Long-life lithium batteries enabled by a pseudo-oversaturated electrolyte

Youchun Yu, Simeng Wang, Juyan Zhang, Weiwei Qian, Nana Zhang, Guangjie Shao, Haiyan Bian, Yuwen Liu, Lan Zhang

Carbon Energy ›› 2024, Vol. 6 ›› Issue (4) : 383.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (4) : 383. DOI: 10.1002/cey2.383
RESEARCH ARTICLE

Long-life lithium batteries enabled by a pseudo-oversaturated electrolyte

Author information +
History +

Abstract

The specific energy of Li metal batteries (LMBs) can be improved by using high-voltage cathode materials; however, achieving long-term stable cycling performance in the corresponding system is particularly challenging for the liquid electrolyte. Herein, a novel pseudo-oversaturated electrolyte (POSE) is prepared by introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) to adjust the coordination structure between diglyme (G2) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Surprisingly, although TTE shows little solubility to LiTFSI, the molar ratio between LiTFSI and G2 in the POSE can be increased to 1:1, which is much higher than that of the saturation state, 1:2.8. Simulation and experimental results prove that TTE promotes closer contact of the G2 molecular with Li+ in the POSE. Moreover, it also participates in the formation of electrolyte/electrode interphases. The electrolyte shows outstanding compatibility with both the Li metal anode and typical high-voltage cathodes. Li||Li symmetric cells show a long life of more than 2000 h at 1 mA cm-2, 1 mAh cm-2. In the meantime, Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) cell with the POSE shows a high reversible capacity of 134.8 mAh g-1 after 900 cycles at 4.5 V, 1 C rate. The concept of POSE can provide new insight into the Li+ solvation structure and in the design of advanced electrolytes for LMBs.

Keywords

high voltage / lithium metal batteries / pseudo-oversaturated electrolyte / solid electrolyte interphases (SEI) / solvation structure

Cite this article

Download citation ▾
Youchun Yu, Simeng Wang, Juyan Zhang, Weiwei Qian, Nana Zhang, Guangjie Shao, Haiyan Bian, Yuwen Liu, Lan Zhang. Long-life lithium batteries enabled by a pseudo-oversaturated electrolyte. Carbon Energy, 2024, 6(4): 383 https://doi.org/10.1002/cey2.383

