Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates

Karl Adrian Gandionco , Juwon Kim , Lieven Bekaert , Annick Hubin , Jongwoo Lim

Carbon Energy ›› 2024, Vol. 6 ›› Issue (3) : 410

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (3) : 410 DOI: 10.1002/cey2.410
REVIEW

Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates

Author information +
History +
PDF

Abstract

The electrochemical reduction of carbon dioxide offers a sound and economically viable technology for the electrification and decarbonization of the chemical and fuel industries. In this technology, an electrocatalytic material and renewable energy-generated electricity drive the conversion of carbon dioxide into high-value chemicals and carbon-neutral fuels. Over the past few years, single-atom catalysts have been intensively studied as they could provide near-unity atom utilization and unique catalytic performance. Single-atom catalysts have become one of the state-of-the-art catalyst materials for the electrochemical reduction of carbon dioxide into carbon monoxide. However, it remains a challenge for single-atom catalysts to facilitate the efficient conversion of carbon dioxide into products beyond carbon monoxide. In this review, we summarize and present important findings and critical insights from studies on the electrochemical carbon dioxide reduction reaction into hydrocarbons and oxygenates using single-atom catalysts. It is hoped that this review gives a thorough recapitulation and analysis of the science behind the catalysis of carbon dioxide into more reduced products through single-atom catalysts so that it can be a guide for future research and development on catalysts with industry-ready performance for the electrochemical reduction of carbon dioxide into high-value chemicals and carbon-neutral fuels.

Keywords

electrocatalysis / electrochemical CO 2 reduction / hydrocarbons / oxygenates / single-atom catalysts

Cite this article

Download citation ▾
Karl Adrian Gandionco, Juwon Kim, Lieven Bekaert, Annick Hubin, Jongwoo Lim. Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates. Carbon Energy, 2024, 6(3): 410 DOI:10.1002/cey2.410

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan Z, Eden MR, Gani R. Toward the development and deployment of large-scale carbon dioxide capture and conversion processes. Ind Eng Chem Res. 2016; 55 (12): 3383- 3419.

[2]

Rafiee A, Rajab Khalilpour K, Milani D, Panahi M. Trends in CO2 conversion and utilization: a review from process systems perspective. J Environ Chem Eng. 2018; 6 (5): 5771- 5794.

[3]

Yaashikaa PR, Senthil Kumar P, Varjani SJ, Saravanan A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J CO2 Util. 2019; 33: 131- 147.

[4]

Qiao J, Liu Y, Hong F, Zhang J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 2014; 43 (2): 631- 675.

[5]

Agarwal AS, Zhai Y, Hill D, Sridhar N. The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem. 2011; 4 (9): 1301- 1310.

[6]

Wu J, Sharifi T, Gao Y, Zhang T, Ajayan PM. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv Mater. 2019; 31 (13): 1804257.

[7]

Moura de Salles Pupo M, Kortlever R. Electrolyte effects on the electrochemical reduction of CO2. ChemPhysChem. 2019; 20 (22): 2926- 2935.

[8]

Lu S, Wang Y, Xiang H, et al. Mass transfer effect to electrochemical reduction of CO2: electrode, electrocatalyst and electrolyte. J Energy Storage. 2022; 52: 104764.

[9]

Ni J, Cheng Q, Liu S, et al. Deciphering electrolyte selection for electrochemical reduction of carbon dioxide and nitrogen to high-value-added chemicals. Adv Funct Mater. 2023; 33 (11): 2212483.

[10]

Lee J, Kwon Y, Machunda RL, Lee HJ. Electrocatalytic recycling of CO2 and small organic molecules. Chem Asian J. 2009; 4 (10): 1516- 1523.

[11]

Kuhl KP, Cave ER, Abram DN, Jaramillo TF. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci. 2012; 5 (5): 7050- 7059.

[12]

Reske R, Duca M, Oezaslan M, Schouten KJP, Koper MTM, Strasser P. Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers. J Phys Chem Lett. 2013; 4 (15): 2410- 2413.

[13]

Manthiram K, Beberwyck BJ, Alivisatos AP. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc. 2014; 136 (38): 13319- 13325.

[14]

Roberts FS, Kuhl KP, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem Int Ed. 2015; 54 (17): 5179- 5182.

[15]

Ren D, Wong NT, Handoko AD, Huang Y, Yeo BS. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J Phys Chem Lett. 2016; 7 (1): 20- 24.

[16]

Kwon Y, Lum Y, Clark EL, Ager JW, Bell AT. CO2 Electroreduction with enhanced ethylene and ethanol selectivity by nanostructuring polycrystalline copper. ChemElectroChem. 2016; 3 (6): 1012- 1019.

[17]

Mistry H, Varela AS, Bonifacio CS, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat Commun. 2016; 7 (1): 12123.

[18]

Kim D, Kley CS, Li Y, Yang P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc Natl Acad Sci USA. 2017; 114 (40): 10560- 10565.

[19]

Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2reduction on copper in aqueous electrolyte. Chem Rev. 2019; 119 (12): 7610- 7672.

[20]

Li CW, Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc. 2012; 134 (17): 7231- 7234.

[21]

Kim D, Lee S, Ocon JD, Jeong B, Lee JK, Lee J. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Phys Chem Chem Phys. 2015; 17 (2): 824- 830.

[22]

Kas R, Kortlever R, Milbrat A, Koper MTM, Mul G, Baltrusaitis J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys Chem Chem Phys. 2014; 16 (24): 12194- 12201.

[23]

Verdaguer-Casadevall A, Li CW, Johansson TP, et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc. 2015; 137 (31): 9808- 9811.

[24]

Handoko AD, Ong CW, Huang Y, et al. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J Phys Chem C. 2016; 120 (36): 20058- 20067.

[25]

Permyakova AA, Herranz J, El Kazzi M, et al. On the oxidation state of Cu2O upon electrochemical CO2 reduction: an XPS study. ChemPhysChem. 2019; 20 (22): 3120- 3127.

[26]

Kim D, Resasco J, Yu Y, Asiri AM, Yang P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun. 2014; 5 (1): 4948.

[27]

Rasul S, Anjum DH, Jedidi A, Minenkov Y, Cavallo L, Takanabe K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem. 2015; 127 (7): 2174- 2178.

[28]

Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016; 6 (5): 2842- 2851.

[29]

Larrazábal GO, Martín AJ, Mitchell S, Hauert R, Pérez-Ramírez J. Enhanced reduction of CO2 to CO over Cu-In electrocatalysts: catalyst evolution is the key. ACS Catal. 2016; 6 (9): 6265- 6274.

[30]

Mistry H, Reske R, Strasser P, Roldan Cuenya B. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catal Today. 2017; 288: 30- 36.

[31]

Chang Z, Huo S, Zhang W, Fang J, Wang H. The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction. J Phys Chem C. 2017; 121 (21): 11368- 11379.

[32]

Hoffman ZB, Gray TS, Moraveck KB, Gunnoe TB, Zangari G. Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper-indium electrocatalysts. ACS Catal. 2017; 7 (8): 5381- 5390.

[33]

Ma S, Sadakiyo M, Heima M, et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J Am Chem Soc. 2017; 139 (1): 47- 50.

[34]

Clark EL, Hahn C, Jaramillo TF, Bell AT. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J Am Chem Soc. 2017; 139 (44): 15848- 15857.

