Single-atom Pt on carbon nanotubes for selective electrocatalysis

Samuel S. Hardisty , Xiaoqian Lin , Anthony R. J. Kucernak , David Zitoun

Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 409

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 409 DOI: 10.1002/cey2.409
RESEARCH ARTICLE

Single-atom Pt on carbon nanotubes for selective electrocatalysis

Author information +
History +
PDF

Abstract

Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum, which are essential for electrochemical reactions such as hydrogen oxidation reaction (HOR). Herein, we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes (SWCNTs) via a redox reaction. Characterizations via electron microscopy, X-ray photoelectron microscopy, and X-ray absorption spectroscopy show the single-atom nature of the Pt. The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique, which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst. The single-atom samples showed higher HOR activity than state-of-the-art 30% Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range. The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs.

Keywords

confinement / electrocatalysis / hydrogen / platinum / single atom catalysts

Cite this article

Download citation ▾
Samuel S. Hardisty, Xiaoqian Lin, Anthony R. J. Kucernak, David Zitoun. Single-atom Pt on carbon nanotubes for selective electrocatalysis. Carbon Energy, 2024, 6(1): 409 DOI:10.1002/cey2.409

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang Y, Peltier CR, Zeng R, et al. Electrocatalysis in alkaline media and alkaline membrane-based energy technologies. Chem Rev. 2022; 122 (6): 6117- 6321.

[2]

Sheng W, Gasteiger HA, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc. 2010; 157 (11): B1529.

[3]

Sheng W, Myint M, Chen JG, Yan Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci. 2013; 6 (5): 1509- 1512.

[4]

Laursen AB, Varela AS, Dionigi F, et al. Electrochemical hydrogen evolution: Sabatiers principle and the volcano plot. J Chem Educ. 2012; 89 (12): 1595- 1599.

[5]

Cruz-Martínez H, Rojas-Chávez H, Matadamas-Ortiz PT, et al. Current progress of Pt-based ORR electrocatalysts for PEMFCs: an integrated view combining theory and experiment. Mater Today Phys. 2021; 19: 100406.

[6]

Li L, Wang P, Shao Q, Huang X. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv Mater. 2021; 33 (50): 2004243.

[7]

Greenwood NN, Earnshaw ABT. Chemistry of Elements. 2nd ed., Elsevier; 1997: 1144- 1172.

[8]

Huang J, Li Z, Zhang J. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Front Energy. 2017; 11 (3): 334- 364.

[9]

Unni SM, Dhavale VM, Pillai VK, Kurungot S. High Pt utilization electrodes for polymer electrolyte membrane fuel cells by dispersing Pt particles formed by a preprecipitation method on carbon “polished” with polypyrrole. J Phys Chem C. 2010; 114 (34): 14654- 14661.

[10]

Vielstich W, Lamm A, Gasteiger HA, Yokokawa H. Handbook of Fuel Cells. Fundamentals, Technology, Applications. John Wiley & Sons, Ltd; 2009.

[11]

Liu J, Jiao M, Lu L, et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat Commun. 2017; 8: 15938.

[12]

Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011; 3 (8): 634- 641.

[13]

Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-atom catalysts across the periodic table. Chem Rev. 2020; 120 (21): 11703- 11809.

[14]

Jones J, Xiong H, DeLaRiva AT, et al. Thermally stable singleatom platinum-on-ceria catalysts via atom trapping. Science. 2016; 353 (6295): 150- 154.

[15]

Chang TY, Tanaka Y, Ishikawa R, et al. Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces. Nano Lett. 2014; 14 (1): 134- 138.

[16]

Thang HV, Pacchioni G, DeRita L, Christopher P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J Catal. 2018; 367: 104- 114.

[17]

Sun S, Zhang G, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep. 2013; 3 (1): 1775.

[18]

Shi Z, Yang W, Gu Y, Liao T, Sun Z. Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv Sci. 2020; 7 (15): 2001069.

[19]

Zhang J, Zhao Y, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal. 2018; 1 (12): 985- 992.

[20]

Zhong W, Tu W, Wang Z, et al. Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. J Energy Chem. 2020; 51: 280- 284.

[21]

Zhu C, Fu S, Shi Q, Du D, Lin Y. Single-atom electrocatalysts. Angew Chem Int Ed. 2017; 56 (45): 13944- 13960.

[22]

Kamai R, Kamiya K, Hashimoto K, Nakanishi S. Oxygentolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction. Angew Chem Int Ed. 2016; 55 (42): 13184- 13188.

[23]

Lin X, Zalitis CM, Sharman J, et al. Correction to “electrocatalyst performance at the gas/electrolyte interface under high mass transport conditions: optimization of the ‘floating electrode’ method”. ACS Appl Mater Interfaces. 2020; 12 (51): 57667.

[24]

Hardisty SS, Saadi K, Nagaprasad Reddy S, Grinberg I, Zitoun D. Ionically selective carbon nanotubes for hydrogen electrocatalysis in the hydrogen-bromine redox flow battery. Mater Today Energy. 2022; 24: 100937.

[25]

Bayindir Z, Duchesne PN, Cook SC, MacDonald MA, Zhang P. X-ray spectroscopy studies on the surface structural characteristics and electronic properties of platinum nanoparticles. J Chem Phys. 2009; 131 (24): 244716.

[26]

Zhou KL, Wang Z, Han CB, et al. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat Commun. 2021; 12: 3783.

[27]

Choi HC, Shim M, Bangsaruntip S, Dai H. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J Am Chem Soc. 2002; 124 (31): 9058- 9059.

[28]

Zalitis CM, Kramer D, Kucernak AR. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Phys Chem Chem Phys. 2013; 15 (12): 4329- 4340.

[29]

Zalitis CM, Kucernak AR, Sharman J, Wright E. Design principles for platinum nanoparticles catalysing electrochemical hydrogen evolution and oxidation reactions: edges are much more active than facets. J Mater Chem A. 2017; 5 (44): 23328- 23338.

[30]

Gasteiger HA, Kocha SS, Sompalli B, Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B. 2005; 56 (1-2): 9- 35.

[31]

Markiewicz M, Zalitis C, Kucernak A. Performance measurements and modelling of the ORR on fuel cell electrocatalysts—the modified double trap model. Electrochim Acta. 2015; 179: 126- 136.

[32]

Wang N, Ma S, Zuo P, Duan J, Hou B. Recent progress of electrochemical production of hydrogen peroxide by two-electron oxygen reduction reaction. Adv Sci. 2021; 8 (15): 2100076.

[33]

Reiser CA, Bregoli L, Patterson TW, et al. A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett. 2005; 8 (6): A273.

[34]

Yu Y, Li H, Wang H, Yuan XZ, Wang G, Pan M. A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes: causes, consequences, and mitigation strategies. J Power Sources. 2012; 205: 10- 23.

RIGHTS & PERMISSIONS

2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

199

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/