Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries

Masytha Nuzula Ramdhiny, Ju-Won Jeon

Carbon Energy ›› 2024, Vol. 6 ›› Issue (4) : 356.

PDF
Carbon Energy ›› 2024, Vol. 6 ›› Issue (4) : 356. DOI: 10.1002/cey2.356
REVIEW

Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries

Author information +
History +

Abstract

Silicon (Si) is a promising anode material for lithium-ion batteries (LIBs) owing to its tremendously high theoretical storage capacity (4200 mAh g-1), which has the potential to elevate the energy of LIBs. However, Si anodes exhibit severe volume change during lithiation/delithiation processes, resulting in anode pulverization and delamination with detrimental growth of solid electrolyte interface layers. As a result, the cycling stability of Si anodes is insufficient for commercialization in LIBs. Polymeric binders can play critical roles in Si anodes by affecting their cycling stability, although they occupy a small portion of the electrodes. This review introduces crucial factors influencing polymeric binders' properties and the electrochemical performance of Si anodes. In particular, we emphasize the structure–property relationships of binders in the context of molecular design strategy, functional groups, types of interactions, and functionalities of binders. Furthermore, binders with additional functionalities, such as electrical conductivity and self-healability, are extensively discussed, with an emphasis on the binder design principle.

Keywords

conductivity / lithium-ion batteries / molecular interactions / polymeric binders / self-healability / Si anodes

Cite this article

Download citation ▾
Masytha Nuzula Ramdhiny, Ju-Won Jeon. Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries. Carbon Energy, 2024, 6(4): 356 https://doi.org/10.1002/cey2.356