References

[1]
Zheng Y, Balbuena PB. Localized high concentration electrolytes decomposition under electron-rich environments. J Chem Phys. 2021; 154 (10): 104702.
[2]
Cao X, Gao P, Ren X, et al. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc Natl Acad Sci USA. 2021; 118 (9): e2020357118.
[3]
Cao X, Jia H, Xu W, Zhang J-G. Review-localized highconcentration electrolytes for lithium batteries. J Electrochem Soc. 2021; 168 (1): 010522.
[4]
Jia H, Xu Y, Zhang X, et al. Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries. Angew Chem Int Ed. 2021; 60 (23): 12999- 13006.
[5]
Or T, Gourley SWD, Kaliyappan K, Yu A, Chen Z. Recycling of mixed cathode lithium-ion batteries for electric vehicles: current status and future outlook. Carbon Energy. 2020; 2 (1): 6- 43.
[6]
Li J, Li F, Zhang L, Zhang H, Lassi U, Ji X. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries. Green Chem Eng. 2021; 2 (3): 253- 265.
[7]
Xue W, Huang M, Li Y, et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat Energy. 2021; 6 (5): 495- 505.
[8]
Fan X, Wang C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem Soc Rev. 2021; 50 (18): 10486- 10566.
[9]
Wu X, Pan K, Jia M, et al. Electrolyte for lithium protection: from liquid to solid. Green Energy Environ. 2019; 4 (4): 360- 374.
[10]
Jiang LL, Yan C, Yao YX, Cai W, Huang JQ, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew Chem Int Ed. 2021; 60 (7): 3402- 3406.
[11]
Lin S, Hua H, Li Z, Zhao J. Functional localized highconcentration ether-based electrolyte for stabilizing highvoltage lithium-metal battery. ACS Appl Mater Interfaces. 2020; 12 (30): 33710- 33718.
[12]
Wang H, Yu Z, Kong X, et al. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv Mater. 2021; 33 (25): 2008619- 2008627.
[13]
Fu J, Ji X, Chen J, et al. Lithium nitrate regulated sulfone electrolytes for lithium metal batteries. Angew Chem Int Ed. 2020; 59 (49): 22194- 22201.
[14]
Hu Y-S, Lu Y. The mystery of electrolyte concentration: from superhigh to ultralow. ACS Energy Lett. 2020; 5 (11): 3633- 3636.
[15]
Meng X, Xu Y, Cao H, et al. Internal failure of anode materials for lithium batteries-a critical review. Green Energy Environ. 2020; 5 (1): 22- 36.
[16]
Lin S, Zhao J. Functional electrolyte of fluorinated ether and ester for stabilizing both 4.5 V LiCoO2 cathode and lithium metal anode. ACS Appl Mater Interfaces. 2020; 12 (7): 8316- 8323.
[17]
Ma J, Zhang H, Li Y, et al. Constructing a “pea-pod”-like nanostructure to provide valid conductive matrix and volume change accommodation for silicon anode in lithium ion batteries. Green Chem Eng. 2021; 2 (3): 327- 335.
[18]
Li J, Huo F, Chen T, et al. In-situ construction of stable cathode/Li interfaces simultaneously via different electron density azo compounds for solid-state lithium metal batteries. Energy Storage Mater. 2021; 40: 394- 401.
[19]
Bai P, Li J, Brushett FR, Bazant MZ. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci. 2016; 9 (10): 3221- 3229.
[20]
Gao X, Zhou Y-N, Han D, et al. Thermodynamic understanding of Li-dendrite formation. Joule. 2020; 4 (9): 1864- 1879.
[21]
Tao R, Bi X, Li S, et al. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes. ACS Appl Mater Interfaces. 2017; 9 (8): 7003- 7008.
[22]
Chen S, Zheng J, Mei D, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater. 2018; 30 (21): 1706102.
[23]
Chen Y-T, Duquesnoy M, Tan DHS, et al. Fabrication of highquality thin solid-state electrolyte films assisted by machine learning. ACS Energy Lett. 2021; 6 (4): 1639- 1648.
[24]
Ren X, Chen S, Lee H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem. 2018; 4 (8): 1877- 1892.
[25]
Zhang H, Qu W, Chen N, et al. Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries. Electrochim Acta. 2018; 285: 78- 85.
[26]
Heist A, Lee SH. Improved stability and rate capability of ionic liquid electrolyte with high concentration of LiFSI. J Electrochem Soc. 2019; 166 (10): A1860- A1866.
[27]
McOwen DW, Seo DM, Borodin O, Vatamanu J, Boyle PD, Henderson WA. Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ Sci. 2014; 7 (1): 416- 426.
[28]
Ding JF, Xu R, Yao N, et al. Non-solvating and lowdielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew Chem Int Ed. 2021; 60 (20): 11442- 11447.
[29]
Ju Z, Nai J, Wang Y, et al. Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy. Nat Commun. 2020; 11: 488.
[30]
Qian J, Henderson WA, Xu W, et al. High rate and stable cycling of lithium metal anode. Nat Commun. 2015; 6: 6362.
[31]
Ciosek Högström K, Lundgren H, Wilken S, et al. Impact of the flame retardant additive triphenyl phosphate (TPP) on the performance of graphite/LiFePO4 cells in high power applications. J Power Sources. 2014; 256: 430- 439.
[32]
Yu L, Chen S, Lee H, et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro (oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 2018; 3 (9): 2059- 2067.
