Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO2 into carboxylic acids

Xiaofei Zhang , Wenhuan Huang , Le Yu , Max García-Melchor , Dingsheng Wang , Linjie Zhi , Huabin Zhang

Carbon Energy ›› 2024, Vol. 6 ›› Issue (3) : 362

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (3) : 362 DOI: 10.1002/cey2.362
REVIEW

Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO2 into carboxylic acids

Author information +
History +
PDF

Abstract

The increase in anthropogenic carbon dioxide (CO2) emissions has exacerbated the deterioration of the global environment, which should be controlled to achieve carbon neutrality. Central to the core goal of achieving carbon neutrality is the utilization of CO2 under economic and sustainable conditions. Recently, the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO2 into carboxylic acids, which can effectively alleviate CO2 emissions and create high-value chemicals. The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO2 conversion into carboxylic acids through photo-, electric-, and thermal catalysis. Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level, inspiring the preparation of high-performance catalysts. In addition, theoretical calculations, advanced technologies, and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity. Finally, challenges and prospects are provided for the future development of this field. It is hoped that this review will contribute to a deeper understanding of the conversion of CO2 into carboxylic acids and inspire more innovative breakthroughs.

Keywords

carbon neutrality / carboxylic acids / CO 2 conversion / heterogeneous catalyst / in situ technology

Cite this article

Download citation ▾
Xiaofei Zhang, Wenhuan Huang, Le Yu, Max García-Melchor, Dingsheng Wang, Linjie Zhi, Huabin Zhang. Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO2 into carboxylic acids. Carbon Energy, 2024, 6(3): 362 DOI:10.1002/cey2.362

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kar S, Goeppert A, Prakash GKS. Integrated CO2 capture and conversion to formate and methanol: connecting two threads. Acc Chem Res. 2019; 52 (10): 2892- 2903.

[2]

Attahiru YB, Aziz MMA, Kassim KA, et al. A review on green economy and development of green roads and highways using carbon neutral materials. Renewable Sustainable Energy Rev. 2019; 101: 600- 613.

[3]

Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal. 2019; 2 (8): 648- 658.

[4]

Wang J, Lin S, Tian N, Ma T, Zhang Y, Huang H. Nanostructured metal sulfides: classification, modification strategy, and solar-driven CO2 reduction application. Adv Funct Mater. 2020; 31 (9): 2008008.

[5]

Ye RP, Ding J, Gong W, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat Commun. 2019; 10: 5698.

[6]

Zhang W, Hu Y, Ma L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci. 2018; 5 (1): 1700275.

[7]

Yang K, Yang Z, Zhang C, et al. Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion. Chem Eng J. 2021; 418: 129344.

[8]

Zhao Y, Gao W, Li S, Williams GR, Mahadi AH, Ma D. Solar-versus thermal-driven catalysis for energy conversion. Joule. 2019; 3 (4): 920- 937.

[9]

He Y, Lei Q, Li C, Han Y, Shi Z, Feng S. Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Mater Today. 2021; 50: 358- 384.

[10]

Álvarez A, Bansode A, Urakawa A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev. 2017; 117 (14): 9804- 9838.

[11]

Jiang W, Hernández Villamor D, Peng H, et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat Chem Biol. 2021; 17 (8): 845- 855.

[12]

Bo Y, Gao C, Xiong Y. Recent advances in engineering active sites for photocatalytic CO2 reduction. Nanoscale. 2020; 12 (23): 12196- 12209.

[13]

Vu NN, Kaliaguine S, Do TO. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels. Adv Funct Mater. 2019; 29 (31): 1901825.

[14]

Gao P, Liang G, Ru T, et al. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat Commun. 2021; 12: 4698.

[15]

Mou S, Wu T, Xie J, et al. Boron phosphide nanoparticles: a nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv Mater. 2019; 31 (36): 1903499.

[16]

Rao H, Schmidt LC, Bonin J, Robert M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature. 2017; 548 (7665): 74- 77.

[17]

Ma W, He X, Wang W, Xie S, Zhang Q, Wang Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem Soc Rev. 2021; 50 (23): 12897- 12914.

[18]

Birdja YY, Pérez-Gallent E, Figueiredo MC, Göttle AJ, Calle-Vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy. 2019; 4 (9): 732- 745.

[19]

Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Transition-metal-catalyzed carboxylation reactions with carbon dioxide. Angew Chem Int Ed. 2018; 57 (49): 15948- 15982.

[20]

Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Challenges and recent advancements in the transformation of CO2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chem Soc Rev. 2022; 51 (22): 9371- 9423.

[21]

Mellmann D, Sponholz P, Junge H, Beller M. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem Soc Rev. 2016; 45 (14): 3954- 3988.

[22]

Eppinger J, Huang KW. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2016; 2 (1): 188- 195.

[23]

An X, Li S, Hao X, et al. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate. Renewable Sustainable Energy Rev. 2021; 143: 110952.

[24]

Sang R, Kucmierczyk P, Dühren R, et al. Synthesis of carboxylic acids by palladium-catalyzed hydroxycarbonylation. Angew Chem Int Ed. 2019; 131 (40): 14503- 14511.

[25]

Sordakis K, Tang C, Vogt LK, et al. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem Rev. 2018; 118 (2): 372- 433.

[26]

Park JH, Jin MH, Lee DW, et al. Sustainable low-temperature hydrogen production from lignocellulosic biomass passing through formic acid: combination of biomass hydrolysis/oxidation and formic acid dehydrogenation. Environ Sci Technol. 2019; 53 (23): 14041- 14053.

[27]

Iglesias J, Martínez-Salazar I, Maireles-Torres P, Martin Alonso D, Mariscal R, López Granados M. Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chem Soc Rev. 2020; 49 (16): 5704- 5771.

[28]

Wu XF, Zheng F. Synthesis of carboxylic acids and esters from CO2. Top Curr Chem. 2017; 375 (1): 4.

[29]

Dabral S, Schaub T. The use of carbon dioxide (CO2) as a building block in organic synthesis from an industrial perspective. Adv Synth Catal. 2019; 361 (2): 223- 246.

[30]

Ma B, Blanco M, Calvillo L, et al. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J Am Chem Soc. 2021; 143 (22): 8414- 8425.

[31]

Sun GQ, Zhang W, Liao LL, et al. Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO2. Nat Commun. 2021; 12: 7086.

[32]

Yang C, Li S, Zhang Z, et al. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small. 2020; 16 (29): 2001847.

[33]

Zhou Y, Wang Z, Huang L, et al. Engineering 2D photocatalysts toward carbon dioxide reduction. Adv Energy Mater. 2021; 11 (8): 2003159.

[34]

Cui H, Guo Y, Guo L, Wang L, Zhou Z, Peng Z. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction. J Mater Chem A. 2018; 6 (39): 18782- 18793.

[35]

Dao XY, Sun WY. Single- and mixed-metal-organic framework photocatalysts for carbon dioxide reduction. Inorg Chem Front. 2021; 8 (13): 3178- 3204.

[36]

Di J, Xiong J, Li H, Liu Z. Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv Mater. 2018; 30 (1): 1704548.

[37]

Li D, Kassymova M, Cai X, Zang SQ, Jiang HL. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord Chem Rev. 2020; 412 (1): 213262.

[38]

Zhang L, Zhao ZJ, Wang T, Gong J. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem Soc Rev. 2018; 47 (14): 5423- 5443.

[39]

Wang S, Han X, Zhang Y, Tian N, Ma T, Huang H. Inside- and-out semiconductor engineering for CO2 photoreduction: from recent advances to new trends. Small Structures. 2020; 2 (1): 2000061.

[40]

Gao C, Wang J, Xu H, Xiong Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem Soc Rev. 2017; 46 (10): 2799- 2823.

[41]

Wang K, Du Y, Li Y, et al. Atomic-level insight of sulfidation-engineered Aurivillius-related Bi2O2SiO3 nanosheets enabling visible light low-concentration CO2 conversion. Carbon Energy. 2023; 5 (2): e264.

[42]

Shi H, Long S, Hou J, et al. Defects promote ultrafast charge separation in graphitic carbon nitride for enhanced visible-light-driven CO2 reduction activity. Chem Eur J. 2019; 25 (19): 5028- 5035.

[43]

Hu K, Wang D, Zhao W, et al. Intermediate band material of titanium-doped tin disulfide for wide spectrum solar absorption. Inorg Chem. 2018; 57 (7): 3956- 3962.

[44]

Di J, Chen C, Zhu C, et al. Bismuth vacancy mediated single unit cell Bi2WO6 nanosheets for boosting photocatalytic oxygen evolution. Appl Catal B. 2018; 238: 119- 125.

[45]

Huang HB, Zhang N, Yu K, et al. One-step carbothermal synthesis of robust CdS@BPC photocatalysts in the presence of biomass porous carbons. ACS Sustainable Chem Eng. 2019; 7 (19): 16835- 16842.

[46]

Kovačič Ž, Likozar B, Huš M. Photocatalytic CO2 reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal. 2020; 10 (24): 14984- 15007.

[47]

Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev. 2017; 117 (3): 1445- 1514.

[48]

Lu M, Li Q, Liu J, et al. Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Appl Catal B. 2019; 254: 624- 633.

[49]

Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev. 2019; 119 (6): 3962- 4179.

[50]

Zhao Z, Zheng D, Guo M, et al. Engineering olefin-linked covalent organic frameworks for photoenzymatic reduction of CO2. Angew Chem Int Ed. 2022; 134 (12): e202200261.

[51]

Kamakura Y, Yasuda S, Hosokawa N, et al. Selective CO2-to-formate conversion driven by visible light over a precious-metal-free nonporous coordination polymer. ACS Catal. 2022; 12 (16): 10172- 10178.

[52]

Chen EX, Qiu M, Zhang YF, et al. Energy band alignment and redox-active sites in metalloporphyrin-spaced metal-catechol frameworks for enhanced CO2 photoreduction. Angew Chem Int Ed. 2022; 61 (1): e202111622.

[53]

An D, Nishioka S, Yasuda S, et al. Cover picture: alumina-supported alpha-iron(III) oxyhydroxide as a recyclable solid catalyst for CO2 photoreduction under visible light. Angew Chem Int Ed. 2022; 61 (26): e202204948.

[54]

Zhou J, Li J, Kan L, et al. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat Commun. 2022; 13: 4681.

[55]

Giusi D, Ampelli C, Genovese C, Perathoner S, Centi G. A novel gas flow-through photocatalytic reactor based on copper-functionalized nanomembranes for the photoreduction of CO2 to C1-C2 carboxylic acids and C1-C3 alcohols. Chem Eng J. 2021; 408: 127250.

[56]

Jia G, Sun M, Wang Y, et al. Asymmetric coupled dual-atom sites for selective photoreduction of carbon dioxide to acetic acid. Adv Funct Mater. 2022; 32 (41): 2206817.

[57]

Zhu J, Shao W, Li X, et al. Asymmetric triple-atom sites confined in ternary oxide enabling selective CO2 photothermal reduction to acetate. J Am Chem Soc. 2021; 143 (43): 18233- 18241.

[58]

Yu F, Jing X, Wang Y, Sun M, Duan C. Hierarchically porous metal-organic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH. Angew Chem Int Ed. 2021; 133 (47): 25053- 25057.

[59]

Gai PP, Yu W, Zhao H, et al. Solar-powered organic semiconductor-bacteria biohybrids for CO2 reduction into acetic acid. Angew Chem Int Ed. 2020; 59 (18): 7224- 7229.

[60]

Sun S, Watanabe M, Wu J, An Q, Ishihara T. Ultrathin WO3·0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity. J Am Chem Soc. 2018; 140 (20): 6474- 6482.

[61]

Schmalzbauer M, Svejstrup TD, Fricke F, et al. Redox-neutral photocatalytic C-H carboxylation of arenes and styrenes with CO2. Chem. 2020; 6 (10): 2658- 2672.

[62]

Fan Z, Chen S, Zou S, Xi C. Direct C-C bond formation of allylic alcohols with CO2 toward carboxylic acids by photoredox/nickel dual catalysis. ACS Catal. 2022; 12 (5): 2781- 2787.

[63]

Song L, Wang W, Yue JP, et al. Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2. Nat Catal. 2022; 5 (9): 832- 838.

[64]

Li J, Kuang Y, Meng Y, et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J Am Chem Soc. 2020; 142 (16): 7276- 7282.

[65]

Guilera J, del Valle J, Alarcón A, Díaz JA, Andreu T. Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts. J CO2 Util. 2019; 30: 11- 17.

[66]

Ma T, Fan Q, Li X, Qiu J, Wu T, Sun Z. Graphene-based materials for electrochemical CO2 reduction. J CO2 Util. 2019; 30: 168- 182.

[67]

Wang P, Yang H, Tang C, et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C-C coupling. Nat Commun. 2022; 13: 3754.

[68]

Zhao S, Li S, Guo T, et al. Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 2019; 11 (1): 62.

[69]

Wagner A, Sahm CD, Reisner E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat Catal. 2020; 3 (10): 775- 786.

[70]

Sun Z, Ma T, Tao H, Fan Q, Han B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem. 2017; 3 (4): 560- 587.

[71]

Duan YX, Zhou YT, Yu Z, et al. Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew Chem Int Ed Engl. 2021; 60 (16): 8798- 8802.

[72]

Woldu AR, Huang Z, Zhao P, Hu L, Astruc D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord Chem Rev. 2022; 454 (1): 214340.

[73]

Li F, Gu GH, Choi C, et al. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl Catal B. 2020; 277 (119241): 119241.

[74]

Sa YJ, Lee CW, Lee SY, Na J, Lee U, Hwang YJ. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem Soc Rev. 2020; 49 (18): 6632- 6665.

[75]

Wu Z, Wu H, Cai W, et al. Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew Chem Int Ed. 2021; 133 (22): 12662- 12667.

[76]

Ko YJ, Kim JY, Lee WH, et al. Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate. Nat Commun. 2022; 13: 2205.

[77]

Xia C, Zhu P, Jiang Q, et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat Energy. 2019; 4 (9): 776- 785.

[78]

Fan L, Xia C, Zhu P, Lu Y, Wang H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat Commun. 2020; 11: 3633.

[79]

Genovese C, Schuster ME, Gibson EK, et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat Commun. 2018; 9: 935.

[80]

Han N, Ding P, He L, Li Y, Li Y. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater. 2019; 10 (11): 1902338.

[81]

Zhou B, Song J, Xie C, Chen C, Qian Q, Han B. Mo-Bi-Cd ternary metal chalcogenides: highly efficient photocatalyst for CO2 reduction to formic acid under visible light. ACS Sustain Chem Eng. 2018; 6 (5): 5754- 5759.

