Investigating the impact of dynamic structural changes of Au/rutile catalysts on the catalytic activity of CO oxidation

Xiaochun Hu, Qianwenhao Fan, Mingwu Tan, Yuqing Luo, Xianyue Wu, Manoel Y. Manuputty, Jie Ding, Tej S. Choksi, Markus Kraft, Rong Xu, Zhiqiang Sun, Wen Liu

Carbon Energy ›› 2024, Vol. 6 ›› Issue (4) : 412.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (4) : 412. DOI: 10.1002/cey2.412
RESEARCH ARTICLE

Investigating the impact of dynamic structural changes of Au/rutile catalysts on the catalytic activity of CO oxidation

Author information +
History +

Abstract

The surface properties of oxidic supports and their interaction with the supported metals play critical roles in governing the catalytic activities of oxide-supported metal catalysts. When metals are supported on reducible oxides, dynamic surface reconstruction phenomena, including strong metal–support interaction (SMSI) and oxygen vacancy formation, complicate the determination of the structural–functional relationship at the active sites. Here, we performed a systematic investigation of the dynamic behavior of Au nanocatalysts supported on flame-synthesized TiO2, which takes predominantly a rutile phase, using CO oxidation above room temperature as a probe reaction. Our analysis conclusively elucidated a negative correlation between the catalytic activity of Au/TiO2 and the oxygen vacancy at the Au/TiO2 interface. Although the reversible formation and retracting of SMSI overlayers have been ubiquitously observed on Au/TiO2 samples, the catalytic consequence of SMSI remains inconclusive. Density functional theory suggests that the electron transfer from TiO2 to Au is correlated to the presence of the interfacial oxygen vacancies, retarding the catalytic activation of CO oxidation.

Keywords

CO oxidation / electronic metal–support interactions / flame-synthesis / metal–support interactions / oxygen vacancy / strong metal–support interaction

Cite this article

Download citation ▾
Xiaochun Hu, Qianwenhao Fan, Mingwu Tan, Yuqing Luo, Xianyue Wu, Manoel Y. Manuputty, Jie Ding, Tej S. Choksi, Markus Kraft, Rong Xu, Zhiqiang Sun, Wen Liu. Investigating the impact of dynamic structural changes of Au/rutile catalysts on the catalytic activity of CO oxidation. Carbon Energy, 2024, 6(4): 412 https://doi.org/10.1002/cey2.412