[33]
Ren X, Gao P, Zou L, et al. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc Natl Acad Sci USA. 2020; 117 (46): 28603- 28613.
[34]
Cao X, Ren X, Zou L, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat Energy. 2019; 4 (9): 796- 805.
[35]
Zhang X, Zou L, Xu Y, et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in widetemperature range. Adv Energy Mater. 2020; 10 (22): 2000368.
[36]
Doherty B, Zhong X, Gathiaka S, Li B, Acevedo O. Revisiting OPLS force field parameters for ionic liquid simulations. J Chem Theory Comput. 2017; 13 (12): 6131- 6145.
[37]
William L, Jorgensen DSM, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996; 118 (45): 11225- 11236.
[38]
Dodda LS, Vilseck JZ, Tirado-Rives J, Jorgensen WL. 1.14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations. J Phys Chem B. 2017; 121 (15): 3864- 3870.
[39]
Dodda LS, Cabeza de Vaca I, Tirado-Rives J, Jorgensen WL. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Res. 2017; 45 (W1): W331- W336.
[40]
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2: 19- 25.
[41]
Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2009; 30 (13): 2157- 2164.
[42]
Peng L, Wu X, Jia M, et al. Solvating power regulation enabled low concentration electrolyte for lithium batteries. Sci Bull. 2022; 67 (21): 2235- 2244.
[43]
Adams BD, Carino EV, Connell JG, et al. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy. 2017; 40: 607- 617.
[44]
Ueno K, Tatara R, Tsuzuki S, et al. Li+ solvation in glyme-Li salt solvate ionic liquids. Phys Chem Chem Phys. 2015; 17 (12): 8248- 8257.
[45]
Henderson WA, McKenna F, Khan MA, Brooks NR, Young VG, Frech R. Glyme-lithium bis(trifluoromethanesulfonyl) imide and glyme-lithium bis(perfluoroethanesulfonyl) imide phase behavior and solvate structures. Chem Mater. 2005; 17 (9): 2284- 2289.
[46]
Fu C, Xu L, Aquino FW, et al. Correlating Li+-solvation structure and its electrochemical reaction kinetics with sulfur in subnano confinement. J Phys Chem Lett. 2018; 9 (7): 1739- 1745.
[47]
Lin S, Hua H, Lai P, Zhao J. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic highvoltage lithium battery in wide temperature range. Adv Energy Mater. 2021; 11 (36): 2101775.
[48]
Seo DM, Boyle PD, Sommer RD, Daubert JS, Borodin O, Henderson WA. Solvate structures and spectroscopic characterization of LiTFSI electrolytes. J Phys Chem B. 2014; 118 (47): 13601- 13608.
[49]
Pang Q, Shyamsunder A, Narayanan B, Kwok CY, Curtiss LA, Nazar LF. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat Energy. 2018; 3 (9): 783- 791.
[50]
Tchitchekova DS, Monti D, Johansson P, et al. On the reliability of half-cell tests for monovalent (Li+, Na+) and divalent (Mg2+, Ca2+) cation based batteries. J Electrochem Soc. 2017; 164 (7): A1384- A1392.
[51]
Wang J, Kang Q, Yuan J, et al. Dendrite-free lithium and sodium metal anodes with deep plating/stripping properties for lithium and sodium batteries. Carbon Energy. 2021; 3 (1): 153- 166.
[52]
Yan X, Lin L, Chen Q, et al. Multifunctional roles of carbonbased hosts for Li-metal anodes: a review. Carbon Energy. 2021; 3 (2): 303- 329.
[53]
Guo Y, Li D, Xiong R, Li H. Investigation of the temperaturedependent behaviours of Li metal anode. Chem Commun. 2019; 55 (66): 9773- 9776.
[54]
Li T, Yuan X-Z, Zhang L, Song D, Shi K, Bock C. Degradation mechanisms and mitigation strategies of Nickel-rich NMCbased lithium-ion batteries. Electrochem Energy Rev. 2020; 3 (1): 43- 80.
[55]
Wang S, Dai A, Cao Y, et al. Enabling stable and high-rate cycling of a Ni-rich layered oxide cathode for lithium-ion batteries by modification with an artificial Li+-conducting cathode-electrolyte interphase. J Mater Chem A. 2021; 9 (19): 11623- 11631.
[56]
Wu F, Liu N, Chen L, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy. 2019; 59: 50- 57.
[57]
Lee SH, Hwang JY, Park SJ, Park GT, Sun YK. Adiponitrile (C6H8N2): a new bi-functional additive for high-performance Li-metal batteries. Adv Funct Mater. 2019; 29 (30): 1902496.
[58]
Zhang X, Ren Y, Zhang J, et al. Synergistic effect of TMSPi and FEC in regulating the electrode/electrolyte interfaces in Nickel-rich lithium metal batteries. ACS Appl Mater Interfaces. 2022; 14 (9): 11517- 11527.
[59]
Liu Q, Liu Y, Jiao X, et al. Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries. Energy Storage Mater. 2019; 23: 105- 111.
[60]
Fan X, Ji X, Han F, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv. 2018; 4 (12): eaau9245.
[61]
Li Y, Huang W, Li Y, Pei A, Boyle DT, Cui Y. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule. 2018; 2 (10): 2167- 2177.
[62]
Wang H, Yu Z, Kong X, et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule. 2022; 6 (3): 588- 616.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/