High-efficiency sodium storage of Co0.85Se/WSe2 encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering

Ya Ru Pei, Hong Yu Zhou, Ming Zhao, Jian Chen Li, Xin Ge, Wei Zhang, Chun Cheng Yang, Qing Jiang

Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 374.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (1) : 374. DOI: 10.1002/cey2.374
RESEARCH ARTICLE

High-efficiency sodium storage of Co0.85Se/WSe2 encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering

Author information +
History +

Abstract

With the advantage of fast charge transfer, heterojunction engineering is identified as a viable method to reinforce the anodes' sodium storage performance. Also, vacancies can effectively strengthen the Na+ adsorption ability and provide extra active sites for Na+ adsorption. However, their synchronous engineering is rarely reported. Herein, a hybrid of Co0.85Se/WSe2 heterostructure with Se vacancies and N-doped carbon polyhedron (CoWSe/NCP) has been fabricated for the first time via a hydrothermal and subsequent selenization strategy. Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co0.85Se/WSe2 heterostructure and the existence of Se vacancies. Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+ adsorption ability, which are contributed by the Co0.85Se/WSe2 heterostructure and Se vacancies, respectively. As expected, the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability (339.6 mAh g-1 at 20 A g-1), outperforming almost all Co/W-based selenides.

Keywords

Co0.85Se/WSe2 heterostructure / density functional theory simulations / N-doped carbon polyhedron / Se vacancies / sodium-ion batteries

Cite this article

Download citation ▾
Ya Ru Pei, Hong Yu Zhou, Ming Zhao, Jian Chen Li, Xin Ge, Wei Zhang, Chun Cheng Yang, Qing Jiang. High-efficiency sodium storage of Co0.85Se/WSe2 encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering. Carbon Energy, 2024, 6(1): 374 https://doi.org/10.1002/cey2.374