[82]

Tsounis C, Kuriki R, Shibata K, et al. Copolymerization approach to improving Ru(II)-complex/C3N4 hybrid photocatalysts for visible-light CO2 reduction. ACS Sustainable Chem Eng. 2018; 6 (11): 15333- 15340.

[83]

Dong WJ, Navid IA, Xiao Y, Lim JW, Lee JL, Mi Z. CuS-decorated GaN nanowires on silicon photocathodes for converting CO2 mixture gas to HCOOH. J Am Chem Soc. 2021; 143 (27): 10099- 10107.

[84]

Kuriki R, Matsunaga H, Nakashima T, et al. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J Am Chem Soc. 2016; 138 (15): 5159- 5170.

[85]

Maeda K, An D, Kumara Ranasinghe CS, et al. Visible-light CO2 reduction over a ruthenium(ii)-complex/C3N4 hybrid photocatalyst: the promotional effect of silver species. J Mater Chem A. 2018; 6 (20): 9708- 9715.

[86]

Chen L, Wang Y, Yu F, Shen X, Duan C. A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal-organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light. J Mater Chem A. 2019; 7 (18): 11355- 11361.

[87]

Wang Y, Shang X, Shen J, et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat Commun. 2020; 11: 3043.

[88]

Sarkar P, Riyajuddin S, Das A, Hazra Chowdhury A, Ghosh K, Islam SM. Mesoporous covalent organic framework: an active photo-catalyst for formic acid synthesis through carbon dioxide reduction under visible light. Mol Catal. 2020; 484: 110730.

[89]

Guo K, Zhu X, Peng L, et al. Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem Eng J. 2021; 405: 127011.

[90]

Lee Y, Kim S, Fei H, Kang JK, Cohen SM. Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal-organic framework. Chem Commun. 2015; 51 (92): 16549- 16552.

[91]

Wang J, Mao J, Zheng X, Zhou Y, Xu Q. Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting proton-coupled electron transfer. Appl Surf Sci. 2021; 562: 150197.

[92]

Su T, Tian H, Qin Z, Ji H. Preparation and characterization of cu modified BiYO3 for carbon dioxide reduction to formic acid. Appl Catal B. 2017; 202: 364- 373.

[93]

Dong LZ, Zhang L, Liu J, et al. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angew Chem Int Ed. 2020; 59 (7): 2659- 2663.

[94]

Kumar D, Lee SB, Park CH, Kim CS. Impact of ultrasmall platinum nanoparticle coating on different morphologies of gold nanostructures for multiple one-pot photocatalytic environment protection reactions. ACS Appl Mater Interfaces. 2018; 10 (1): 389- 399.

[95]

Li N, Liu J, Liu JJ, et al. Adenine components in biomimetic metal-organic frameworks for efficient CO2 photoconversion. Angew Chem Int Ed. 2019; 131 (16): 5280- 5285.

[96]

Zhu ZH, Zhao BH, Hou SL, et al. A facile strategy for constructing a carbon-particle-modified metal-organic framework for enhancing the efficiency of CO2 electroreduction into formate. Angew Chem Int Ed. 2021; 133 (43): 23582- 23590.

[97]

Ren F, Hu W, Wang C, et al. An extrinsic faradaic layer on CuSn for high-performance electrocatalytic CO2 reduction. CCS Chem. 2022; 4 (5): 1610- 1618.

[98]

Meng FL, Zhang Q, Liu KH, Zhang XB. Integrated bismuth oxide ultrathin nanosheets/carbon foam electrode for highly selective and energy-efficient electrocatalytic conversion of CO2 to HCOOH. Chem Eur J. 2019; 26 (18): 4013- 4018.

[99]

Chen Z, Mou K, Wang X, Liu L. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew Chem Int Ed. 2018; 130 (39): 12972- 12976.

[100]

Sun X, Lu L, Zhu Q, et al. MoP nanoparticles supported on indium-doped porous carbon: outstanding catalysts for highly efficient CO2 electroreduction. Angew Chem Int Ed. 2018; 57 (9): 2427- 2431.

[101]

Sekar P, Calvillo L, Tubaro C, et al. Cobalt spinel nanocubes on N-doped graphene: a synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid. ACS Catal. 2017; 7 (11): 7695- 7703.

[102]

Liu S, Lu XF, Xiao J, Wang X, Lou XW. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew Chem Int Ed. 2019; 131 (39): 13966- 13971.

[103]

Li Z, Cao A, Zheng Q, et al. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv Mater. 2021; 33 (2): 2005113.

[104]

Li L, Ozden A, Guo S, et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat Commun. 2021; 12: 5223.

[105]

Lu P, Tan X, Zhao H, et al. Atomically dispersed indium sites for selective CO2 electroreduction to formic acid. ACS Nano. 2021; 15 (3): 5671- 5678.

[106]

Zheng X, De Luna P, García de Arquer FP, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule. 2017; 1 (4): 794- 805.

[107]

Chi LP, Niu ZZ, Zhang XL, et al. Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat Commun. 2021; 12: 5835.