[35]

Lee S, Park G, Lee J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 2017; 7 (12): 8594- 8604.

[36]

Higgins D, Landers AT, Ji Y, et al. Guiding electrochemical carbon dioxide reduction toward carbonyls using copper silver thin films with interphase miscibility. ACS Energy Lett. 2018; 3 (12): 2947- 2955.

[37]

Morales-Guio CG, Cave ER, Nitopi SA, et al. Improved CO2 reduction activity towards Cu2+ alcohols on a tandem gold on copper electrocatalyst. Nat Catal. 2018; 1 (10): 764- 771.

[38]

Jeon HS, Timoshenko J, Scholten F, et al. Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction. J Am Chem Soc. 2019; 141 (50): 19879- 19887.

[39]

Dutta A, Montiel IZ, Erni R, et al. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy. 2020; 68: 104331.

[40]

Kumar B, Asadi M, Pisasale D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun. 2013; 4 (1): 2819.

[41]

Wu J, Liu M, Sharma PP, et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 2016; 16 (1): 466- 470.

[42]

Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun. 2015; 51 (89): 16061- 16064.

[43]

Liu Y, Chen S, Quan X, Yu H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc. 2015; 137 (36): 11631- 11636.

[44]

Li W, Seredych M, Rodríguez-Castellón E, Bandosz TJ. Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and. ChemSusChem. 2016; 9 (6): 606- 616.

[45]

Wu J, Ma S, Sun J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat Commun. 2016; 7 (1): 13869.

[46]

Li W, Herkt B, Seredych M, Bandosz TJ. Pyridinic-N groups and ultramicropore nanoreactors enhance CO2 electrochemical reduction on porous carbon catalysts. Appl Catal B. 2017; 207: 195- 206.

[47]

Song Y, Chen W, Zhao C, Li S, Wei W, Sun Y. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew Chem Int Ed. 2017; 56 (36): 10840- 10844.

[48]

Xie J, Zhao X, Wu M, Li Q, Wang Y, Yao J. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew Chem Int Ed. 2018; 57 (31): 9640- 9644.

[49]

Han H, Park S, Jang D, Lee S, Kim WB. Electrochemical reduction of CO2 to CO by N,S dual-doped carbon nanoweb catalysts. ChemSusChem. 2020; 13 (3): 539- 547.

[50]

Chai GL, Guo ZX. Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction. Chem Sci. 2016; 7 (2): 1268- 1275.

[51]

Jhong HR, Ma S, Kenis PJ. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng. 2013; 2 (2): 191- 199.

[52]

Dinh CT, Burdyny T, Kibria MG, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science. 2018; 360 (6390): 783- 787.

[53]

Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites. Chem Rev. 2020; 120 (21): 12217- 12314.

[54]

Gao D, Liu T, Wang G, Bao X. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 2021; 6 (2): 713- 727.

[55]

Qin R, Liu K, Wu Q, Zheng N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem Rev. 2020; 120 (21): 11810- 11899.

[56]

Wang Y, Cao L, Libretto NJ, et al. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J Am Chem Soc. 2019; 141 (42): 16635- 16642.

[57]

Sun K, Ji Y, Liu Y, Wang Z. Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO2 electrochemical reduction. J Mater Chem A. 2020; 8 (25): 12291- 12295.

[58]

Xie H, Wan Y, Wang X, et al. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl Catal B. 2021; 289: 119783.

[59]

Bok J, Lee SY, Lee BH, et al. Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J Am Chem Soc. 2021; 143 (14): 5386- 5395.

[60]

Han N, Wang Y, Ma L, et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem. 2017; 3 (4): 652- 664.

[61]

Ren S, Joulié D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science. 2019; 365 (6451): 367- 369.

[62]

Boutin E, Wang M, Lin JC, et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew Chem. 2019; 131 (45): 16318- 16322.

[63]

Wu Y, Jiang Z, Lu X, Liang Y, Wang H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature. 2019; 575 (7784): 639- 642.

[64]

Matheu R, Gutierrez-Puebla E, Monge, et al. Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction. J Am Chem Soc. 2019; 141 (43): 17081- 17085.

[65]

Wang X, Cai ZF, Wang YQ, et al. In situ scanning tunneling microscopy of cobalt-phthalocyanine-catalyzed CO2 reduction reaction. Angew Chem Int Ed. 2020; 59 (37): 16098- 16103.

[66]

Zhang X, Wang Y, Gu M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat Energy. 2020; 5 (9): 684- 692.

[67]

Wang Y, Chen Z, Han P, et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018; 8 (8): 7113- 7119.

[68]

Zhang N, Zhang X, Tao L, et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew Chem Int Ed. 2021; 60 (11): 6170- 6176.

[69]

Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci. 2018; 11 (4): 893- 903.

[70]

Jiang K, Siahrostami S, Akey AJ, et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem. 2017; 3 (6): 950- 960.

[71]

Tripkovic V, Vanin M, Karamad M, et al. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J Phys Chem C. 2013; 117 (18): 9187- 9195.

[72]

Bagger A, Ju W, Varela AS, Strasser P, Rossmeisl J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal Today. 2017; 288: 74- 78.

[73]

Wannakao S, Jumpathong W, Kongpatpanich K. Tailoring metalloporphyrin frameworks for an efficient carbon dioxide electroreduction: selectively stabilizing key intermediates with H-bonding pockets. Inorg Chem. 2017; 56 (12): 7200- 7209.

[74]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996; 54 (16): 11169- 11186.

[75]

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010; 132 (15): 154104.

[76]

Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys. 2014; 140 (8): 084106.

[77]

Wang W, Li D, Cui T. Carbon and oxygen coordinating atoms adjust transition metal single-atom catalysts based on boron nitride monolayers for highly efficient CO2 electroreduction. ACS Appl Mater Interfaces. 2021; 13 (16): 18934- 18943.

[78]

Cao H, Zhang Z, Chen JW, Wang YG. Potential-dependent free energy relationship in interpreting the electrochemical performance of CO2 reduction on single atom catalysts. ACS Catal. 2022; 12 (11): 6606- 6617.

[79]

Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005; 152 (3): J23.

[80]

Ren M, Guo X, Huang S. Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: the power of B atom. Chem Eng J. 2022; 433: 134270.

[81]

Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys. 2000; 113 (22): 9978- 9985.

[82]

Wang X, Niu H, Wan X, et al. Identifying TM-N4 active sites for selective CO2-to-CH4 conversion: a computational study. Appl Surf Sci. 2022; 582: 152470.

[83]

Ernzerhof M, Perdew JP. Generalized gradient approximation to the angle- and system-averaged exchange hole. J Chem Phys. 1998; 109 (9): 3313- 3320.

[84]

Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter Mater Phys. 1994; 50 (24): 17953- 17979.

[85]

Zhao H, Cao H, Zhang Z, Wang YG. Modeling the potential-dependent kinetics of CO2 electroreduction on single-nickel atom catalysts with explicit solvation. ACS Catal. 2022; 12 (18): 11380- 11390.

[86]

Bai X, Zhao X, Zhang Y, et al. Dynamic stability of copper single-atom catalysts under working conditions. J Am Chem Soc. 2022; 144 (37): 17140- 17148.