References

[1]
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012; 488 (7411): 294- 303.
[2]
Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011; 334 (6058): 928- 935.
[3]
Zhao C, Wang Q, Yao Z, et al. Rational design of layered oxide materials for sodium-ion batteries. Science. 2020; 370 (6517): 708- 711.
[4]
Zhu Z, Zhong W, Zhang Y, et al. Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. Carbon Energy. 2021; 3 (4): 541- 553.
[5]
Jing WT, Zhang Y, Gu Y, Zhu YF, Yang CC, Jiang Q. N-doped carbon nanonecklaces with encapsulated Sb as a sodium-ion battery anode. Matter. 2019; 1 (3): 720- 733.
[6]
Liu Q, Xu R, Mu D, et al. Progress in electrolyte and interface of hard carbon and graphite anode for sodium-ion battery. Carbon Energy. 2022; 4 (3): 458- 479.
[7]
Yuan X, Chen S, Li J, et al. Understanding the improved performance of sulfur-doped interconnected carbon microspheres for Na-ion storage. Carbon Energy. 2021; 3 (4): 615- 626.
[8]
Zhang DM, Jia JH, Yang CC, Jiang Q. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Mater. 2020; 24: 439- 449.
[9]
Wang Y, Wen Z, Wang CC, Yang CC, Jiang Q. MOF-derived Fe7S8 nanoparticles/N-doped carbon nanofibers as an ultra-stable anode for sodium-ion batteries. Small. 2021; 17 (38): 2102349.
[10]
Jing WT, Yang CC, Jiang Q. Recent progress on metallic Sn- and Sb-based anodes for sodium-ion batteries. J Mater Chem A. 2020; 8 (6): 2913- 2933.
[11]
Li C, Pei YR, Zhao M, Yang CC, Jiang Q. Sodium storage performance of ultrasmall SnSb nanoparticles. Chem Eng J. 2021; 420: 129617.
[12]
Yin H, Qu H-Q, Liu Z, Jiang R-Z, Li C, Zhu M-Q. Long cycle life and high rate capability of three dimensional CoSe2 grainattached carbon nanofibers for flexible sodium-ion batteries. Nano Energy. 2019; 58: 715- 723.
[13]
Huang Y, Wang Z, Jiang Y, et al. Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy. 2018; 53: 524- 535.
[14]
Ali Z, Tang T, Huang X, Wang Y, Asif M, Hou Y. Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. Energy Storage Mater. 2018; 13: 19- 28.
[15]
Sun W, Zhao W, Yuan S, et al. Designing rational interfacial bonds for hierarchical mineral-type trogtalite with double carbon towards ultra-fast sodium-ions storage properties. Adv Funct Mater. 2021; 31 (18): 2100156.
[16]
Tabassum H, Zhi C, Hussain T, Qiu T, Aftab W, Zou R. Encapsulating trogtalite CoSe2 nanobuds into BCN nanotubes as high storage capacity sodium ion battery anodes. Adv Energy Mater. 2019; 9 (39): 1901778.
[17]
Yang C, Liang X, Ou X, et al. Heterostructured nanocubeshaped binary sulfide(SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Adv Funct Mater. 2019; 29 (9): 1807971.
[18]
Cao L, Gao X, Zhang B, Ou X, Zhang J, Luo W-B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano. 2020; 14 (3): 3610- 3620.
[19]
Guo C, Zhang W, Liu Y, et al. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high-performance sodium-ion batteries. Adv Funct Mater. 2019; 29 (29): 1901925.
[20]
Zhang C, Han F, Wang F, et al. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020; 24: 208- 219.
[21]
Fang G, Wang Q, Zhou J, et al. Metal organic frameworktemplated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano. 2019; 13 (5): 5635- 5645.
[22]
Liu P, Han J, Zhu K, Dong Z, Jiao L. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodiumion storage. Adv Energy Mater. 2020; 10 (24): 2000741.
[23]
Yao K, Xu Z, Huang J, et al. Bundled defect-rich MoS2 for a high-rate and long-life sodium-ion battery: achieving 3D diffusion of sodium ion by vacancies to improve kinetics. Small. 2019; 15 (12): 1805405.
[24]
Wang L, Xie X, Dinh KN, Yan Q, Ma J. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coord Chem Rev. 2019; 397: 138- 167.
[25]
Liang J, Wei Z, Wang C, Ma J. Vacancy-induced sodium ion storage in N-doped carbon nanofiber@MoS2 nanosheet arrays. Electrochim Acta. 2018; 285: 301- 308.
[26]
He H, Huang D, Gan Q, et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano. 2019; 13 (10): 11843- 11852.
[27]
Zhang L, Lu C, Ye F, et al. Selenic acid etching assisted vacancy engineering for designing highly active electrocatalysts toward the oxygen evolution reaction. Adv Mater. 2021; 33 (14): 2007523.
[28]
Xing L, Han K, Liu Q, et al. Hierarchical two-atom-layered WSe2/C ultrathin crumpled nanosheets assemblies: engineering the interlayer spacing boosts potassium-ion storage. Energy Storage Mater. 2021; 36: 309- 317.
[29]
Cui RC, Xu B, Dong HJ, Yang CC, Jiang Q. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries. Adv Sci. 2020; 7 (5): 1902547.
[30]
Zhang X, Zhou J, Zheng Y, Chen D. Co0.85Se nanoparticles encapsulated by nitrogen-enriched hierarchically porous carbon for high-performance lithium-ion batteries. ACS Appl Mater Interfaces. 2020; 12 (8): 9236- 9247.
[31]
Zhang S, Sun L, Yu L, et al. Core-shell CoSe2/WSe2 heterostructures@carbon in porous carbon nanosheets as advanced anode for sodium ion batteries. Small. 2021; 17 (49): 2103005.
[32]
Zhou X, Hu X, Zhou S, et al. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv Mater. 2018; 30 (7): 1703286.
[33]
Huang S, Wang H, Wang S, et al. Encapsulating CoS2-CoSe2 heterostructured nanocrystals in N-doped carbon nanocubes as highly efficient counter electrodes for dye-sensitized solar cells. Dalton Trans. 2018; 47 (15): 5236- 5244.
[34]
Li J, Han S, Zhang J, et al. Synthesis of three-dimensional freestanding WSe2/C hybrid nanofibers as anodes for high capacity lithium/sodium ion batteries. J Mater Chem A. 2019; 7 (34): 19898- 19908.
[35]
Lu S, Wu H, Xu S, et al. Iron selenide microcapsules as universal conversion-typed anodes for alkali metal-ion batteries. Small. 2021; 17 (8): 2005745.
[36]
Hou Z, Hei P, Shu C, et al. Multifunctional selenium vacancy coupling with interface engineering enables high-stability Li-O2 battery. ACS Sustainable Chem Eng. 2020; 8 (17): 6667- 6674.
