Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries
Hanyan Wu , Xuejie Gao , Xinyang Chen , Weihan Li , Junjie Li , Lei Zhang , Yang Zhao , Ming Jiang , Runcang Sun , Xueliang Sun
Carbon Energy ›› 2024, Vol. 6 ›› Issue (3) : 422
Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries
Applications of lithium–sulfur (Li–S) batteries are still limited by the sluggish conversion kinetics from polysulfide to Li2S. Although various single-atom catalysts are available for improving the conversion kinetics, the sulfur redox kinetics for Li–S batteries is still not ultrafast. Herein, in this work, a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes (Pt&Co@NCNT) was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li2S. The X-ray absorption near edge curves indicated the reversible conversion of Li2Sx on the S/Pt&Co@NCNT electrode. Meanwhile, density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li2S. As a result, the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80% at 100 cycles at a current density of 1.3 mA cm−2 (S loading: 2.5 mg cm−2). More importantly, an excellent rate performance was achieved with a high capacity of 822.1 mAh g−1 at a high current density of 12.7 mA cm−2. This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li–S batteries.
DFT calculation / dual-single-atoms of Pt-Co / fast Li-sulfur batteries / sulfur redox kinetics / XANES analysis
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |