithium metal batteries. Sustainable Energy Fuels. 2020; 4 (11): 5469- 5487.
|
[36] |
Jin C, Sheng O, Chen M, et al. Armed lithium metal anodes with functional skeletons. Mater Today Nano. 2021; 13: 100103.
|
[37] |
Ni S, Tan S, An Q, Mai L. Three dimensional porous frameworks for lithium dendrite suppression. J Energy Chem. 2020; 44: 73- 89.
|
[38] |
Yang J, Feng T, Zhi C, et al. Bimetallic composite induced ultra-stable solid electrolyte interphase for dendrite-free lithium metal anode. J Colloid Interface Sci. 2021; 599: 819- 827.
|
[39] |
Li G. Regulating mass transport behavior for highperformance lithium metal batteries and fast-charging lithium-ion batteries. Adv Energy Mater. 2021; 11 (7): 2002891.
|
[40] |
Wang J, Ge B, Li H, et al. Challenges and progresses of lithium-metal batteries. Chem Eng J. 2021; 420: 129739.
|
[41] |
Zhai P, Liu L, Gu X, Wang T, Gong Y. Interface engineering for lithium metal anodes in liquid electrolyte. Adv Energy Mater. 2020; 10 (34): 2001257.
|
[42] |
Wang C, Appleby AJ, Little FE. Irreversible capacities of graphite anode for lithium-ion batteries. J Electroanal Chem. 2002; 519 (1-2): 9- 17.
|
[43] |
Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today. 2012; 7 (5): 414- 429.
|
[44] |
Yue XY, Ma C, Bao J, et al. Failure mechanisms of lithium metal anode and their advanced characterization technologies. Acta Phys Chim Sin. 2021; 37 (2): 2005012.
|
[45] |
Yang Q, Jiang N, Shao Y, et al. Functional carbon materials addressing dendrite problems in metal batteries: surface chemistry, multidimensional structure engineering, and defects. Sci China Chem. 2022; 65 (12): 2351- 2368.
|
[46] |
Kim J, Lee J, Yun J, et al. Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode. Adv Funct Mater. 2020; 30 (15): 1910538.
|
[47] |
Kim DH, Lee MH, Kim BG, Lee SM, Choi JH. Porosity controlled carbon-based 3D anode for lithium metal batteries by a slurry based process. Chem Commun. 2020; 56 (85): 13040- 13043.
|
[48] |
Ye H, Xin S, Yin YX, Guo YG. Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater. 2017; 7 (23): 1700530.
|
[49] |
Liu S, Wang A, Li Q, et al. Crumpled graphene balls stabilized dendrite-free lithium metal anodes. Joule. 2018; 2 (1): 184- 193.
|
[50] |
Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG. Advanced micro/nanostructures for lithium metal anodes. Adv Sci. 2017; 4 (3): 1600445.
|
[51] |
Brissot C, Rosso M, Chazalviel JN, Baudry P, Lascaud S. In situ study of dendritic growth in lithium/PEO-salt/lithium cells. Electrochim Acta. 1998; 43 (10-11): 1569- 1574.
|
[52] |
Akolkar R. Mathematical model of the dendritic growth during lithium electrodeposition. J Power Sources. 2013; 232 (15): 23- 28.
|
[53] |
Sun Z, Fang S, Hu YH. 3D graphene materials: from understanding to design and synthesis control. Chem Rev. 2020; 120 (18): 10336- 10453.
|
[54] |
Park S, Jin HJ, Yun YS. Advances in the design of 3Dstructured electrode materials for lithium-metal anodes. Adv Mater. 2020; 32 (51): 2002193.
|
[55] |
Zhang R, Cheng XB, Zhao CZ, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater. 2016; 28 (11): 2155- 2162.
|
[56] |
Kang HK, Woo SG, Kim JH, Yu JS, Lee SR, Kim YJ. Fewlayer graphene island seeding for dendrite-free Li metal electrodes. ACS Appl Mater Interfaces. 2016; 8 (40): 26895- 26901.
|
[57] |
Zhang R, Chen XR, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017; 56 (27): 7764- 7768.
|
[58] |
Zhao L, Wang W, Zhao X, et al. Ni3N nanocrystals decorated reduced graphene oxide with high ionic conductivity for stable lithium metal anode. ACS Appl Energy Mater. 2019; 2 (4): 2692- 2698.
|
[59] |
Mao H, Yu W, Cai Z, et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries. Angew Chem. 2021; 133 (35): 19455- 19462.
