Surface-modified Ag@Ru-P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid-gas interface

Chaitanya B. Hiragond , Sohag Biswas , Niket S. Powar , Junho Lee , Eunhee Gong , Hwapyong Kim , Hong Soo Kim , Jin-Woo Jung , Chang-Hee Cho , Bryan M. Wong , Su-Il In

Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 386

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 386 DOI: 10.1002/cey2.386
RESEARCH ARTICLE

Surface-modified Ag@Ru-P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid-gas interface

Author information +
History +
PDF

Abstract

Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO2 reduction to solar fuels. A surface-modified Ag@Ru-P25 photocatalyst with H2O2 treatment was designed in this study to convert CO2 and H2O vapor into highly selective CH4. Ru doping followed by Ag nanoparticles (NPs) cocatalyst deposition on P25 (TiO2) enhances visible light absorption and charge separation, whereas H2O2 treatment modifies the surface of the photocatalyst with hydroxyl (-OH) groups and promotes CO2 adsorption. High-resonance transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst, while thermogravimetric analysis, CO2 adsorption isotherm, and temperature programmed desorption study were performed to examine the significance of H2O2 treatment in increasing CO2 reduction activity. The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO2 reduction activity into CO, CH4, and C2H6 with a ~95% selectivity of CH4, where the activity was ~135 times higher than that of pristine TiO2 (P25). For the first time, this work explored the effect of H2O2 treatment on the photocatalyst that dramatically increases CO2 reduction activity.

Keywords

gas-phase CO 2 reduction / H 2O 2 treatment / plasmonic nanoparticles / solar fuel photocatalyst / surface modification

Cite this article

Download citation ▾
Chaitanya B. Hiragond, Sohag Biswas, Niket S. Powar, Junho Lee, Eunhee Gong, Hwapyong Kim, Hong Soo Kim, Jin-Woo Jung, Chang-Hee Cho, Bryan M. Wong, Su-Il In. Surface-modified Ag@Ru-P25 for photocatalytic CO2 conversion with high selectivity over CH4 formation at the solid-gas interface. Carbon Energy, 2024, 6(1): 386 DOI:10.1002/cey2.386

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hiragond CB, Powar NS, Lee J, In SI. Single-atom catalysts (SACs) for photocatalytic CO2 reduction with H2O: activity, product selectivity, stability, and surface chemistry. Small. 2022; 18 (29): 2201428.

[2]

Lee B-H, Gong E, Kim M, et al. Electronic interaction between transition metal single-atoms and anatase TiO2 boosts CO2 photoreduction with H2O. Energy Environ Sci. 2022; 15 (2): 601- 609.

[3]

Ma Y, Wang X, Jia Y, Chen X, Han H, Li C. Titanium dioxidebased nanomaterials for photocatalytic fuel generations. Chem Rev. 2014; 114 (19): 9987- 10043.

[4]

Gong E, Ali S, Hiragond CB, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ Sci. 2022; 15 (3): 880- 937.

[5]

Li H, Cheng C, Yang Z, Wei J. Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat Commun. 2022; 13: 6466.

[6]

Hiragond CB, Lee J, Kim H, Jung J-W, Cho C-H, In S-I. A novel n-doped graphene oxide enfolded reduced titania for highly stable and selective gas-phase photocatalytic CO2 reduction into CH4: an in-depth study on the interfacial charge transfer mechanism. Chem Eng J. 2021; 416: 127978.

[7]

Asahi R, Morikawa T, Irie H, Ohwaki T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev. 2014; 114 (19): 9824- 9852.

[8]

Sorcar S, Hwang Y, Lee J, et al. CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (joule-to-joule) photoconversion efficiency of 1%. Energy Environ Sci. 2019; 12 (9): 2685- 2696.

[9]

Liu Q, Chen Q, Li T, et al. Vacancy engineering of AuCu cocatalysts for improving the photocatalytic conversion of CO2 to CH4. J Mater Chem A. 2019; 7 (47): 27007- 27015.