[87]

Mudchimo T, Takahashi K, Mano P, Sanghiran Lee V, Rungrotmongkol T, Namuangruk S. Understanding the effect of transition metals and vacancy boron nitride catalysts on activity and selectivity for CO2 reduction reaction to valuable products: a DFT-D3 study. Fuel. 2022; 319: 123808.

[88]

Xu F, Wang X, Liu X, Li C, Fan G, Xu H. Computational screening of TMN4 based graphene-like BC6N for CO2 electroreduction to C1 hydrocarbon products. Mol Catal. 2022; 530: 112571.

[89]

Sanville E, Kenny SD, Smith R, Henkelman G. Improved grid-based algorithm for Bader charge allocation. J Comput Chem. 2007; 28 (5): 899- 908.

[90]

Wang JS, Zhao GC, Qiu YQ, Liu CG. Strong boron-carbon bonding interaction drives CO2 reduction to ethanol over the boron-doped Cu(111) surface: an insight from the first-principles calculations. J Phys Chem C. 2021; 125 (1): 572- 582.

[91]

Xie Y, Liu N, Li X, et al. The influence of single-atom Fe2+/3+ N4 spin state on the electroreduction of CO2 to CO/HCOOH by analyzing proton/electron transfer mechanisms and free energy evolutions. J Phys Chem C. 2021; 125 (39): 21460- 21470.

[92]

Gao Z, Huang Z, Meng Y, Tang H, Ni Z, Xia S. Theoretical study on the mechanism of CO2 adsorption and reduction by single-atom M (M=Cu, Co, Ni) doping C2N. Chem Phys Lett. 2022; 804: 139902.

[93]

Zhang Y, Fang L, Cao Z. Atomically dispersed Cu and Fe on N-doped carbon materials for CO2 electroreduction: insight into the curvature effect on activity and selectivity. RSC Adv. 2020; 10 (70): 43075- 43084.

[94]

Lin ZZ, Li XM, Chen XW, Chen X. CO2 reduction on single-atom Ir catalysts with chemical functionalization. Phys Chem Chem Phys. 2022; 24 (6): 3733- 3740.

[95]

Wei X, Cao S, Wei S, et al. Theoretical investigation on electrocatalytic reduction of CO2 to methanol and methane by bimetallic atoms TM1/TM2-N@Gra (TM = Fe, Co, Ni, Cu). Appl Surf Sci. 2022; 593: 153377.

[96]

Lambie S, Low JL, Gaston N, Paulus B. Catalytic potential of post-transition metal doped graphene-based single-atom catalysts for the CO2 electroreduction reaction. ChemPhysChem. 2022; 23 (8): e202200024.

[97]

Huang Y, Rehman F, Tamtaji M, et al. Mechanistic understanding and design of non-noble metal-based single-atom catalysts supported on two-dimensional materials for CO2 electroreduction. J Mater Chem A. 2022; 10 (11): 5813- 5834.

[98]

Brimley P, Almajed H, Alsunni Y, et al. Electrochemical CO2 reduction over metal-/nitrogen-doped graphene single-atom catalysts modeled using the grand-canonical density functional theory. ACS Catal. 2022; 12 (16): 10161- 10171.

[99]

Qi R, Zhu B, Han Z, Gao Y. High-throughput screening of stable single-atom catalysts in CO2 reduction reactions. ACS Catal. 2022; 12 (14): 8269- 8278.

[100]

Yang X, Wan Y, Zheng Y, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J. 2019; 366: 608- 621.

[101]

Zheng T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule. 2019; 3 (1): 265- 278.

[102]

Bi W, Li X, You R, et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv Mater. 2018; 30 (18): 1706617.

[103]

Li F, Hong S, Wu TS, et al. Atomically dispersed nickel sites for selective electroreduction of CO2. ACS Appl Energy Mater. 2019; 2 (12): 8836- 8842.

[104]

Jeong HY, Balamurugan M, Choutipalli VSK, et al. Tris(2-benzimidazolylmethyl) amine-directed synthesis of single-atom nickel catalysts for electrochemical CO production from CO2. Chem Eur J. 2018; 24 (69): 18444- 18454.

[105]

Yang H, Lin Q, Wu Y, et al. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy. 2020; 70: 104454.

[106]

Zhang M, Wu TS, Hong S, et al. Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance. ACS Sustain Chem Eng. 2019; 7 (17): 15030- 15035.

[107]

Zhang C, Yang S, Wu J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv Energy Mater. 2018; 8 (19): 1703487.

[108]

Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J Am Chem Soc. 2019; 141 (32): 12717- 12723.

[109]

Ma Z, Zhang X, Wu D, et al. Ni and nitrogen-codoped ultrathin carbon nanosheets with strong bonding sites for efficient CO2 electrochemical reduction. J Colloid Interface Sci. 2020; 570: 31- 40.

[110]

Chen Z, Mou K, Yao S, Liu L. Zinc-coordinated nitrogen-codoped graphene as an efficient catalyst for selective electrochemical reduction of CO2 to CO. ChemSusChem. 2018; 11 (17): 2944- 2952.

[111]

Jia M, Hong S, Wu TS, Li X, Soo YL, Sun Z. Single Sb sites for efficient electrochemical CO2 reduction. Chem Commun. 2019; 55 (80): 12024- 12027.

[112]

Gong YN, Jiao L, Qian Y, et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew Chem. 2020; 132 (7): 2727- 2731.

[113]

Lu P, Yang Y, Yao J, et al. Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Appl Catal B. 2019; 241: 113- 119.

[114]

Pan F, Zhang H, Liu K, et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018; 8 (4): 3116- 3122.

[115]

Chen X, Ma DD, Chen B, et al. Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe-N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl Catal B. 2020; 267: 118720.

[116]

Ma S, Su P, Huang W, Jiang SP, Bai S, Liu J. Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO2 reduction. ChemCatChem. 2019; 11 (24): 6092- 6098.

[117]

Zhao J, Deng J, Han J, Imhanria S, Chen K, Wang W. Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst. Chem Eng J. 2020; 389: 124323.

[118]

Hu XM, Hval HH, Bjerglund ET, et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal. 2018; 8 (7): 6255- 6264.

[119]

Jeong HY, Balamurugan M, Choutipalli VSK, et al. Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm-2 with single-atom nickel electrocatalysts. J Mater Chem A. 2019; 7 (17): 10651- 10661.

[120]

Varela AS, Ranjbar Sahraie N, Steinberg J, Ju W, Oh HS, Strasser P. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew Chem Int Ed. 2015; 54 (37): 10758- 10762.

[121]

Huan TN, Ranjbar N, Rousse G, et al. Electrochemical reduction of CO2 catalyzed by FE-N-C materials: a structure-selectivity study. ACS Catal. 2017; 7 (3): 1520- 1525.

[122]

Wu S, Lv X, Ping D, et al. Highly exposed atomic Fe-N active sites within carbon nanorods towards electrocatalytic reduction of CO2 to CO. Electrochim Acta. 2020; 340: 135930.

[123]

Guan A, Chen Z, Quan Y, et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020; 5 (4): 1044- 1053.

[124]

Ju W, Bagger A, Hao GP, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun. 2017; 8 (1): 944.

[125]

Zhang Z, Ma C, Tu Y, et al. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019; 12 (9): 2313- 2317.

[126]

Cao X, Tan D, Wulan B, Hui KS, Hui KN, Zhang J. In situ characterization for boosting electrocatalytic carbon dioxide reduction. Small Methods. 2021; 5 (10): 2100700.