|
[60] |
Xie K, Wei W, Yuan K, et al. Toward dendrite-free lithium deposition via structural and interfacial synergistic effects of 3D graphene@Ni scaffold. ACS Appl Mater Interfaces. 2016; 8 (39): 26091- 26097.
|
[61] |
Zhang R, Wen S, Wang N, et al. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv Energy Mater. 2018; 8 (23): 1800914.
|
[62] |
Yan K, Lee HW, Gao T, et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014; 14 (10): 6016- 6022.
|
[63] |
Zheng G, Lee SW, Liang Z, et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014; 9 (8): 618- 623.
|
[64] |
Zhang D, Zhou Y, Liu C, Fan S. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery. Nanoscale. 2016; 8 (21): 11161- 11167.
|
[65] |
Li Z, Peng M, Zhou X, et al. In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv Mater. 2021; 33 (37): 2100793.
|
[66] |
Xu S, Zhao T, Ye Y, et al. A designed lithiophilic carbon channel on separator to regulate lithium deposition behavior. Small. 2022; 18 (2): 2104390.
|
[67] |
Wei L, Deng N, Ju J, et al. ZnF2 doped porous carbon nanofibers as separator coating for stable lithium-metal batteries. Chem Eng J. 2021; 424: 130346.
|
[68] |
Li J, Jia H, Li H, et al. Thin buffer layer assist carbonmodifying separator for long-life lithium metal anodes. J Energy Chem. 2021; 57: 61- 68.
|
[69] |
Lee SH, Harding JR, Liu DS, D'Arcy JM, Shao-Horn Y, Hammond PT. Li-anode protective layers for Li rechargeable batteries via layer-by-layer approaches. Chem Mater. 2014; 26 (8): 2579- 2585.
|
[70] |
Liu H, Peng D, Xu T, Cai K, Sun K, Wang Z. Porous conductive interlayer for dendrite-free lithium metal battery. J Energy Chem. 2021; 53: 412- 418.
|
[71] |
Jiang G, Li K, Mao J, et al. Sandwich-like prussian blue/graphene oxide composite films as ion-sieves for fast and uniform Li ionic flux in highly stable Li metal batteries. Chem Eng J. 2020; 385: 123398.
|
[72] |
Kim JS, Kim DW, Jung HT, Choi JW. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem Mater. 2015; 27 (8): 2780- 2787.
|
[73] |
Lanjapalli VVK, Hosseini S, Dai HJ, Huang CL, Chen YS, Li YY. Various advanced permeable substrates for lithium infusion in lithium metal batteries: a review of recent development. Chem Eng J. 2021; 425: 131236.
|
[74] |
Chen XR, Zhao BC, Yan C, Zhang Q. Review on Li deposition in working batteries: from nucleation to early growth. Adv Mater. 2021; 33 (8): 2004128.
|
[75] |
Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018; 37 (6): 449- 458.
|
[76] |
Chen Q, Zheng H, Yang Y, et al. Ion- and electron-conductive buffering layer-modified Si film for use as a high-rate longterm lithium-ion battery anode. ChemSusChem. 2019; 12 (1): 252- 260.
|
[77] |
Wang TS, Liu X, Zhao X, He P, Nan CW, Fan LZ. Regulating uniform Li plating/stripping via dual-conductive metalorganic frameworks for high-rate lithium metal batteries. Adv Funct Mater. 2020; 30 (16): 2000786.
|
[78] |
Hu Z, Su H, Zhou M, et al. Lithiophilic carbon nanofiber/graphene nanosheet composite scaffold prepared by a scalable and controllable biofabrication method for ultrastable dendrite-free lithium-metal anodes. Small. 2022; 18 (3): 2104735.
|
[79] |
Matsuda S, Kubo Y, Uosaki K, Nakanishi S. Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode. Carbon. 2017; 119: 119- 123.
|
[80] |
Jin S, Xin S, Wang L, et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries. Adv Mater. 2016; 28 (41): 9094- 9102.
|
[81] |
Zhang A, Fang X, Shen C, Liu Y, Zhou C. A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Res. 2016; 9 (11): 3428- 3436.
|
[82] |
Zhou Y, Han Y, Zhang H, et al. A carbon cloth-based lithium composite anode for high-performance lithium metal batteries. Energy Storage Mater. 2018; 14: 222- 229.