[108]

Liu SQ, Gao MR, Feng RF, Gong L, Zeng H, Luo JL. Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO2 electroreduction to formate. ACS Catal. 2021; 11 (12): 7604- 7612.

[109]

Ma W, Xie S, Zhang XG, et al. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat Commun. 2019; 10: 892.

[110]

Xing Y, Kong X, Guo X, et al. Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv Sci. 2020; 7 (22): 1902989.

[111]

Bai X, Chen W, Zhao C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew Chem Int Ed. 2017; 129 (40): 12387- 12391.

[112]

Zheng T, Liu C, Guo C, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat Nanotechnol. 2021; 16 (12): 1386- 1393.

[113]

Kumar B, Atla V, Brian JP, et al. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew Chem Int Ed. 2017; 56 (13): 3645- 3649.

[114]

An X, Li S, Hao X, et al. The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide. Sustainable Energy Fuels. 2020; 4 (6): 2831- 2840.

[115]

Duan YX, Meng FL, Liu KH, et al. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv Mater. 2018; 30 (14): 1706194.

[116]

Han N, Wang Y, Yang H, et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun. 2018; 9: 1320.

[117]

Sun S, Cheng H, Li X, et al. Improving CO2 electroreduction activity by creating an oxygen vacancy-rich surface with one-dimensional In-SnO2 hollow nanofiber architecture. Ind Eng Chem Res. 2021; 60 (3): 1164- 1174.

[118]

Grigioni I, Sagar LK, Li YC, et al. CO2 electroreduction to formate at a partial current density of 930 mA cm-2 with InP colloidal quantum dot derived catalysts. ACS Energy Lett. 2020; 6 (1): 79- 84.

[119]

Zhang X, Sa R, Zhou F, et al. Metal-organic framework-derived CuS nanocages for selective CO2 electroreduction to formate. CCS Chem. 2021; 3 (12): 199- 207.

[120]

He C, Chen S, Long R, Song L, Xiong Y. Design of CuInS2 hollow nanostructures toward CO2 electroreduction. Sci China Chem. 2020; 63 (12): 1721- 1726.

[121]

Liu S, Xiao J, Lu XF, Wang J, Wang X, Lou XW. Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew Chem Int Ed. 2019; 58 (25): 8499- 8503.

[122]

Yang J, Wang X, Qu Y, et al. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv Energy Mater. 2020; 10 (36): 2001709.

[123]

Wei F, Wang T, Jiang X, et al. Controllably engineering mesoporous surface and dimensionality of SnO2 toward high-performance CO2 electroreduction. Adv Funct Mater. 2020; 30 (39): 2002092.

[124]

Kang P, Zhang S, Meyer TJ, Brookhart M. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew Chem Int Ed. 2014; 53 (33): 8709- 8713.

[125]

Cao Z, Derrick JS, Xu J, et al. Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO2 reduction to formate and carbon monoxide: surface organometallic chemistry. Angew Chem. 2018; 130 (18): 5075- 5079.

[126]

Yang Z, Yang C, Han J, et al. Boosting electrochemical CO2 reduction to formate using SnO2/graphene oxide with amide linkages. J Mater Chem A. 2021; 9 (35): 19681- 19686.

[127]

Mori K, Konishi A, Yamashita H. Interfacial engineering of PdAg/TiO2 with a metal-organic framework to promote the hydrogenation of CO2 to formic acid. J Phys Chem C. 2020; 124 (21): 11499- 11505.

[128]

Mitchell CE, Terranova U, Alshibane I, et al. Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide. New J Chem. 2019; 43 (35): 13985- 13997.

[129]

Zhang Z, Zhang L, Yao S, et al. Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts. J Catal. 2019; 376: 57- 67.

[130]

Sun Q, Chen BWJ, Wang N, et al. Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation. Angew Chem Int Ed. 2020; 59 (45): 20183- 20191.

[131]

Sarma PJ, Dowerah D, Gour NK, Logsdail AJ, Catlow CRA, Deka RC. Tuning the transition barrier of H2 dissociation in the hydrogenation of CO2 to formic acid on Ti-doped Sn2O4 clusters. Phys Chem Chem Phys. 2021; 23 (1): 204- 210.

[132]

Pandey PH, Pawar HS. Cu dispersed TiO2 catalyst for direct hydrogenation of carbon dioxide into formic acid. J CO2 Util. 2020; 41: 101267.

[133]

Kuwahara Y, Fujie Y, Mihogi T, Yamashita H. Hollow mesoporous organosilica spheres encapsulating PdAg nanoparticles and poly(ethyleneimine) as reusable catalysts for CO2 hydrogenation to formate. ACS Catal. 2020; 10 (11): 6356- 6366.

[134]

Mori K, Sano T, Kobayashi H, Yamashita H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: elucidating the active Pd atoms in alloy nanoparticles. J Am Chem Soc. 2018; 140 (28): 8902- 8909.

[135]

Ye J, Johnson JK. Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66. ACS Catal. 2015; 5 (10): 6219- 6229.