[127]

Chen Y, Wang L, Yao Z, et al. Tuning the coordination structure of single atoms and their interaction with the support for carbon dioxide electroreduction. Acta Phys Chim Sin. 2022; 38 (11): 2207024.

[128]

Yuan Y, Li M, Bai Z, et al. The absence and importance of operando techniques for metal-free catalysts. Adv Mater. 2019; 31 (13): 1805609.

[129]

Song X, Xu L, Sun X, Han B. In situ/operando characterization techniques for electrochemical CO2 reduction. Sci China Chem. 2023; 66 (2): 315- 323.

[130]

Li X, Wang HY, Yang H, Cai W, Liu S, Liu B. In situ/operando characterization techniques to probe the electrochemical reactions for energy conversion. Small Methods. 2018; 2 (6): 1700395.

[131]

Tan HY, Wang J, Lin SC, Kuo TR, Chen HM. Dynamic coordination structure evolutions of atomically dispersed metal catalysts for electrocatalytic reactions. Adv Mater Interfaces. 2023; 10 (4): 2202050.

[132]

Tan HY, Lin SC, Wang J, et al. MOF-templated sulfurization of atomically dispersed manganese catalysts facilitating electroreduction of CO2 to CO. ACS Appl Mater Interfaces. 2021; 13 (44): 52134- 52143.

[133]

Liu S, Yang HB, Hung SF, et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew Chem. 2020; 132 (2): 808- 813.

[134]

Nguyen DLT, Kim Y, Hwang YJ, Won DH. Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy. 2020; 2 (1): 72- 98.

[135]

Gao FY, Bao RC, Gao MR, Yu SH. Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. J Mater Chem A. 2020; 8 (31): 15458- 15478.

[136]

Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew Chem Int Ed. 2021; 60 (38): 20627- 20648.

[137]

Jia M, Fan Q, Liu S, Qiu J, Sun Z. Single-atom catalysis for electrochemical CO2 reduction. Curr Opin Green Sustain Chem. 2019; 16: 1- 6.

[138]

Hua W, Sun H, Lin L, et al. A hierarchical single-atom Ni-N3-C catalyst for electrochemical CO2 reduction to CO with near-unity Faradaic efficiency in a broad potential range. Chem Eng J. 2022; 446: 137296.

[139]

Shen S, Han C, Wang B, Wang Y. Self-supported nickel single atoms overwhelming the concomitant nickel nanoparticles enable efficient and selective CO2 electroreduction. Adv Mater Interfaces. 2021; 8 (20): 2101542.

[140]

Lu C, Jiang K, Tranca D, et al. Electrochemical reduction of carbon dioxide with nearly 100% carbon monoxide faradaic efficiency from vacancy-stabilized single-atom active sites. J Mater Chem A. 2021; 9 (44): 24955- 24962.

[141]

Han MH, Kim D, Kim S, et al. Real-time mimicking the electronic structure of N-coordinated Ni single atoms: NiS-enabled electrochemical reduction of CO2 to CO. Adv Energy Mater. 2022; 12 (35): 2201843.

[142]

Wang S, Qian Z, Huang Q, et al. Industrial-level CO2 electroreduction using solid-electrolyte devices enabled by high-loading nickel atomic site catalysts. Adv Energy Mater. 2022; 12 (31): 2201278.

[143]

Li Y, Zhang SL, Cheng W, et al. Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO2 electroreduction. Adv Mater. 2022; 34 (1): 2105204.

[144]

Yang F, Yu H, Su Y, et al. Low-coordinated Ni-N1-C3 sites atomically dispersed on hollow carbon nanotubes for efficient CO2 reduction. Nano Res. 2023; 16 (1): 146- 154.

[145]

Cao Z, Su P, Wang X, et al. The structure-activity correlation of single-site Ni catalysts dispersed onto porous carbon spheres toward electrochemical CO2 reduction. Fuel. 2022; 321: 124043.

[146]

Gu X, Jiao Y, Wei B, et al. Boron bridged NiN4B2Cx single-atom catalyst for superior electrochemical CO2 reduction. Mater Today. 2022; 54: 63- 71.

[147]

Sun Q, Zhao Y, Ren W, Zhao C. Electroreduction of low concentration CO2 at atomically dispersed Ni-N-C catalysts with nanoconfined ionic liquids. Appl Catal B. 2022; 304: 120963.

[148]

Fu X, Zhang P, Sun T, et al. Atomically dispersed Ni-N3 sites on highly defective micro-mesoporous carbon for superior CO2 electroreduction. Small. 2022; 18 (20): 2107997.

[149]

Abbas SA, Song JT, Tan YC, Nam KM, Oh J, Jung KD. Synthesis of a nickel single-atom catalyst based on Ni-N4-xCx active sites for highly efficient CO2 reduction utilizing a gas diffusion electrode. ACS Appl Energy Mater. 2020; 3 (9): 8739- 8745.

[150]

Li X, Bi W, Chen M, et al. Exclusive Ni-N4 sites realize near-unity co selectivity for electrochemical CO2 reduction. J Am Chem Soc. 2017; 139 (42): 14889- 14892.

[151]

Hwa Jeong G, Chuan Tan Y, Tae Song J, et al. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction. Chem Eng J. 2021; 426: 131063.

[152]

Zhai P, Gu X, Wei Y, et al. Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis. J Energy Chem. 2021; 62: 43- 50.

[153]

Ismail F, Abdellah A, Lee HJ, Sudheeshkumar V, Alnoush W, Higgins DC. Impact of nickel content on the structure and electrochemical CO2 reduction performance of nickel-nitrogen-carbon catalysts derived from zeolitic imidazolate frameworks. ACS Appl Energy Mater. 2022; 5 (1): 430- 439.

[154]

Leverett J, Yuwono JA, Kumar P, et al. Impurity tolerance of unsaturated Ni-N-C active sites for practical electrochemical CO2 reduction. ACS Energy Lett. 2022; 7 (3): 920- 928.

[155]

Ren W, Tan X, Jia C, et al. Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction. Angew Chem Int Ed. 2022; 61 (26): e202203335.

[156]

Cao T, Lin R, Liu S, et al. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022; 15 (5): 3959- 3963.

[157]

Wu S, Yi F, Ping D, et al. Constructing single-atomic nickel sites in carbon nanotubes for efficient CO2 electroreduction. Carbon. 2022; 196: 1- 9.

[158]

Hou Y, Liang YL, Shi PC, Huang YB, Cao R. Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl Catal B. 2020; 271: 118929.

[159]

Shao T, Duan D, Liu S, Gao C, Ji H, Xiong Y. Tuning the local electronic structure of a single-site Ni catalyst by co-doping a 3D graphene framework with B/N atoms toward enhanced CO2 electroreduction. Nanoscale. 2022; 14 (3): 833- 841.

[160]

Wang X, Sang X, Dong CL, et al. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angew Chem Int Ed. 2021; 60 (21): 11959- 11965.

[161]

Yang N, Yang L, Zhu X, et al. Development of crystalline covalent triazine frameworks to enable in situ preparation of single-atom Ni-N3-C for efficient electrochemical CO2 reduction. ACS Mater Lett. 2022; 4 (11): 2143- 2150.