[10]

Ziarati A, Badiei A, Luque R, Dadras M, Burgi T. Visible light CO2 reduction to CH4 using hierarchical yolk@shell TiO2-xHx modified with plasmonic Au-Pd nanoparticles. ACS Sustainable Chem Eng. 2020; 8 (9): 3689- 3696.

[11]

Das S, Pérez-Ramírez J, Gong J, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem Soc Rev. 2020; 49 (10): 2937- 3004.

[12]

Ismael M. Highly effective ruthenium-doped TiO2 nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New J Chem. 2019; 43 (24): 9596- 9605.

[13]

Meng X, Ouyang S, Kako T, et al. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem Commun. 2014; 50 (78): 11517- 11519.

[14]

Ye M, Wang X, Liu E, Ye J, Wang D. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. ChemSusChem. 2018; 11 (10): 1606- 1611.

[15]

Hao L, Kang L, Huang H, et al. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv Mater. 2019; 31 (25): 1900546.

[16]

He Z, Tang J, Shen J, Chen J, Song S. Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Appl Surf Sci. 2016; 364: 416- 427.

[17]

Zhang H, Wu X, Chen C, et al. Spontaneous ruthenium doping in hierarchical flower-like Ni2P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution. Chem Eng J. 2021; 417: 128069.

[18]

Nguyen-Phan T-D, Luo S, Vovchok D, et al. Threedimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H2 production. Phys Chem Chem Phys. 2016; 18 (23): 15972- 15979.

[19]

Jiang Z, Ouyang Q, Peng B, Zhang Y, Zan L. Ag sizedependent visible-light-responsive photoactivity of Ag-TiO2 nanostructure based on surface plasmon resonance. J Mater Chem A. 2014; 2 (46): 19861- 19866.

[20]

Li N, Cai Y, Shen Q, Zhou J. Metal-organic frameworktemplated synthesis of Ag/Ni-TiO2 for enhanced photocatalytic CO2 reduction. J Photonics Energy. 2019; 10 (2): 23502.

[21]

Sorcar S, Thompson J, Hwang Y, et al. High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C1 to C2 products. Energy Environ Sci. 2018; 11 (11): 3183- 3193.

[22]

Martínez Tejada LM, Muñoz A, Centeno MA, Odriozola JA. In-situ Raman spectroscopy study of Ru/TiO2 catalyst in the selective methanation of CO. J Raman Spectrosc. 2016; 47 (2): 189- 197.

[23]

Pan H, Wang X, Xiong Z, Sun M, Murugananthan M, Zhang Y. Enhanced photocatalytic CO2 reduction with defective TiO2 nanotubes modified by single-atom binary metal components. Environ Res. 2021; 198: 111176.

[24]

Zhang H, Zuo S, Qiu M, et al. Direct probing of atomically dispersed ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci Adv. 2020; 6 (39): eabb9823.

[25]

Ouyang W, Muñoz-Batista MJ, Kubacka A, Luque R, Fernández-García M. Enhancing photocatalytic performance of TiO2 in H2 evolution via ru co-catalyst deposition. Appl Catal B. 2018; 238: 434- 443.

[26]

Nong S, Dong W, Yin J, et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J Am Chem Soc. 2018; 140 (17): 5719- 5727.

[27]

Zhang D, Sun Y, Tian X, et al. Promoting photocatalytic CO2 reduction to CH4 via a combined strategy of defects and tunable hydroxyl radicals. J Colloid Interface Sci. 2022; 606: 1477- 1487.

[28]

Li J, Yi D, Zhan F, et al. Monolayered Ru1/TiO2 nanosheet enables efficient visible-light-driven hydrogen evolution. Appl Catal B. 2020; 271: 118925.

[29]

Zhao S, Chen J, Liu Y, et al. Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability. Chem Eng J. 2019; 367: 249- 259.

[30]

Tan D, Zhang J, Shi J, et al. Photocatalytic CO2 transformation to CH4 by Ag/Pd bimetals supported on n-doped TiO2 nanosheet. ACS Appl Mater Interfaces. 2018; 10 (29): 24516- 24522.

[31]

Wang J, Wang J, Li N, et al. Direct z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl Mater Interfaces. 2020; 12 (28): 31477- 31485.