[136]

Zhong H, Iguchi M, Chatterjee M, et al. Interconversion between CO2 and HCOOH under basic conditions catalyzed by PdAu nanoparticles supported by amine-functionalized reduced graphene oxide as a dual catalyst. ACS Catal. 2018; 8 (6): 5355- 5362.

[137]

Masuda S, Mori K, Kuwahara Y, Yamashita H. PdAg nanoparticles supported on resorcinol-formaldehyde polymers containing amine groups: the promotional effect of phenylamine moieties on CO2 transformation to formic acid. J Mater Chem A. 2019; 7 (27): 16356- 16363.

[138]

Mentoor K, Twigge L, Niemantsverdriet JWH, Swarts JC, Erasmus E. Silica nanopowder supported frustrated Lewis pairs for CO2 capture and conversion to formic acid. Inorg Chem. 2021; 60 (1): 55- 69.

[139]

Mori K, Taga T, Yamashita H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 2017; 7 (5): 3147- 3151.

[140]

Gunasekar GH, Shin J, Jung KD, Park K, Yoon S. Design strategy toward recyclable and highly efficient heterogeneous catalysts for the hydrogenation of CO2 to formate. ACS Catal. 2018; 8 (5): 4346- 4353.

[141]

Liu Q, Yang X, Li L, et al. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst. Nat Commun. 2017; 8: 1407.

[142]

Ye J, Johnson JK. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation. ACS Catal. 2015; 5 (5): 2921- 2928.

[143]

Saxena A, Liyanage WPR, Kapila S, Nath M. Nickel selenide as an efficient electrocatalyst for selective reduction of carbon dioxide to carbon-rich products. Catal Sci Technol. 2022; 12 (15): 4727- 4739.

[144]

Zang D, Li Q, Dai G, Zeng M, Huang Y, Wei Y. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl Catal B. 2021; 281: 119426.

[145]

Xiao YH, Zhang YX, Zhai R, Gu ZG, Zhang J. Helical copper-porphyrinic framework nanoarrays for highly efficient CO2 electroreduction. Sci China Mater. 2022; 65 (5): 1269- 1275.

[146]

Qiu XF, Huang JR, Yu C, et al. A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew Chem Int Ed. 2022; 134 (36): e202206470.

[147]

De R, Gonglach S, Paul S, et al. Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex. Angew Chem Int Ed. 2020; 132 (26): 10614- 10621.

[148]

Genovese C, Ampelli C, Perathoner S, Centi G. Mechanism of C-C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 2017; 19 (10): 2406- 2415.

[149]

Zheng T, Zhang M, Wu L, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal. 2022; 5 (5): 388- 396.

[150]

Ma D, Cao Z. Electron regulation of single Indium atoms at the active oxygen vacancy of In2O3(110) for production of acetic acid and acetone through direct coupling of CH4 with CO2. Chem Asian J. 2022; 17 (6): e202101383.

[151]

Ban T, Yu XY, Kang HZ, et al. Design of single-atom and frustrated-Lewis-pair dual active sites for direct conversion of CH4 and CO2 to acetic acid. J Catal. 2022; 408: 206- 215.

[152]

Shavi R, Ko J, Cho A, Han JW, Seo JG. Mechanistic insight into the quantitative synthesis of acetic acid by direct conversion of CH4 and CO2: an experimental and theoretical approach. Appl Catal B. 2018; 229: 237- 248.

[153]

Liu XH, Ma JG, Niu Z, Yang GM, Cheng P. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. Angew Chem Int Ed. 2015; 54 (3): 988- 991.

[154]

Olah GA, Török B, Joschek JP, et al. Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide-Al2Cl6/Al system. J Am Chem Soc. 2002; 124 (38): 11379- 11391.

[155]

Lee HK, Koh CS, Lo WS, et al. Applying a nanoparticle@-MOF interface to activate an unconventional regioselectivity of an inert reaction at ambient conditions. J Am Chem Soc. 2020; 142 (26): 11521- 11527.

[156]

Xiong W, Shi F, Cheng R, et al. Palladium-catalyzed highly regioselective hydrocarboxylation of alkynes with carbon dioxide. ACS Catal. 2020; 10 (14): 7968- 7978.

[157]

Yun Y, Sheng H, Bao K, et al. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J Am Chem Soc. 2020; 142 (9): 4126- 4130.

[158]

Liu Y, Chai X, Cai X, et al. Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C-C bond formation. Angew Chem Int Ed. 2018; 57 (31): 9775- 9779.

[159]

Zhang X, Liu H, Shi Y, et al. Boosting CO2 conversion with terminal alkynes by molecular architecture of graphene oxide-supported Ag nanoparticles. Matter. 2020; 3 (2): 558- 570.

[160]

Boor V, Frijns JEBM, Perez-Gallent E, et al. Electrochemical reduction of CO2 to oxalic acid: experiments, process modeling, and economics. Ind Eng Chem Res. 2022; 61 (40): 14837- 14846.

[161]

Nandi S, Jana R. Cover feature: toward sustainable Photo-/Electrocatalytic carboxylation of organic substrates with CO2(Asian J. Org. Chem. 11/2022). Asian J Org Chem. 2022; 11 (11): e202200356.