[162]

Liang S, Jiang Q, Wang Q, Liu Y. Revealing the real role of nickel decorated nitrogen-doped carbon catalysts for electrochemical reduction of CO2 to CO. Adv Energy Mater. 2021; 11 (36): 2101477.

[163]

Huang M, Deng B, Zhao X, et al. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano. 2022; 16 (2): 2110- 2119.

[164]

Yang HB, Hung SF, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy. 2018; 3 (2): 140- 147.

[165]

Wei S, Wang Y, Chen W, et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chem Sci. 2020; 11 (3): 786- 790.

[166]

Li Z, He D, Yan X, et al. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew Chem Int Ed. 2020; 59 (42): 18572- 18577.

[167]

Yang X, Cheng J, Fang B, et al. Single Ni atoms with higher positive charges induced by hydroxyls for electrocatalytic CO2 reduction. Nanoscale. 2020; 12 (35): 18437- 18445.

[168]

Yao P, Zhang J, Qiu Y, et al. Atomic-dispersed coordinated unsaturated nickel-nitrogen sites in hollow carbon spheres for the efficient electrochemical CO2 reduction. ACS Sustain Chem Eng. 2021; 9 (15): 5437- 5444.

[169]

Jia C, Tan X, Zhao Y, et al. Sulfur-dopant-promoted electroreduction of CO2 over coordinatively unsaturated Ni-N2 moieties. Angew Chem Int Ed. 2021; 60 (43): 23342- 23348.

[170]

Liu W, Bai P, Wei S, Yang C, Xu L. Gadolinium changes the local electron densities of nickel 3d orbitals for efficient electrocatalytic CO2 reduction. Angew Chem Int Ed. 2022; 61 (18): e202201166.

[171]

Wang X, Ding S, Yue T, et al. Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction. Nano Energy. 2021; 82: 105689.

[172]

Guo Y, Yao S, Xue Y, Hu X, Cui H, Zhou Z. Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Appl Catal B. 2022; 304: 120997.

[173]

Li H, Gan K, Li R, et al. Highly dispersed NiO clusters induced electron delocalization of Ni-N-C catalysts for enhanced CO2 electroreduction. Adv Funct Mater. 2023; 33 (1): 2208622.

[174]

Qiu L, Shen S, Ma C, et al. Controllable fabrication of atomic dispersed low-coordination nickel-nitrogen sites for highly efficient electrocatalytic CO2 reduction. Chem Eng J. 2022; 440: 135956.

[175]

Lu Y, Wang H, Yu P, et al. Isolated Ni single atoms in nitrogen doped ultrathin porous carbon templated from porous g-C3N4 for high-performance CO2 reduction. Nano Energy. 2020; 77: 105158.

[176]

Daiyan R, Zhu X, Tong Z, et al. Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy. 2020; 78: 105213.

[177]

Jia C, Li S, Zhao Y, et al. Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction. Adv Funct Mater. 2021; 31 (51): 2107072.

[178]

Zhang Y, Jiao L, Yang W, Xie C, Jiang HL. Rational fabrication of low-coordinate single-atom ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew Chem Int Ed. 2021; 60 (14): 7607- 7611.

[179]

Mei B, Liu C, Sun F, et al. Unraveling the potential-dependent volcanic selectivity changes of an atomically dispersed Ni catalyst during CO2 reduction. ACS Catal. 2022; 12 (14): 8676- 8686.

[180]

Sun Q, Ren W, Zhao Y, Zhao C. Gram-scale synthesis of single-atom metal-N-CNT catalysts for highly efficient CO2 electroreduction. Chem Commun. 2021; 57 (12): 1514- 1517.

[181]

Boppella R, Austeria P M, Kim Y, et al. Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: identifying the role of pyrrolic-N and synergistic electrocatalysis. Adv Funct Mater. 2022; 32 (35): 2202351.

[182]

Su P, Iwase K, Nakanishi S, Hashimoto K, Kamiya K. Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide. Small. 2016; 12 (44): 6083- 6089.

[183]

Yi JD, Si DH, Xie R, et al. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew Chem Int Ed. 2021; 60 (31): 17108- 17114.

[184]

Pan F, Deng W, Justiniano C, Li Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl Catal B. 2018; 226: 463- 472.

[185]

Zhao X, Huang S, Chen Z, et al. Carbon nanosheets supporting Ni-N3S single-atom sites for efficient electrocatalytic CO2 reduction. Carbon. 2021; 178: 488- 496.

[186]

Han SG, Ma DD, Zhou SH, et al. Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Appl Catal B. 2021; 283: 119591.

[187]

Yang X, Cheng J, Lv H, et al. Sulfur-doped unsaturated Ni-N3 coordination for efficient electroreduction of CO2. Chem Eng J. 2022; 450: 137950.

[188]

He S, Ji D, Zhang J, et al. Understanding the origin of selective reduction of CO2 to CO on single-atom nickel catalyst. J Phys Chem B. 2020; 124 (3): 511- 518.

[189]

Yang S, Zhang J, Peng L, et al. A metal-organic framework/polymer derived catalyst containing single-atom nickel species for electrocatalysis. Chem Sci. 2020; 11 (40): 10991- 10997.

[190]

Peng JX, Yang W, Jia Z, Jiao L, Jiang HL. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Res. 2022; 15 (12): 10063- 10069.

[191]

Chang H, Pan H, Wang F, Zhang Z, Kang Y, Min S. Ni single atoms supported on hierarchically porous carbonized wood with highly active Ni-N4 sites as a self-supported electrode for superior CO2 electroreduction. Nanoscale. 2022; 14 (28): 10003- 10008.

[192]

Xi D, Li J, Low J, et al. Limiting the Uncoordinated N species in M-Nx single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range. Adv Mater. 2022; 34 (25): 2104090.

[193]

Yang X, Cheng J, Yang X, et al. Single Ni active sites with a nitrogen and phosphorus dual coordination for an efficient CO2 reduction. Nanoscale. 2022; 14 (18): 6846- 6853.

[194]

Yuan CZ, Liang K, Xia XM, et al. Powerful CO2 electroreduction performance with N-carbon doped with single Ni atoms. Catal Sci Technol. 2019; 9 (14): 3669- 3674.

[195]

Li S, Ceccato M, Lu X, et al. Incorporation of nickel single atoms into carbon paper as self-standing electrocatalyst for CO2 reduction. J Mater Chem A. 2021; 9 (3): 1583- 1592.

[196]

Fan Q, Gao P, Ren S, et al. Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Res. 2023; 16 (2): 2003- 2010.

[197]

Mou K, Chen Z, Zhang X, et al. Highly efficient electroreduction of CO2 on nickel single-atom catalysts: atom trapping and nitrogen anchoring. Small. 2019; 15 (49): 1903668.

[198]

Fan Q, Hou P, Choi C, et al. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv Energy Mater. 2020; 10 (5): 1903068.

[199]

Ismail F, Abdellah A, Sudheeshkumar V, et al. Atomically isolated nickel-nitrogen-carbon electrocatalysts derived by the utilization of Mg2+ ions as spacers in bimetallic Ni/Mg-metal-organic framework precursors for boosting the electroreduction of CO2. ACS Appl Energy Mater. 2022; 5 (8): 9408- 9417.

[200]

Wang ZL, Choi J, Xu M, et al. Optimizing electron densities of Ni-N-C complexes by hybrid coordination for efficient electrocatalytic CO2 reduction. ChemSusChem. 2020; 13 (5): 929- 937.