[37]
Setzler SD, Moldovan M, Yu Z, Myers TH, Giles NC, Halliburton LE. Observation of singly ionized selenium vacancies in ZnSe grown by molecular beam epitaxy. Appl Phys Lett. 1997; 70 (17): 2274- 2276.
[38]
Zhang H, Wang T, Sumboja A, et al. Integrated hierarchical carbon flake arrays with hollow P-doped CoSe2 nanoclusters as an advanced bifunctional catalyst for Zn-air batteries. Adv Funct Mater. 2018; 28 (40): 1804846.
[39]
Dong Q, Wang Q, Dai Z, Qiu H, Dong X. MOF-derived Zndoped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction. ACS Appl Mater Interfaces. 2016; 8 (40): 26902- 26907.
[40]
Shan H, Qin J, Ding Y, et al. Controllable heterojunctions with a semicoherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Adv Mater. 2021; 33 (37): 2102471.
[41]
Yang CC, Zhang DM, Du L, Jiang Q. Hollow Ni-NiO nanoparticles embedded in porous carbon nanosheets as a hybrid anode for sodium ion batteries with an ultra-long cycle life. J Mater Chem A. 2018; 6 (26): 12663- 12671.
[42]
Xie F, Xu Z, Guo Z, et al. Achieving high initial Coulombic efficiency for competent Na storage by microstructure tailoring from chiral nematic nanocrystalline cellulose. Carbon Energy. 2022; 4 (5): 914- 923.
[43]
Zhang G, Ou X, Yang J, Tang Y. Molecular coupling and selfassembly strategy toward WSe2/carbon micro-nano hierarchical structure for elevated sodium-ion storage. Small Methods. 2021; 5 (8): 2100374.
[44]
Yousaf M, Chen Y, Tabassum H, et al. A dual protection system for heterostructured 3D CNT/CoSe2/C as high areal capacity anode for sodium storage. Adv Sci. 2020; 7 (5): 1902907.
[45]
Wang C, Zhang B, Xia H, et al. Composition and architecture design of double-shelled Co0.85Se1-xSx@carbon/graphene hollow polyhedron with superior alkali(Li, Na, K)-ion storage. Small. 2020; 16 (17): 1905853.
[46]
Huang P, Zhang S, Ying H, Zhang Z, Han W. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior sodium-ion batteries. Chem Eng J. 2021; 417: 129161.
[47]
Feng Y, Xu M, He T, et al. CoPSe: a new ternary anode material for stable and high-rate sodium/potassium-ion batteries. Adv Mater. 2021; 33 (16): 2007262.
[48]
Jo MS, Lee JS, Jeong SY, et al. Golden bristlegrass-like hierarchical graphene nanofibers entangled with N-doped CNTs containing CoSe2 nanocrystals at each node as anodes for high-rate sodium-ion batteries. Small. 2020; 16 (38): 2003391.
[49]
Xu E, Li P, Quan J, et al. Dimensional gradient structure of CoSe2@CNTs-MXene anode assisted by ether for highcapacity, stable sodium storage. Nano-Micro Lett. 2021; 13 (1): 40.
[50]
Feng J, Luo S, Yan S, et al. Rational design of yolk-shell Zn-Co-Se@N-doped dual carbon architectures as long-life and high-rate anodes for half/full Na-ion batteries. Small. 2021; 17 (46): 2101887.
[51]
Xu Y, Liu X, Su H, Jiang S, Zhang J, Li D. Hierarchical bimetallic selenides CoSe2-MoSe2/rGO for sodium/potassiumion batteries anode: insights into the intercalation and conversion mechanism. Energy Environ Mater. 2022; 5 (2): 627- 636.
[52]
Xiao S, Li X, Zhang W, et al. Bilateral interfaces in In2Se3-CoIn2-CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano. 2021; 15 (8): 13307- 13318.
[53]
Cui RC, Zhou HY, Li JC, Yang CC, Jiang Q. Ball-cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv Funct Mater. 2021; 31 (33): 2103067.
[54]
Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Investigation of the Prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv Mater. 2018; 30 (31): 1802510.
[55]
Nai J, Lou XW. Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion. Adv Mater. 2018; 31 (38): 1706825.
[56]
Ma W, Wang J, Gao H, et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Storage Mater. 2018; 13: 247- 256.
[57]
Qu B, Ma C, Ji G, et al. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv Mater. 2014; 26 (23): 3854- 3859.
[58]
Peng J, Zhang W, Hu Z, et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and longcalendar-life sodium ion batteries. Nano Lett. 2022; 22 (3): 1302- 1310.
[59]
He Y, Liu C, Xie Z, et al. Prussian blue analogue-derived cobalt sulfide nanoparticles embedded in N/S-codoped carbon frameworks as a high-performance anode material for sodium-ion batteries. ACS Appl Energy Mater. 2022; 5 (7): 8697- 8708.
[60]
Qiao Y, Wei G, Cui J, et al. Prussian blue coupling with zinc oxide as a protective layer: an efficient cathode for high-rate sodium-ion batteries. Chem Commun. 2019; 55 (4): 549- 552.
[61]
Jiang Y, Yu S, Wang B, et al. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv Funct Mater. 2016; 26 (29): 5315- 5321.
[62]
Chen R, Huang Y, Xie M, et al. Preparation of Prussian blue submicron particles with a pore structure by two-step optimization for Na-ion battery cathodes. ACS Appl Mater Interfaces. 2016; 8 (25): 16078- 16086.
[63]
Xu Z, Wang J, Guo Z, et al. The role of hydrothermal carbonization in sustainable sodium-ion battery anodes. Adv Energy Mater. 2022; 12 (18): 2200208.
[64]
Song H, Eom K. Overcoming the unfavorable kinetics of Na3V2(PO4)2F3//SnPx full-cell sodium-ion batteries for high specific energy and energy efficiency. Adv Funct Mater. 2020; 30 (31): 2003086.
[65]
Moyer K, Donohue J, Ramanna N, et al. High-rate potassium ion and sodium ion batteries by co-intercalation anodes and open framework cathodes. Nanoscale. 2018; 10 (28): 13335- 13342.
[66]
Chang J, Jin M, Yao F, et al. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater. 2013; 23 (40): 5074- 5083.
[67]
Shan T-T, Xin S, You Y, Cong H-P, Yu S-H, Manthiram A. Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced lithium storage. Angew Chem Int Ed. 2016; 55 (41): 12783- 12788.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/