[162]

Hou SL, Dong J, Zhao B. Formation of C-X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks. Adv Mater. 2020; 32 (3): 1806163.

[163]

Gaydou M, Moragas T, Juliá-Hernández F, Martin R. Site-selective catalytic carboxylation of unsaturated hydrocarbons with CO2 and water. J Am Chem Soc. 2017; 139 (35): 12161- 12164.

[164]

Zheng Y, Zhang W, Li Y, et al. Energy related CO2 conversion and utilization: advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy. 2017; 40: 512- 539.

[165]

Yang T, Mao X, Zhang Y, et al. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nat Commun. 2021; 12: 6022.

[166]

Zhou W, Cheng K, Kang J, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem Soc Rev. 2019; 48 (12): 3193- 3228.

[167]

Sun R, Liao Y, Bai ST, et al. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: from nanoscale to single atom. Energy Environ Sci. 2021; 14 (3): 1247- 1285.

[168]

Ra EC, Kim KY, Kim EH, Lee H, An K, Lee JS. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catal. 2020; 10 (19): 11318- 11345.

[169]

Lv X, Lu G, Wang ZQ, Xu ZN, Guo GC. Computational evidence for Lewis base-promoted CO2 hydrogenation to formic acid on gold surfaces. ACS Catal. 2017; 7 (7): 4519- 4526.

[170]

Tu C, Nie X, Chen JG. Insight into acetic acid synthesis from the reaction of CH4 and CO2. ACS Catal. 2021; 11 (6): 3384- 3401.

[171]

Kukushkin VY, Pombeiro AJL. Metal-mediated and metal-catalyzed hydrolysis of nitriles. Inorg Chim Acta. 2005; 358 (1): 1- 21.

[172]

Gautam P, Bhanage BM. Recent advances in the transition metal catalyzed carbonylation of alkynes, arenes and aryl halides using CO surrogates. Catal Sci Technol. 2015; 5 (10): 4663- 4702.

[173]

Wang Z, Li Y, Zhu F, Wu XF. Palladium-catalyzed oxidative carbonylation of aromatic C-H bonds with alcohols using molybdenum hexacarbonyl as the carbon monoxide source. Adv Synth Catal. 2016; 358 (17): 2855- 2859.

[174]

Liu AH, Yu B, He LN. Catalytic conversion of carbon dioxide to carboxylic acid derivatives. Greenhouse Gases Sci Technol. 2015; 5 (1): 17- 33.

[175]

Börjesson M, Moragas T, Gallego D, Martin R. Metal-catalyzed carboxylation of organic (pseudo) halides with CO2. ACS Catal. 2016; 6 (10): 6739- 6749.

[176]

Wang XQ, Liu Y, Martin R. Ni-catalyzed divergent cyclization/carboxylation of unactivated primary and secondary alkyl halides with CO2. J Am Chem Soc. 2015; 137 (20): 6476- 6479.

[177]

Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017; 355 (6321): eaad4998.

[178]

Ruiz-García JR, Fierro-Gonzalez JC, Handy BE, et al. An in situ infrared study of CO2 hydrogenation to formic acid by using rhodium supported on titanate nanotubes as catalysts. ChemistrySelect. 2019; 4 (14): 4206- 4216.

[179]

Wang Y, Marquard SL, Wang D, Dares C, Meyer TJ. Single-site, heterogeneous electrocatalytic reduction of CO2 in water as the solvent. ACS Energy Lett. 2017; 2 (6): 1395- 1399.

[180]

Gao G, Jiao Y, Waclawik ER, Du A. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc. 2016; 138 (19): 6292- 6297.

[181]

Poldorn P, Wongnongwa Y, Mudchimo T, Jungsuttiwong S. Theoretical insights into catalytic CO2 hydrogenation over single-atom (Fe or Ni) incorporated nitrogen-doped graphene. J CO2 Util. 2021; 48: 101532.

[182]

Deng X, Albero J, Xu L, García H, Li Z. Construction of a stable Ru-Re hybrid system based on multifunctional MOF-253 for efficient photocatalytic CO2 reduction. Inorg Chem. 2018; 57 (14): 8276- 8286.

[183]

Wang Y, Tian Y, Yan L, Su Z. DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J Phys Chem C. 2018; 122 (14): 7712- 7719.

[184]

Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B. 2015; 176-177: 44- 52.

[185]

Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun. 2015; 51 (89): 16061- 16064.

[186]

Zhang Y, Liu J, Wei Z, Liu Q, Wang C, Ma J. Electrochemical CO2 reduction over nitrogen-doped SnO2 crystal surfaces. J Energy Chem. 2019; 33: 22- 30.

[187]

Liu D, Liu Y, Li M. Understanding how atomic sulfur controls the selectivity of the electroreduction of CO2 to formic acid on metallic Cu surfaces. J Phys Chem C. 2020; 124 (11): 6145- 6153.