[201]

Cheng Y, Zhao S, Johannessen B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction. Adv Mater. 2018; 30 (13): 1706287.

[202]

Zhao S, Cheng Y, Veder JP, et al. One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading. ACS Appl Energy Mater. 2018; 1 (10): 5286- 5297.

[203]

Zhang C, Fu Z, Zhao Q, Du Z, Zhang R, Li S. Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction. Electrochem Commun. 2020; 116: 106758.

[204]

Yan C, Li H, Ye Y, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci. 2018; 11 (5): 1204- 1210.

[205]

Möller T, Ju W, Bagger A, et al. Efficient CO2 to CO electrolysis on solid Ni-N-C catalysts at industrial current densities. Energy Environ Sci. 2019; 12 (2): 640- 647.

[206]

Li Y, Lu XF, Xi S, Luan D, Wang X, Lou XW. Synthesis of N-doped highly graphitic carbon urchin-like hollow structures loaded with single-Ni atoms towards efficient CO2 electroreduction. Angew Chem Int Ed. 2022; 61 (18): e202201491.

[207]

Zhang Y, Qi K, Li J, et al. 2.6% cm-2 single-pass CO2-to-CO conversion using Ni single atoms supported on ultra-thin carbon nanosheets in a flow electrolyzer. ACS Catal. 2021; 11 (20): 12701- 12711.

[208]

Cheng H, Wu X, Li X, et al. Zeolitic imidazole framework-derived FeN5-doped carbon as superior CO2 electrocatalysts. J Catal. 2021; 395: 63- 69.

[209]

Li K, Zhang S, Zhang X, et al. Atomic tuning of single-atom Fe-N-C catalysts with phosphorus for robust electrochemical CO2 reduction. Nano Lett. 2022; 22 (4): 1557- 1565.

[210]

Chen H, Guo X, Kong X, et al. Tuning the coordination number of Fe single atoms for the efficient reduction of CO2. Green Chem. 2020; 22 (21): 7529- 7536.

[211]

Zhang H, Li J, Xi S, et al. A graphene-supported single-atom FEN5 catalytic site for efficient electrochemical CO2 reduction. Angew Chem. 2019; 131 (42): 15013- 15018.

[212]

Sun X, Tuo Y, Ye C, et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew Chem Int Ed. 2021; 60 (44): 23614- 23618.

[213]

Tuo J, Zhu Y, Jiang H, Shen J, Li C. The effect of the coordination environment of atomically dispersed Fe and N co-doped carbon nanosheets on CO2 electroreduction. ChemElectroChem. 2020; 7 (23): 4767- 4772.

[214]

Pan F, Li B, Sarnello E, et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano. 2020; 14 (5): 5506- 5516.

[215]

Tuo J, Zhu Y, Cheng L, et al. Layered confinement reaction: atomic-level dispersed iron-nitrogen co-doped ultrathin carbon nanosheets for CO2 electroreduction. ChemSusChem. 2019; 12 (12): 2644- 2650.

[216]

Tuo J, Lin Y, Zhu Y, et al. Local structure tuning in Fe-N-C catalysts through support effect for boosting CO2 electroreduction. Appl Catal B. 2020; 272: 118960.

[217]

Zhang T, Han X, Liu H, et al. Site-specific axial oxygen coordinated FeN4 active sites for highly selective electroreduction of carbon dioxide. Adv Funct Mater. 2022; 32 (18): 2111446.

[218]

Chen J, Wang T, Wang X, et al. Promoting electrochemical CO2 reduction via boosting activation of adsorbed intermediates on iron single-atom catalyst. Adv Funct Mater. 2022; 32 (21): 2110174.

[219]

Liu S, Jin M, Sun J, et al. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chem Eng J. 2022; 437: 135294.

[220]

Pan F, Li B, Sarnello E, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 2020; 10 (19): 10803- 10811.

[221]

Li Z, Jiang J, Liu X, et al. Coupling atomically dispersed FE-N5 sites with defective N-doped carbon boosts CO2 electroreduction. Small. 2022; 18 (38): 2203495.

[222]

Li X, Zeng Y, Tung CW, et al. Unveiling the in situ generation of a monovalent Fe(I) site in the single-Fe-atom catalyst for electrochemical CO2 reduction. ACS Catal. 2021; 11 (12): 7292- 7301.

[223]

Takele Menisa L, Cheng P, Qiu X, et al. Single atomic Fe-N4 active sites and neighboring graphitic nitrogen for efficient and stable electrochemical CO2 reduction. Nanoscale Horiz. 2022; 7 (8): 916- 923.

[224]

Li Z, Wu R, Xiao S, et al. Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chem Eng J. 2022; 430: 132882.

[225]

Ni W, Liu Z, Zhang Y, et al. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv Mater. 2021; 33 (1): 2003238.

[226]

Yang H, Wang X, Wang S, et al. Double boosting single atom Fe-N4 sites for high efficiency O2 and CO2 electroreduction. Carbon. 2021; 182: 109- 116.

[227]

Zhu Y, Li X, Wang X, et al. Single-atom iron-nitrogen catalytic site with graphitic nitrogen for efficient electroreduction of CO2. ChemistrySelect. 2020; 5 (4): 1282- 1287.

[228]

Varela AS, Kroschel M, Leonard ND, et al. pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe-N-C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 2018; 3 (4): 812- 817.

[229]

Hu MK, Zhou S, Ma DD, Zhu QL. New insight into heterointerfacial effect for heterogenized metallomacrocycle catalysts in executing electrocatalytic CO2 reduction. Appl Catal B. 2022; 310: 121324.

[230]

Lyu H, Ma C, Zhao J, Shen B, Tang J. A novel one-step calcination tailored single-atom iron and nitrogen co-doped carbon material catalyst for the selective reduction of CO2 to CO. Sep Purif Technol. 2022; 303 (24): 122221.

[231]

Ju W, Bagger A, Wang X, et al. Unraveling mechanistic reaction pathways of the electrochemical CO2 reduction on Fe-N-C single-site catalysts. ACS Energy Lett. 2019; 4 (7): 1663- 1671.

[232]

Chen D, Zhang LH, Du J, et al. A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu-S1N3 catalysts via integration with Cu nanoclusters. Angew Chem Int Ed. 2021; 60 (45): 24022- 24027.

[233]

Wu Y, Chen C, Yan X, et al. Boosting CO2 electroreduction over a cadmium single-atom catalyst by tuning of the axial coordination structure. Angew Chem Int Ed. 2021; 60 (38): 20803- 20810.

[234]

Wang C, Liu Y, Ren H, Guan Q, Chou S, Li W. Diminishing the uncoordinated N species in Co-N-C catalysts toward highly efficient electrochemical CO2 reduction. ACS Catal. 2022; 12 (4): 2513- 2521.

[235]

Pan Y, Lin R, Chen Y, et al. Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc. 2018; 140 (12): 4218- 4221.

[236]

Feng J, Gao H, Zheng L, et al. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat Commun. 2020; 11 (1): 4341.

[237]

Wang C, Ren H, Wang Z, Guan Q, Liu Y, Li W. A promising single-atom Co-N-C catalyst for efficient CO2 electroreduction and high-current solar conversion of CO2 to CO. Appl Catal B. 2022; 304: 120958.