[32]

Yang D, Sun Y, Tong Z, Tian Y, Li Y, Jiang Z. Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J Phys Chem C. 2015; 119 (11): 5827- 5835.

[33]

Liu Z, Zhang F, Rui N, et al. Highly active ceria-supported ru catalyst for the dry reforming of methane: in situ identification of Ruδ+-Ce3+ interactions for enhanced conversion. ACS Catal. 2019; 9 (4): 3349- 3359.

[34]

Zhou J, Tian G, Chen Y, et al. Synthesis of hierarchical TiO2 nanoflower with anatase-rutile heterojunction as ag support for efficient visible-light photocatalytic activity. Dalton Trans. 2013; 42 (31): 11242- 11251.

[35]

Ruan H, Nishibori M, Uchiyama T, et al. Soot oxidation performance with a HZSM-5 supported ag nanoparticles catalyst and the characterization of ag species. RSC Adv. 2017; 7 (69): 43789- 43797.

[36]

Herzog A, Bergmann A, Jeon HS, et al. Operando investigation of ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angew Chem Int Ed. 2021; 60 (13): 7426- 7435.

[37]

López-Hernández I, Truttmann V, Garcia C, et al. AgAu nanoclusters supported on zeolites: structural dynamics during CO oxidation. Catal Today. 2022; 384-386: 166- 176.

[38]

Wang Z, Teramura K, Hosokawa S, Tanaka T. Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over ag-modified ZnGa2O 4. J Mater Chem A. 2015; 3 (21): 11313- 11319.

[39]

Ratchford DC. Plasmon-induced charge transfer: challenges and outlook. ACS Nano. 2019; 13 (12): 13610- 13614.

[40]

Collado L, Reynal A, Fresno F, et al. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nat Commun. 2018; 9: 4986.

[41]

Xie W, Li R, Xu Q. Enhanced photocatalytic activity of se-doped TiO2 under visible light irradiation. Sci Rep. 2018; 8 (1): 8752.

[42]

Li B, Wei F, Su B, et al. Mesoporous cobalt tungstate nanoparticles for efficient and stable visible-light-driven photocatalytic CO2 reduction. Mater Today Energy. 2022; 24: 100943.

[43]

Su B, Huang H, Ding Z, Roeffaers MBJ, Wang S, Long J. S-scheme CoTiO3/Cd9.51Zn0.49S10 heterostructures for visiblelight driven photocatalytic CO2 reduction. J Mater Sci Technol. 2022; 124: 164- 170.

[44]

Wang Y, Liu XH, Wang Q, et al. Insights into charge transfer at an atomically precise nanocluster/semiconductor interface. Angew Chem. 2020; 132 (20): 7822- 7828.

[45]

Wang R, Yang P, Wang S, Wang X. Distorted carbon nitride nanosheets with activated n→ π* transition and preferred textural properties for photocatalytic CO2 reduction. J Catal. 2021; 402: 166- 176.

[46]

Zhang Y, Zhou S, Su X, et al. Synthesis and characterization of ag-loaded p-type TiO2 for adsorption and photocatalytic degradation of tetrabromobisphenol A. Water Environ Res. 2020; 92 (5): 713- 721.

[47]

Sorcar S, Hwang Y, Grimes CA, In S-I. Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4. Mater Today. 2017; 20 (9): 507- 515.

[48]

Kharade AK, Chang S. Contributions of abundant hydroxyl groups to extraordinarily high photocatalytic activity of amorphous titania for CO2 reduction. J Phys Chem C. 2020; 124 (20): 10981- 10992.

[49]

Tang Q, Xiong P, Wang H, Wu Z. Boosted CO2 photoreduction performance on Ru-Ti3CN MXene-TiO2 photocatalyst synthesized by non-HF lewis acidic etching method. J Colloid Interface Sci. 2022; 619: 179- 187.

[50]

Kong Z-C, Liao J-F, Dong Y-J, et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018; 3 (11): 2656- 2662.

[51]

Xie S, Wang Y, Zhang Q, Deng W, Wang Y. MgO-and pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 2014; 4 (10): 3644- 3653.