References

[1]
Yuan W, Zhu B, Fang K, et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation. Science. 2021; 371 (6528): 517- 521.
[2]
Campbell CT. Electronic perturbations. Nat Chem. 2012; 4 (8): 597- 598.
[3]
Liu N, Xu M, Yang Y, et al. Auδ--Ov-Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction. ACS Catal. 2019; 9 (4): 2707- 2717.
[4]
Lykhach Y, Kozlov SM, Skála T, et al. Counting electrons on supported nanoparticles. Nat Mater. 2016; 15 (3): 284- 288.
[5]
Li X, Lin J, Li L, et al. Controlling CO2 hydrogenation selectivity by metal-supported electron transfer. Angew Chem Int Ed. 2020; 59 (45): 19983- 19989.
[6]
Yoon B, Häkkinen H, Landman U, et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science. 2005; 307 (5708): 403- 407.
[7]
Green IX, Tang W, McEntee M, Neurock M, Yates JT. Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. J Am Chem Soc. 2012; 134 (30): 12717- 12723.
[8]
Daté M, Haruta M. Moisture effect on CO oxidation over Au/TiO2 catalyst. J Catal. 2001; 201 (2): 221- 224.
[9]
Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science. 2014; 345 (6204): 1599- 1602.
[10]
Huang J, He S, Goodsell JL, et al. Manipulating atomic structures at the Au/TiO2 interface for O2 activation. J Am Chem Soc. 2020; 142 (14): 6456- 6460.
[11]
Wang Y, Widmann D, Behm RJ. Influence of TiO2 bulk defects on CO adsorption and CO oxidation on Au/TiO2: electronic metal-support interactions (EMSIs) in supported Au catalysts. ACS Catal. 2017; 7 (4): 2339- 2345.
[12]
Wang Y, Widmann D, Heenemann M, et al. The role of electronic metal-support interactions and its temperature dependence: CO adsorption and CO oxidation on Au/TiO2 catalysts in the presence of TiO2 bulk defects. J Catal. 2017; 354: 46- 60.
[13]
Li L, Gao Y, Li H, et al. CO oxidationon TiO2 (110) supported subnanometer gold clusters: size and shape effects. J Am Chem Soc. 2013; 135 (51): 19336- 19346.
[14]
Okumura M, Coronado JM, Soria J, Haruta M, Conesa JC. EPR study of CO and O2 interaction with supported Au catalysts. J Catal. 2001; 203 (1): 168- 174.
[15]
Wu S, Manuputty MY, Sheng Y, et al. Flame synthesized blue TiO2-x with tunable oxygen vacancies from surface to grain boundary to bulk. Small Methods. 2020; 5 (2): 2000928- 2000939.
[16]
Wan J, Chen W, Jia C, et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater. 2018; 30 (11): 1705369.
[17]
Zhang Y, Ding Z, Foster CW, Banks CE, Qiu X, Ji X. Oxygen vacancies evoked blue TiO2 (B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv Funct Mater. 2017; 27 (27): 1700856.
[18]
Zhang S, Plessow PN, Willis JJ, et al. Dynamical observation and detailed description of catalysts under strong metalsupport interaction. Nano Lett. 2016; 16 (7): 4528- 4534.
[19]
Li R, Liu Z, Trinh QT, et al. Strong metal-support interaction for 2D materials: application in noble metal/TiB2 heterointerfaces and their enhanced catalytic performance for formic acid dehydrogenation. Adv Mater. 2021; 33 (32): 2101536.
[20]
Liu X, Liu MH, Luo YC, et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J Am Chem Soc. 2012; 134 (24): 10251- 10258.
[21]
Chen H, Yang Z, Wang X, et al. Photoinduced strong metalsupport interaction for enhanced catalysis. J Am Chem Soc. 2021; 143 (23): 8521- 8526.
[22]
Zhang J, Wang H, Wang L, et al. Wet-chemistry strong metalsupport interactions in titania-supported Au catalysts. J Am Chem Soc. 2019; 141 (7): 2975- 2983.
[23]
Zhang J, Zhu D, Yan J, Wang CA. Strong metal-support interactions induced by an ultrafast laser. Nat Commun. 2021; 12: 6665.
[24]
Zhang J, Ma J, Choksi TS, et al. Strong metal-support interaction boosts activity, selectivity, and stability in electrosynthesis of H2O2. J Am Chem Soc. 2022; 144 (5): 2255- 2263.
[25]
Tang H, Su Y, Zhang B, et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci Adv. 2017; 3 (10): e1700231.
[26]
Wang L, Zhang J, Zhu Y, et al. Strong metal-support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts. ACS Catal. 2017; 7 (11): 7461- 7465.
[27]
Gatla S, Aubert D, Agostini G, et al. Room-temperature CO oxidation catalyst: low-temperature metal-support interaction between platinum nanoparticles and nanosized ceria. ACS Catal. 2016; 6 (9): 6151- 6155.
[28]
Yang F, Zhao H, Wang W, et al. Atomic origins of the strong metal-support interaction in silica supported catalysts. Chem Sci. 2021; 12 (38): 12651- 12660.
[29]
Wang H, Wang L, Lin D, et al. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier's principle. Nat Catal. 2021; 4 (5): 418- 424.
[30]
Zhang Y, Liu JX, Qian K, et al. Structure sensitivity of Au-TiO2 strong metal-support interactions. Angew Chem Int Ed. 2021; 60 (21): 12074- 12081.
[31]
Liu S, Niu K, Chen S, et al. TiO2 bunchy hierarchical structure with effective enhancement in sodium storage behaviors. Carbon Energy. 2022; 4 (4): 645- 653.
[32]
Kim S, Cho Y, Rhee R, Park JH. Black TiO2: what are exact functions of disorder layer. Carbon Energy. 2020; 2 (1): 44- 53.
[33]
Zhang Y, Zhang J, Zhang B, et al. Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat Commun. 2020; 11: 558.
[34]
Shi J, Li H, Genest A, et al. High-performance water gas shift induced by asymmetric oxygen vacancies: gold clusters supported by ceria-praseodymia mixed oxides. Appl Catal B. 2022; 301: 120789.
[35]
Mohajernia S, Andryskova P, Zoppellaro G, et al. Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. J Mater Chem A. 2020; 8 (3): 1432- 1442.
[36]
Bharti B, Kumar S, Lee HN, Kumar R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep. 2016; 6 (1): 32355.
[37]
Vasu D, Karthi Keyan A, Sakthinathan S, Chiu TW. Investigation of electrocatalytic and photocatalytic ability of Cu/Ni/TiO2/MWCNTs nanocomposites for detection and degradation of antibiotic drug furaltadone. Sci Rep. 2022; 12 (1): 886.
[38]
Chen Z, Liang L, Yuan H, et al. Reciprocal regulation between support defects and strong metal-support interactions for highly efficient reverse water gas shift reaction over Pt/TiO2 nanosheets catalysts. Appl Catal B. 2021; 298: 120507- 120519.
[39]
Valden M, Lai X, Goodman DW. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science. 1998; 281 (5383): 1647- 1650.
[40]
Boccuzzi F, Chiorino A, Manzoli M, et al. Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J Catal. 2001; 202 (2): 256- 267.
[41]
Du X, Huang Y, Pan X, et al. Size-dependent strong metalsupport interaction in TiO2 supported Au nanocatalysts. Nat Commun. 2020; 11: 5811.
[42]
Sun Z, Russell CK, Whitty KJ, et al. Chemical looping-based energy transformation via lattice oxygen modulated selective oxidation. Prog Energy Combust Sci. 2023; 96: 101045.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/