|
[83] |
Ha S, Hyun JC, Kwak JH, Lim HD, Yun YS. Hierarchically nanoporous 3D assembly composed of functionalized onionlike graphitic carbon nanospheres for anode-minimized Li metal batteries. Small. 2020; 16 (39): 2003918.
|
[84] |
Gan H, Wu J, Chen H, Li R, Liu H. Guiding lithium deposition in tent-like nitrogen-doped porous carbon microcavities for stable lithium metal anodes. J Mater Chem A. 2020; 8 (27): 13480- 13489.
|
[85] |
Meng JK, Wang WW, Yue XY, et al. Cotton-derived carbon cloth enabling dendrite-free Li deposition for lithium metal batteries. J Power Sources. 2020; 465: 228291.
|
[86] |
Tao L, Ma B, Luo F, et al. Gradient lithiation to load controllable, high utilization lithium in graphitic carbon host for high-energy batteries. Nano Energy. 2022; 93: 106808.
|
[87] |
Zhang XL, Ruan ZQ, He QT, et al. Three-dimensional (3D) nanostructured skeleton substrate composed of hollow carbon fiber/carbon nanosheet/ZnO for stable lithium anode. ACS Appl Mater Interfaces. 2021; 13 (2): 3078- 3088.
|
[88] |
Yao Y, Chen Z, Yu R, et al. Confining ultrafine MoO2 in a carbon matrix enables hybrid Li ion and Li metal storage. ACS Appl Mater Interfaces. 2020; 12 (36): 40648- 40654.
|
[89] |
Wang Z, Li Q, Qin S, et al. Pore-assisted lithium deposition in hierarchically porous and hollow carbon textile for highly stable lithium anode. J Power Sources. 2021; 489: 229464.
|
[90] |
Zhang J, Zhao X, Tong Q, Li C, Zhu M. Controllable lithium nucleation within longitudinally bent carbon nanoribbons for stable lithium metal anodes. Carbon. 2021; 184: 357- 363.
|
[91] |
Yue XY, Bao J, Yang SY, et al. Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode. Nano Energy. 2020; 71: 104614.
|
[92] |
Zhang Z, Zhou X, Liu Z. Conformal coating of a carbon film on 3D hosts toward stable lithium anodes. ACS Appl Energy Mater. 2021; 4 (7): 7288- 7297.
|
[93] |
Chen X, Chen XR, Hou TZ, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv. 2019; 5 (2): eaau7728.
|
[94] |
Xie Y, Zhang H, Yu J, et al. A novel dendrite-free lithium metal anode via oxygen and boron codoped honeycomb carbon skeleton. Small. 2022; 18 (11): 2104876.
|
[95] |
Liu W, Zhai P, Qin S, et al. Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth. J Energy Chem. 2021; 56: 463- 469.
|
[96] |
Xie Y, Han Z, Li H, et al. Uniform nucleation of sodium/lithium in holey carbon nanosheet for stable Na/Li metal anodes. Chem Eng J. 2022; 427: 130959.
|
[97] |
Li S, Luo Z, Tu H, et al. N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Mater. 2021; 42: 679- 686.
|
[98] |
Jung JI, Park S, Ha S, Cho SY, Jin HJ, Yun YS. Effects of nanopores and sulfur doping on hierarchically bunched carbon fibers to protect lithium metal anode. Carbon Energy. 2021; 3 (5): 784- 794.
|
[99] |
Zhao Y, Chen B, Xia S, Yu J, Yan J, Ding B. Selective nucleation and targeted deposition effect of lithium in a lithium-metal host anode. J Mater Chem A. 2021; 9 (9): 5381- 5389.
|
[100] |
Gan H, Wang R, Wu J, Chen H, Li R, Liu H. Coupling a 3D lithophilic skeleton with a fluorine-enriched interface to enable stable lithium metal anode. ACS Appl Mater Interfaces. 2021; 13 (31): 37162- 37171.
|
[101] |
Xiao J, Xiao N, Li K, et al. Ultra-high fluorine enhanced homogeneous nucleation of lithium metal on stepped carbon nanosheets with abundant edge sites. Adv Energy Mater. 2022; 12 (10): 2103123.
|
[102] |
Zhang J, Sun D, Tang Z, et al. Scalable slurry-coating induced integrated 3D lithiophilic architecture for stable lithium metal anodes. J Power Sources. 2021; 485: 229334.
|
[103] |
Yan K, Lu Z, Lee HW, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy. 2016; 1 (3): 16010.
|
[104] |
Zheng N, Liang C, Wu C, et al. Circumferential Li metal deposition at high rates enabled by the synergistic effect of a lithiophilic and ionic conductive network. J Mater Chem A. 2022; 10 (10): 5391- 5401.
|
[105] |
Xiang J, Yuan L, Shen Y, et al. Improved rechargeability of lithium metal anode via controlling lithium-ion flux. Adv Energy Mater. 2018; 8 (36): 1802352.
|
[106] |
Yang C, Yao Y, He S, Xie H, Hitz E, Hu L. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv Mater. 2017; 29 (38): 1702714.
|
[107] |
Chen W, Fu M, Zhao Q, Zhou A, Huang W, Wang J. Aumodified 3D carbon cloth as a dendrite-free framework for Li metal with excellent electrochemical stability. J Alloys Compd. 2021; 871: 159491.
|
[108] |
Pu J, Li J, Shen Z, et al. Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes. Adv Funct Mater. 2018; 28 (41): 1804133.
|
[109] |
Jeon Y, Kim J, Jang H, et al. Argentophilic pyridinic nitrogen for embedding lithiophilic silver nanoparticles in a threedimensional carbon scaffold for reversible lithium plating/stripping. J Mater Chem A. 2022; 10 (4): 1768- 1779.
|
[110] |
Qi Y, Lin L, Jian Z, Fan Q, Chen W. A three-dimensional surface layer and a composite aphroid layer constructed by a facile rolling method for high-performance Li metal anodes. ACS Appl Energy Mater. 2021; 4 (8): 8108- 8116.
|
[111] |
Fang Y, Zhang SL, Wu ZP, Luan D, Lou XW. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers. Sci Adv. 2021; 7 (21): eabg3626.
|
[112] |
Yun J, Rim Shin H, Won ES, Chol Kang H, Lee JW. Confined Li metal storage in porous carbon frameworks promoted by strong Li-substrate interaction. Chem Eng J. 2022; 430: 132897.
|
[113] |
Fang Y, Zeng Y, Jin Q, et al. Nitrogen-doped amorphous Zncarbon multichannel fibers for stable lithium metal anodes. Angew Chem. 2021; 133 (15): 8596- 8601.
|
[114] |
You L, Ju S, Liu J, Xia G, Guo Z, Yu X. Synergistic effect of lithiophilic Zn nanoparticles and N-doping for stable Li metal anodes. J Energy Chem. 2022; 65: 439- 447.
|
[115] |
Zhou T, Shen J, Wang Z, et al. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv Funct Mater. 2020; 30 (14): 1909159.
|
[116] |
Jiang R, Diao W, Xie D, et al. N-doped porous host with lithiophilic Co nanoparticles implanted into 3D carbon nanotubes for dendrite-free lithium metal anodes. ACS Appl Energy Mater. 2021; 4 (11): 12871- 12881.
|
[117] |
Zhao C, Xiong S, Li H, et al. A dendrite-free composite Li metal anode enabled by lithiophilic Co, N codoped porous carbon nanofibers. J Power Sources. 2021; 483: 229188.
|
[118] |
Zeng W, Zhang X, Yang C, et al. Regulating alkali metal deposition behavior via Li/Na-philic Ni nanoparticles modified 3D hierarchical carbon skeleton. Chem Eng J. 2021; 412: 128661.
|
[119] |
Zhang Z, Wang J, Yan X, et al. In-situ growth of hierarchical N-doped CNTs/Ni foam scaffold for dendrite-free lithium metal anode. Energy Storage Mater. 2020; 29: 332- 340.
|
[120] |
Zhang L, Zheng H, Liu B, et al. Homogeneous bottomgrowth of lithium metal anode enabled by doublegradient lithiophilic skeleton. J Energy Chem. 2021; 57: 392- 400.
|
[121] |
Zhao C, Yao X, Yang H, Jiao X, Wang L. Hierarchical porous carbon nanofibers with lithiophilic metal oxide crystalline grains for long-life Li metal anodes. Compos Commun. 2021; 26: 100789.
|
[122] |
Chen AL, Gao M, Mo L, et al. Homogeneous electric field and Li+ flux regulation in three-dimensional nanofibrous composite framework for ultra-long-life lithium metal anode. J Colloid Interface Sci. 2022; 614: 138- 146.
|
[123] |
Liu Y, Zhang S, Qin X, Kang F, Chen G, Li B. In-plane highly dispersed Cu2O nanoparticles for seeded lithium deposition. Nano Lett. 2019; 19 (7): 4601- 4607.