[52]

Feng X, Pan F, Tran BZ, Li Y. Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles. Catal Today. 2020; 339: 328- 336.

[53]

Liu L, Zhao C, Miller JT, Li Y. Mechanistic study of CO2 photoreduction with H2O on Cu/TiO2 nanocomposites by in situ X-ray absorption and infrared spectroscopies. J Phys Chem C. 2017; 121 (1): 490- 499.

[54]

Aguinaco A, Pocostales JP, García-Araya JF, Beltrán FJ. Decomposition of hydrogen peroxide in the presence of activated carbons with different characteristics. J Chem Technol Biotechnol. 2011; 86 (4): 595- 600.

[55]

Lousada CM, Johansson AJ, Brinck T, Jonsson M. Mechanism of H2O2 decomposition on transition metal oxide surfaces. J Phys Chem C. 2012; 116 (17): 9533- 9543.

[56]

Thetford A, Hutchings GJ, Taylor SH, Willock DJ. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proc R Soc A Math Phys Eng Sci. 2011; 467 (2131): 1885- 1899.

[57]

Meng F, Zhang S, Zeng Y, et al. Promotional effect of surface fluorine on TiO2: catalytic conversion of O3 and H2O2 into OH and O2- radicals for high-efficiency NO oxidation. Chem Eng J. 2021; 424: 130358.

[58]

Wang Z-W, Wan Q, Shi Y-Z, et al. Selective photocatalytic reduction CO2 to CH4 on ultrathin TiO2 nanosheet via coordination activation. Appl Catal B. 2021; 288: 120000.

[59]

Li W, Jin L, Gao F, et al. Advantageous roles of phosphate decorated octahedral CeO2 {111}/g-C3N4 in boosting photocatalytic CO2 reduction: charge transfer bridge and lewis basic site. Appl Catal B. 2021; 294: 120257.

[60]

Wang H, Zhang L, Wang K, Sun X, Wang W. Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via mo doping. Appl Catal B. 2019; 243: 771- 779.

[61]

Park YH, Kim D, Hiragond CB, et al. Phase-controlled 1T/2H-MoS2 interaction with reduced TiO2 for highly stable photocatalytic CO2 reduction into CO. J CO2 Util. 2023; 67: 102324.

[62]

Hiragond C, Kim H, Lee J, Sorcar S, Erkey C, In S-I. Electrochemical CO2 reduction to CO catalyzed by 2D nanostructures. Catalysts. 2020; 10 (1): 98.

[63]

Hiragond C, Ali S, Sorcar S, In S-I. Hierarchical nanostructured photocatalysts for CO2 photoreduction. Catalysts. 2019; 9 (4): 370.

[64]

Hiragond CB, Powar NS, In S-I. Recent developments in lead and lead-free halide perovskite nanostructures towards photocatalytic CO2 reduction. Nanomaterials. 2020; 10 (12): 2569.

[65]

Yu Y, Dong X, Chen P, et al. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction. ACS Nano. 2021; 15 (9): 14453- 14464.

[66]

Cai S, Zhang M, Li J, Chen J, Jia H. Anchoring single-atom Ru on CdS with enhanced CO2 capture and charge accumulation for high selectivity of photothermocatalytic CO2 reduction to solar fuels. Solar RRL. 2020; 5 (2): 2000313.

[67]

Chen G, Wei F, Zhou Z, et al. Phase junction crystalline carbon nitride nanosheets modified with CdS nanoparticles for photocatalytic CO2 reduction. Sustainable Energy Fuels. 2023; 7 (2): 381- 388.

[68]

Vahidzadeh E, Zeng S, Manuel AP, et al. Asymmetric multipole plasmon-mediated catalysis shifts the product selectivity of CO2 photoreduction toward C2+ products. ACS Appl Mater Interfaces. 2021; 13 (6): 7248- 7258.

[69]

Ali S, Lee J, Kim H, et al. Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earthabundant materials: reduced titania-Cu2O z-scheme heterostructures. Appl Catal B. 2020; 279: 119344.

RIGHTS & PERMISSIONS

2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

286

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/