[238]

Wang Z, Wang C, Hu Y, et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021; 14 (8): 2790- 2796.

[239]

Cheng H, Wu X, Li X, et al. Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction. Chem Eng J. 2021; 407: 126842.

[240]

Chen Z, Zhang J, Zhang C, et al. Regulating the coordination metal center in immobilized molecular complexes as single-atomic electrocatalysts for highly active, selective and durable electrochemical CO2 reduction. J Power Sources. 2022; 519: 230788.

[241]

Gao L, Bai S, Zhang Y, Hu C. Zn-Nx doping in carbon nanotubes boosts selective CO2 electroreduction to CO. ChemCatChem. 2022; 14 (20): e202200383.

[242]

Zhang E, Wang T, Yu K, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J Am Chem Soc. 2019; 141 (42): 16569- 16573.

[243]

Zhang J, Zeng G, Chen L, et al. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: insights into the active sites. Nano Res. 2022; 15 (5): 4014- 4022.

[244]

Hao Z, Chen J, Zhang D, et al. Coupling effects of Zn single atom and high curvature supports for improved performance of CO2 reduction. Sci Bull. 2021; 66 (16): 1649- 1658.

[245]

Dong W, Zhang N, Li S, et al. A Mn single atom catalyst with Mn-N2O2 sites integrated into carbon nanosheets for efficient electrocatalytic CO2 reduction. J Mater Chem A. 2022; 10 (20): 10892- 10901.

[246]

Wang N, Liu Z, Ma J, et al. Sustainability perspective-oriented synthetic strategy for zinc single-atom catalysts boosting electrocatalytic reduction of carbon dioxide and oxygen. ACS Sustain Chem Eng. 2020; 8 (36): 13813- 13822.

[247]

Liao L, Xia G, Wang Y, Ye G, Wang H. In-situ N-defect and single-metal atom synergetic engineering of high-efficiency Ag-N-C electrocatalysts for CO2 reduction. Appl Catal B. 2022; 318: 121826.

[248]

Yang F, Song P, Liu X, et al. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew Chem. 2018; 130 (38): 12483- 12487.

[249]

Sui R, Pei J, Fang J, et al. Engineering Ag-Nx single-atom sites on porous concave N-doped carbon for boosting CO2 electroreduction. ACS Appl Mater Interfaces. 2021; 13 (15): 17736- 17744.

[250]

Li S, Zhao S, Lu X, et al. Low-valence Znδ+ (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angew Chem Int Ed. 2021; 60 (42): 22826- 22832.

[251]

Zhong Y, Kong X, Geng Z, Zeng J, Luo X, Zhang L. Molecular modification of single cobalt sites boosts the catalytic activity of CO2 electroreduction into CO. ChemPhysChem. 2020; 21 (18): 2051- 2055.

[252]

Fang M, Wang X, Li X, et al. Curvature-induced Zn 3d electron return on Zn-N4 single-atom carbon nanofibers for boosting electroreduction of CO2. ChemCatChem. 2021; 13 (2): 603- 609.

[253]

Zhai L, Yang S, Lu C, et al. CoN5 sites constructed by anchoring co porphyrins on vinylene-linked covalent organic frameworks for electroreduction of carbon dioxide. Small. 2022; 18 (32): 2200736.

[254]

Guo J, Zhang W, Zhang LH, et al. Control over electrochemical CO2 reduction selectivity by coordination engineering of tin single-atom catalysts. Adv Sci. 2021; 8 (23): 2102884.

[255]

Yan L, Liang XD, Sun Y, et al. Evolution of Cu single atom catalysts to nanoclusters during CO2 reduction to CO. Chem Commun. 2022; 58 (15): 2488- 2491.

[256]

Li Y, Chen C, Cao R, Pan Z, He H, Zhou K. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl Catal B. 2020; 268: 118747.

[257]

Hu F, Liao L, Chi B, Wang H. Rare earth praseodymium-based single atom catalyst for high performance CO2 reduction reaction. Chem Eng J. 2022; 436: 135271.

[258]

Yang F, Mao X, Ma M, et al. Scalable strategy to fabricate single Cu atoms coordinated carbons for efficient electroreduction of CO2 to CO. Carbon. 2020; 168: 528- 535.

[259]

Cheng H, Fan Z, Wu X, et al. Coordination engineering of the hybrid Co-C and Co-N active sites for efficient catalyzing CO2 electroreduction. J Catal. 2022; 405: 634- 640.

[260]

Hou P, Song W, Wang X, Hu Z, Kang P. Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction. Small. 2020; 16 (24): 2001896.

[261]

Yao Z, Zhan X, Ruan Y, et al. Atomically dispersed Mn for electrochemical CO2 reduction with tunable performance. Chem Asian J. 2022; 17 (24): e202200997.

[262]

He Q, Lee JH, Liu D, et al. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv Funct Mater. 2020; 30 (17): 2000407.

[263]

Karapinar D, Huan NT, Ranjbar Sahraie N, et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew Chem. 2019; 131 (42): 15242- 15247.

[264]

Koshy DM, Chen S, Lee DU, et al. Understanding the origin of highly selective CO2 electroreduction to CO on Ni,N-doped carbon catalysts. Angew Chem. 2020; 132 (10): 4072- 4079.

[265]

Chen Y, Zou L, Liu H, et al. Fe and N co-doped porous carbon nanospheres with high density of active sites for efficient CO2 electroreduction. J Phys Chem C. 2019; 123 (27): 16651- 16659.

[266]

Wuttig A, Yaguchi M, Motobayashi K, Osawa M, Surendranath Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc Natl Acad Sci USA. 2016; 113 (32): E4585- E4593.

[267]

Leonard N, Ju W, Sinev I, et al. The chemical identity, state and structure of catalytically active centers during the electrochemical CO2 reduction on porous Fe-nitrogen-carbon (Fe-N-C) materials. Chem Sci. 2018; 9 (22): 5064- 5073.

[268]

Geng Z, Cao Y, Chen W, et al. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl Catal B. 2019; 240: 234- 240.

[269]

Han L, Song S, Liu M, et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J Am Chem Soc. 2020; 142 (29): 12563- 12567.

[270]

Shi G, Xie Y, Du L, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4. Angew Chem Int Ed. 2022; 61 (23): e202203569.

[271]

Cai Y, Fu J, Zhou Y, et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat Commun. 2021; 12 (1): 586.

[272]

Wei S, Jiang X, He C, et al. Construction of single-atom copper sites with low coordination number for efficient CO2 electroreduction to CH4. J Mater Chem A. 2022; 10 (11): 6187- 6192.

[273]

Weng Z, Wu Y, Wang M, et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat Commun. 2018; 9 (1): 415.

[274]

Chen S, Wang B, Zhu J, et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021; 21 (17): 7325- 7331.

[275]

Shen J, Kortlever R, Kas R, et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun. 2015; 6 (1): 8177.

[276]

Su P, Iwase K, Harada T, Kamiya K, Nakanishi S. Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem Sci. 2018; 9 (16): 3941- 3947.

[277]

Li W, Li L, Xia Q, et al. Lowering C-C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Appl Catal B. 2022; 318: 121823.

[278]

Chu S, Kang C, Park W, et al. Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4. SmartMat. 2022; 3 (1): 194- 205.