|
[124] |
Zhang W, Jin H, Zhang Y, Du Y, Wang Z, Zhang J. 3D lithiophilic and conductive N-CNT@Cu2O@Cu framework for a dendrite-free lithium metal battery. Chem Mater. 2020; 32 (22): 9656- 9663.
|
[125] |
Wu Q, Yao Z, Du A, et al. Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium-metal batteries. J Mater Chem A. 2021; 9 (9): 5606- 5618.
|
[126] |
Wang W, Wang K, Gu Q, et al. Uniform Li deposition assisted by dual carbon-confined CoO-NiO nanoparticles for dendrite-free Li metal anode. Colloids Surf A. 2022; 636: 128154.
|
[127] |
Xie D, Zheng YP, Zahid M, et al. Regulating Li nucleation/growth via implanting lithiophilic seeds onto flexible scaffolds enables highly stable Li metal anode. J Colloid Interface Sci. 2022; 609: 606- 616.
|
[128] |
Zhang X, Ma F, Srinivas K, et al. Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 2022; 45: 656- 666.
|
[129] |
Zhu J, Chen J, Luo Y, et al. Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Mater. 2019; 23: 539- 546.
|
[130] |
Xie D, Li HH, Diao WY, et al. Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode. Energy Storage Mater. 2021; 36: 504- 513.
|
[131] |
Zhang X, Jin S, Seo MH, et al. Hierarchical porous structure construction for highly stable self-supporting lithium metal anode. Nano Energy. 2022; 93: 106905.
|
[132] |
Liu Y, Sun J, Hu X, et al. Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy. 2022; 94: 106883.
|
[133] |
Yang Z, Dang Y, Zhai P, et al. Single-atom reversible lithiophilic sites toward stable lithium anodes. Adv Energy Mater. 2022; 12 (8): 2103368.
|
[134] |
Xu F, Ding B, Qiu Y, et al. Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides. Matter. 2020; 3 (1): 246- 260.
|
[135] |
Zhan YX, Shi P, Ma XX, et al. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv Energy Mater. 2022; 12 (2): 2103291.
|
[136] |
Ye W, Wang L, Yin Y, et al. Lithium storage in bowl-like carbon: the effect of surface curvature and space geometry on Li metal deposition. ACS Energy Lett. 2021; 6 (6): 2145- 2152.
|
[137] |
Wang H, Li Y, Li Y, et al. Wrinkled graphene cages as hosts for high capacity Li metal anodes shown by cryogenic electron microscopy. Nano Lett. 2019; 19 (2): 1326- 1335.
|
[138] |
Ye W, Pei F, Lan X, et al. Stable nano-encapsulation of lithium through seed-free selective deposition for highperformance Li battery anodes. Adv Energy Mater. 2020; 10 (7): 1902956.
|
[139] |
Liu Y, Zhen Y, Li T, et al. High-capacity, dendrite-free, and ultrahigh-rate lithium-metal anodes based on monodisperse N-doped hollow carbon nanospheres. Small. 2020; 16 (44): 2004770.
|
[140] |
Jiang H, Zhou Y, Zhu H, et al. Interconnected stacked hollow carbon spheres uniformly embedded with Ni2P nanoparticles as scalable host for practical Li metal anode. Chem Eng J. 2022; 428: 132648.
|
[141] |
Xie J, Wang J, Lee HR, et al. Engineering stable interfaces for three-dimensional lithium metal anodes. Sci Adv. 2018; 4 (7): 5168.
|
[142] |
Jiang J, Nie G, Nie P, et al. Nanohollow carbon for rechargeable batteries: ongoing progresses and challenges. Nano-Micro Lett. 2020; 12 (1): 183.
|
[143] |
Song X, Wang H, Wu H, et al. Free-standing hollow carbon nanofibers scaffold with spherical nanocavities and lithiophilic N/ZnO heteroatoms as stable dendrite-free lithium metal anode. Appl Surf Sci. 2021; 565: 150589.
|
[144] |
Fang S, Shen L, Hoefling A, et al. A mismatch electrical conductivity skeleton enables dendrite-free and high stability lithium metal anode. Nano Energy. 2021; 89: 106421.
|
[145] |
Zhang J, Su Z, Jin J, Yang S, Yu A, Li G. Uniform deposition and effective confinement of lithium in three-dimensional interconnected microchannels for stable lithium metal anodes. ACS Appl Mater Interfaces. 2021; 13 (33): 39311- 39321.