[188]

Peng CJ, Zeng G, Ma DD, et al. Hydrangea-like superstructured micro/nanoreactor of topotactically converted ultrathin bismuth nanosheets for highly active CO2 electroreduction to formate. ACS Appl Mater Interfaces. 2021; 13 (17): 20589- 20597.

[189]

Wang S, Wang Y, Zang SQ, Lou XW. Hierarchical hollow heterostructures for photocatalytic CO2 reduction and water splitting. Small Methods. 2019; 4 (1): 1900586.

[190]

Wu HL, Li XB, Tung CH, Wu LZ. Semiconductor quantum dots: an emerging candidate for CO2 photoreduction. Adv Mater. 2019; 31 (36): 1900709.

[191]

Zhang S, Kang P, Ubnoske S, et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc. 2014; 136 (22): 7845- 7848.

[192]

Liao Y, Cao SW, Yuan Y, Gu Q, Zhang Z, Xue C. Efficient CO2 capture and photoreduction by amine-functionalized TiO2. Chem Eur J. 2014; 20 (33): 10220- 10222.

[193]

Ma Y, Wang J, Yu J, et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter. 2021; 4 (3): 888- 926.

[194]

Wang HY, Hu R, Lei YJ, et al. Highly efficient and selective photocatalytic CO2 reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catal Sci Technol. 2020; 10 (9): 2821- 2829.

[195]

Roy L, Ghosh B, Paul A. Lewis acid promoted hydrogenation of CO2 and HCOO- by amine boranes: mechanistic insight from a computational approach. J Phys Chem A. 2017; 121 (27): 5204- 5216.

[196]

White JL, Baruch MF, Pander JE, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev. 2015; 115 (23): 12888- 12935.

[197]

Zhang B, Zhang Y, Hou M, et al. Pristine, metal ion and metal cluster modified conjugated triazine frameworks as electrocatalysts for hydrogen evolution reaction. J Mater Chem A. 2021; 9 (16): 10146- 10159.

[198]

Zhao S, Yang Y, Tang Z. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew Chem Int Ed. 2022; 134 (11): 202110186.

[199]

Shi Y, Ji Y, Long J, et al. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nat Commun. 2020; 11: 3415.

[200]

Handoko AD, Wei F, Jenndy , Yeo BS, Seh ZW. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat Catal. 2018; 1 (12): 922- 934.

[201]

Long C, Han J, Guo J, Yang C, Liu S, Tang Z. Operando toolbox for heterogeneous interface in electrocatalysis. Chem Catal. 2021; 1 (3): 509- 522.

[202]

Gong Q, Ding P, Xu M, et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat Commun. 2019; 10: 2807.

[203]

Zheng X, Zhang B, De Luna P, et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat Chem. 2018; 10 (2): 149- 154.

[204]

Li X, Wang S, Li L, Sun Y, Xie Y. Progress and perspective for in situ studies of CO2 reduction. J Am Chem Soc. 2020; 142 (21): 9567- 9581.

[205]

Koitaya T, Yamamoto S, Shiozawa Y, et al. CO2 activation and reaction on Zn-deposited Cu surfaces studied by ambient-pressure X-ray photoelectron spectroscopy. ACS Catal. 2019; 9 (5): 4539- 4550.

[206]

Geisler T, Dohmen L, Lenting C, Fritzsche MBK. Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy. Nat Mater. 2019; 18 (4): 342- 348.

[207]

Pan Z, Wang K, Ye K, et al. Intermediate adsorption states switch to selectively catalyze electrochemical CO2 reduction. ACS Catal. 2020; 10 (6): 3871- 3880.

[208]

Ajjan FN, Jafari MJ, Rębiś T, Ederth T, Inganäs O. Spectro-electrochemical investigation of redox states in a polypyrrole/lignin composite electrode material. J Mater Chem A. 2015; 3 (24): 12927- 12937.

[209]

Deng W, Zhang L, Li L, et al. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction. J Am Chem Soc. 2019; 141 (7): 2911- 2915.

[210]

Zhao Z, Lu G. Computational screening of near-surface alloys for CO2 electroreduction. ACS Catal. 2018; 8 (5): 3885- 3894.

[211]

Yoo JS, Christensen R, Vegge T, Nørskov JK, Studt F. Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. ChemSusChem. 2016; 9 (4): 358- 363.

[212]

Yin K, Shen Y. Theoretical insights into CO2 hydrogenation to HCOOH over FexZr1-xO2 solid solution catalyst. Appl Surf Sci. 2020; 528: 146926.

[213]

Xu S, Carter EA. Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chem Rev. 2019; 119 (11): 6631- 6669.

[214]

Gong YN, Zhong W, Li Y, et al. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J Am Chem Soc. 2020; 142 (39): 16723- 16731.

[215]

Guo Y, He X, Su Y, et al. Machine-learning-guided discovery and optimization of additives in preparing cu catalysts for CO2 reduction. J Am Chem Soc. 2021; 143 (15): 5755- 5762.

[216]

Tran K, Ulissi ZW. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat Catal. 2018; 1 (9): 696- 703.

RIGHTS & PERMISSIONS

2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/