[279]

Zhang F, Wang P, Zhao R, et al. Tuning d-Band structure of CuII in coordinated polymer via d-π conjugation for improving CO2 electroreduction selectivity toward C2 products. ChemSusChem. 2022; 15 (19): e202201267.

[280]

Balamurugan M, Jeong HY, Choutipalli VSK, et al. Electrocatalytic reduction of CO2 to ethylene by molecular Cu-complex immobilized on graphitized mesoporous carbon. Small. 2020; 16 (25): 2000955.

[281]

Kusama S, Saito T, Hashiba H, Sakai A, Yotsuhashi S. Crystalline copper(II) phthalocyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media. ACS Catal. 2017; 7 (12): 8382- 8385.

[282]

Weng Z, Jiang J, Wu Y, et al. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc. 2016; 138 (26): 8076- 8079.

[283]

Shang H, Wang T, Pei J, et al. Design of a single-atom indium δ+-N4 interface for efficient electroreduction of CO2 to formate. Angew Chem Int Ed. 2020; 59 (50): 22465- 22469.

[284]

Jiang Z, Wang T, Pei J, et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ Sci. 2020; 13 (9): 2856- 2863.

[285]

Lu P, Tan X, Zhao H, et al. Atomically dispersed indium sites for selective CO2 electroreduction to formic acid. ACS Nano. 2021; 15 (3): 5671- 5678.

[286]

Zu X, Li X, Liu W, et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv Mater. 2019; 31 (15): 1808135.

[287]

Huang P, Cheng M, Zhang H, Zuo M, Xiao C, Xie Y. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy. 2019; 61: 428- 434.

[288]

Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao SZ. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J Am Chem Soc. 2017; 139 (49): 18093- 18100.

[289]

Genovese C, Schuster ME, Gibson EK, et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat Commun. 2018; 9 (1): 935.

[290]

Xu H, Rebollar D, He H, et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat Energy. 2020; 5 (8): 623- 632.

[291]

Lakshmanan K, Huang WH, Chala SA, et al. Highly active oxygen coordinated configuration of Fe single-atom catalyst toward electrochemical reduction of CO2 into multi-carbon products. Adv Funct Mater. 2022; 32 (24): 2109310.

[292]

Zhao K, Nie X, Wang H, et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat Commun. 2020; 11 (1): 2455.

[293]

Huang Q, Liu H, An W, Wang Y, Feng Y, Men Y. Synergy of a metallic NiCo dimer anchored on a C2N-graphene matrix promotes the electrochemical CO2 reduction reaction. ACS Sustain Chem Eng. 2019; 7 (23): 19113- 19121.

[294]

Sun B, Dai M, Cai S, et al. Challenges and strategies towards copper-based catalysts for enhanced electrochemical CO2 reduction to multi-carbon products. Fuel. 2023; 332: 126114.

[295]

Spurgeon JM, Kumar B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ Sci. 2018; 11 (6): 1536- 1551.

[296]

Rabiee H, Ge L, Zhang X, Hu S, Li M, Yuan Z. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ Sci. 2021; 14 (4): 1959- 2008.

[297]

Cheng Q, Wang M, Ni J, et al. Comprehensive understanding and rational regulation of microenvironment for gas-involving electrochemical reactions. Carbon Energy. 2023; 5 (7): e307.

[298]

Li F, Ai H, Shi C, Lo KH, Pan H. Single transition metal atom catalysts on Ti2CN2 for efficient CO2 reduction reaction. Int J Hydrog Energy. 2021; 46 (24): 12886- 12896.

[299]

Yang Y, Liu J, Wu D, Ding J, Xiong B. Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: a theoretical screening study. Chem Eng J. 2021; 424: 130541.

[300]

Lu S, Huynh HL, Lou F, Guo M, Yu Z. Electrochemical reduction of CO2 to CH4 over transition metal atom embedded antimonene: first-principles study. J CO2 Util. 2021; 51: 101645.

[301]

Liu T, Wang G, Bao X. Electrochemical CO2 reduction reaction on 3d transition metal single-atom catalysts supported on graphdiyne: a DFT study. J Phys Chem C. 2021; 125 (47): 26013- 26020.

[302]

Guo Y, Zhu H, Zhao H, et al. A theoretical study of the electrochemical reduction of CO2 on cerium dioxide supported palladium single atoms and nanoparticles. Phys Chem Chem Phys. 2021; 23 (46): 26185- 26194.

[303]

Zhang H, Zhang R, Sun C, Jiao Y, Zhang Y. CO2 reduction to CH4 on Cu-doped phosphorene: a first-principles study. Nanoscale. 2021; 13 (48): 20541- 20549.

[304]

Yang Y, Li J, Zhang C, et al. Theoretical insights into nitrogen-doped graphene-supported Fe, Co, and Ni as single-atom catalysts for CO2 reduction reaction. J Phys Chem C. 2022; 126 (9): 4338- 4346.

[305]

Zhang Y, Zeng Z, Li H. Design of 3d transition metal anchored B5N3 catalysts for electrochemical CO2 reduction to methane. J Mater Chem A. 2022; 10 (17): 9737- 9745.

[306]

Li Y, Su H, Chan SH, Sun Q. CO2 electroreduction performance of transition metal dimers supported on graphene: a theoretical study. ACS Catal. 2015; 5 (11): 6658- 6664.

[307]

Luo G, Jing Y, Li Y. Rational design of dual-metal-site catalysts for electroreduction of carbon dioxide. J Mater Chem A. 2020; 8 (31): 15809- 15815.

[308]

Huang B, Wu Y, Luo Y, Zhou N. Double atom-anchored defective boron nitride catalyst for efficient electroreduction of CO2 to CH4: a first principles study. Chem Phys Lett. 2020; 756: 137852.

[309]

Liu H, Huang Q, An W, Wang Y, Men Y, Liu S. Dual-atom active sites embedded in two-dimensional C2N for efficient CO2 electroreduction: a computational study. J Energy Chem. 2021; 61: 507- 516.

[310]

Zhang Y, Liu T, Wang X, et al. Dual-atom metal and nonmetal site catalyst on a single nickel atom supported on a hybridized BCN nanosheet for electrochemical CO2 reduction to methane: combining high activity and selectivity. ACS Appl Mater Interfaces. 2022; 14 (7): 9073- 9083.

[311]

Chen D, Chen Z, Lu Z, Tang J, Zhang X, Singh CV. Computational screening of homo and hetero transition metal dimer catalysts for reduction of CO2 to C2 products with high activity and low limiting potential. J Mater Chem A. 2020; 8 (40): 21241- 21254.

[312]

Ouyang Y, Shi L, Bai X, Li Q, Wang J. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts. Chem Sci. 2020; 11 (7): 1807- 1813.

[313]

Meng DL, Zhang MD, Si DH, et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew Chem Int Ed. 2021; 60 (48): 25485- 25492.

[314]

Yin Z, Yu J, Xie Z, et al. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J Am Chem Soc. 2022; 144 (45): 20931- 20938.

[315]

Zhang Y, Li P, Zhao C, et al. Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis. Sci Bull. 2022; 67 (16): 1679- 1687.

[316]

Li P, Bi J, Liu J, et al. P-d orbital hybridization induced by p-block metal-doped Cu promotes the formation of Cu2+ products in ampere-level CO2 electroreduction. J Am Chem Soc. 2023; 145 (8): 4675- 4682.

RIGHTS & PERMISSIONS

2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/