|
[146] |
Yang G, Liu Z, Weng S, et al. Iron carbide allured lithium metal storage in carbon nanotube cavities. Energy Storage Mater. 2021; 36: 459- 465.
|
[147] |
Zhang R, Wang N, Shi C, Liu E, He C, Zhao N. Spatially uniform Li deposition realized by 3D continuous duct-like graphene host for high energy density Li metal anode. Carbon. 2020; 161: 198- 205.
|
[148] |
Zheng ZJ, Ye H, Guo ZP. Recent progress in designing stable composite lithium anodes with improved wettability. Adv Sci. 2020; 7 (22): 2002212.
|
[149] |
Wang SH, Yue J, Dong W, et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat Commun. 2019; 10: 4930.
|
[150] |
Huang G, Han J, Zhang F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes. Adv Mater. 2019; 31 (2): 1805334.
|
[151] |
Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule. 2018; 2 (4): 764- 777.
|
[152] |
Zhang Y, Luo W, Wang C, et al. High-capacity, lowtortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci USA. 2017; 114 (14): 3584- 3589.
|
[153] |
Go W, Kim MH, Park J, et al. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett. 2019; 19 (3): 1504- 1511.
|
[154] |
Niu C, Pan H, Xu W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat Nanotechnol. 2019; 14 (6): 594- 601.
|
[155] |
Tao L, Hu A, Yang Z, et al. A surface chemistry approach to tailoring the hydrophilicity and lithiophilicity of carbon films for hosting high-performance lithium metal anodes. Adv Funct Mater. 2020; 30 (31): 2000585.
|
[156] |
Xia S, Zhang X, Luo L, et al. Highly stable and ultrahigh-rate Li metal anode enabled by fluorinated carbon fibers. Small. 2021; 17 (4): 2006002.
|
[157] |
Fang Y, Zhang Y, Zhu K, et al. Lithiophilic threedimensional porous Ti3C2Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS Nano. 2019; 13 (12): 14319- 14328.
|
[158] |
Zou P, Wang Y, Chiang SW, Wang X, Kang F, Yang C. Directing lateral growth of lithium dendrites in microcompartmented anode arrays for safe lithium metal batteries. Nat Commun. 2018; 9: 464.
|
[159] |
Cao J, Xie Y, Li W, et al. Rationally optimized carbon fiber cloth as lithiophilic host for highly stable Li metal anodes. Mater Today Energy. 2021; 20: 100663.
|
[160] |
Chen L, Chen G, Tang W, et al. A robust and lithiophilic three-dimension framework of CoO nanorod arrays on carbon cloth for cycling-stable lithium metal anodes. Mater Today Energy. 2020; 18: 100520.
|
[161] |
Le T, Yang C, Lv W, et al. Deeply cyclable and ultrahigh-rate lithium metal anodes enabled by coaxial nanochamber heterojunction on carbon nanofibers. Adv Sci. 2021; 8 (23): 2101940.
|
[162] |
Wang Y, Shen Y, Du Z, et al. A lithium-carbon nanotube composite for stable lithium anodes. J Mater Chem A. 2017; 5 (45): 23434- 23439.
|
[163] |
Guo F, Wang Y, Kang T, et al. A Li-dual carbon composite as stable anode material for Li batteries. Energy Storage Mater. 2018; 15: 116- 123.
|
[164] |
Zhu M, Li B, Li S, Du Z, Gong Y, Yang S. Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks. Adv Energy Mater. 2018; 8 (18): 1703505.
|
[165] |
Zhang T, Lu H, Yang J, et al. Stable lithium metal anode enabled by a lithiophilic and electron/ion conductive framework. ACS Nano. 2020; 14 (5): 5618- 5627.
|
[166] |
Liu S, Xia X, Deng S, et al. Large-scale synthesis of highquality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries. Energy Storage Mater. 2018; 15: 31- 36.
|
[167] |
Li W, Hu S, Luo X, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater. 2017; 29 (16): 1605820.
|
[168] |
Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019; 4 (3): 180- 186.
|
[169] |
Shi P, Hou LP, Jin CB, et al. A successive conversiondeintercalation delithiation mechanism for practical composite lithium anodes. J Am Chem Soc. 2022; 144 (1): 212- 218.
|
[170] |
Park H, Tamwattana O, Kim J, et al. Probing lithium metals in batteries by advanced characterization and analysis tools. Adv Energy Mater. 2021; 11 (15): 2003039.
|
/
〈 |
|
〉 |