References

[1]
Armand M, Tarascon JM. Building better batteries. Nature. 2008; 451 (7179): 652- 657.
[2]
He Y, Jiang L, Chen T, et al. Progressive growth of the solidelectrolyte interphase towards the Si anode interior causes capacity fading. Nat Nanotechnol. 2021; 16 (10): 1113- 1120.
[3]
Xiao Z, Wang R, Jiang D, et al. Recent developments of two-dimensional anode materials and their composites in lithium-ion batteries. ACS Appl Energy Mater. 2021; 4 (8): 7440- 7461.
[4]
Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018; 3 (4): 267- 278.
[5]
Choi N-S, Chen Z, Freunberger SA, et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed. 2012; 51 (40): 9994- 10024.
[6]
Kim T-H, Park J-S, Chang SK, Choi S, Ryu JH, Song H-K. The current move of lithium ion batteries towards the next phase. Adv Energy Mater. 2012; 2 (7): 860- 872.
[7]
Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc. 2013; 135 (4): 1167- 1176.
[8]
Reuter F, Baasner A, Pampel J, et al. Importance of capacity balancing on the electrochemical performance of Li[Ni0.8Co0.1Mn0.1]O2 (NCM811)/silicon full cells. J Electrochem Soc. 2019; 166 (14): A3265- A3271.
[9]
Sim S-J, Lee S-H, Jin B-S, Kim H-S. Improving the electrochemical performances using a V-doped Ni-rich NCM cathode. Sci Rep. 2019; 9 (1): 8952.
[10]
Sattar T, Sim S-J, Jin B-S, Kim H-S. Dual function Lireactive coating from residual lithium on Ni-rich NCM cathode material for lithium-ion batteries. Sci Rep. 2021; 11 (1): 18590.
[11]
Kumagai S, Abe Y, Tomioka M, Kabir M. Suitable binder for Li-ion battery anode produced from rice husk. Sci Rep. 2021; 11 (1): 15784.
[12]
Asenbauer J, Eisenmann T, Kuenzel M, Kazzazi A, Chen Z, Bresser D. The success story of graphite as a lithium-ion anode material—fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy Fuels. 2020; 4 (11): 5387- 5416.
[13]
Obrovac MN, Chevrier VL. Alloy negative electrodes for Liion batteries. Chem Rev. 2014; 114 (23): 11444- 11502.
[14]
Yao Y-X, Yan C, Zhang Q. Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem Commun. 2020; 56 (93): 14570- 14584.
[15]
Kwon T, Choi JW, Coskun A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem Soc Rev. 2018; 47 (6): 2145- 2164.
[16]
Chen CY, Sano T, Tsuda T, et al. In situ scanning electron microscopy of silicon anode reactions in lithium-ion batteries during charge/discharge processes. Sci Rep. 2016; 6 (1): 36153.
[17]
Huang W, Wang W, Wang Y, Qu Q, Jin C, Zheng H. Overcoming the fundamental challenge of PVDF binder use with silicon anodes with a super-molecular nano-layer. J Mater Chem A. 2021; 9 (3): 1541- 1551.
[18]
Son S-B, Kim SC, Kang CS, et al. A highly reversible nano-Si anode enabled by mechanical confinement in an electrochemically activated LixTi4Ni4Si7 matrix. Adv Energy Mater. 2012; 2 (10): 1226- 1231.
[19]
McDowell MT, Lee SW, Nix WD, Cui Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater. 2013; 25 (36): 4966- 4985.
[20]
Andersen HF, Foss CEL, Voje J, et al. Silicon-Ccarbon composite anodes from industrial battery grade silicon. Sci Rep. 2019; 9 (1): 14814.
[21]
Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016; 1 (4): 16013.
[22]
Limthongkul P, Jang Y-I, Dudney NJ, Chiang Y-M. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 2003; 51 (4): 1103- 1113.
[23]
Liu T, Chu Q, Yan C, Zhang S, Lin Z, Lu J. Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers. Adv Energy Mater. 2018; 9 (3): 1802645.
[24]
Li J, Lewis RB, Dahn JR. Sodium carboxymethyl cellulose. Electrochem Solid-State Lett. 2007; 10 (2): A17- A20.
[25]
Sethuraman VA, Chon MJ, Shimshak M, Srinivasan V, Guduru PR. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources. 2010; 195 (15): 5062- 5066.
[26]
Hwang TH, Lee YM, Kong B-S, Seo J-S, Choi JW. Electrospun Core-Shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 2012; 12 (2): 802- 807.
[27]
Ryu JH, Kim JW, Sung Y-E, Oh SM. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett. 2004; 7 (10): A306- A309.
[28]
Oumellal Y, Delpuech N, Mazouzi D, et al. The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J Mater Chem. 2011; 21 (17): 6201.
[29]
Li X, Sun X, Hu X, et al. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020; 77: 105143.
[30]
Sun L, Liu Y, Wu J, et al. A review on recent advances for boosting initial coulombic efficiency of silicon anodic lithium ion batteries. Small. 2022; 18 (5): 2102894.
[31]
Wang A, Kadam S, Li H, Shi S, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput Mater. 2018; 4 (1): 15.
[32]
Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater. 2014; 4 (1): 1300882.
[33]
Chan CK, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008; 3 (1): 31- 35.
[34]
Peng K, Jie J, Zhang W, Lee S-T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett. 2008; 93 (3): 033105.
[35]
Chan CK, Patel RN, O'Connell MJ, Korgel BA, Cui Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano. 2010; 4 (3): 1443- 1450.
[36]
Park M-H, Kim MG, Joo J, et al. Silicon nanotube battery anodes. Nano Lett. 2009; 9 (11): 3844- 3847.
[37]
Yao Y, McDowell MT, Ryu I, et al. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011; 11 (7): 2949- 2954.
[38]
Wu H, Chan G, Choi JW, et al. Stable cycling of doublewalled silicon nanotube battery anodes through solidelectrolyte interphase control. Nat Nanotechnol. 2012; 7 (5): 310- 315.
[39]
Malik YT, Shin SY, Jang JI, et al. Self-repairable silicon anodes using a multifunctional binder for high-performance lithium-ion batteries. Small. 2023; 19 (9): 2206141.
[40]
Chen L, Xie X, Xie J, Wang K, Yang J. Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. J Appl Electrochem. 2006; 36 (10): 1099- 1104.
[41]
Hochgatterer NS, Schweiger MR, Koller S, et al. Silicon/Graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett. 2008; 11 (5): A76.
[42]
Chou S-L, Pan Y, Wang J-Z, Liu H-K, Dou S-X. Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys. 2014; 16 (38): 20347- 20359.
[43]
Li J-T, Wu Z-Y, Lu Y-Q, et al. Water soluble binder, an electrochemical performance booster for electrodematerials with high energy density. Adv Energy Mater. 2017; 7 (24): 1701185.
[44]
Kasavajjula U, Wang C, Appleby AJ. Nano- and bulk-siliconbased insertion anodes for lithium-ion secondary cells. J Power Sources. 2007; 163 (2): 1003- 1039.
[45]
Suh S, Choi H, Eom K, Kim H-J. Enhancing the electrochemical properties of a Si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries. J Alloys Compd. 2020; 827: 154102.
[46]
Wu M, Xiao X, Vukmirovic N, et al. Toward an ideal polymer binder design for high-capacity battery anodes. J Am Chem Soc. 2013; 135 (32): 12048- 12056.
[47]
Lestriez B, Bahri S, Sandu I, Roue L, Guyomard D. On the binding mechanism of CMC in Si negative electrodes for Liion batteries. Electrochem Commun. 2007; 9 (12): 2801- 2806.
[48]
Zheng H, Yang R, Liu G, Song X, Battaglia VS. Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode. J Phys Chem C. 2012; 116 (7): 4875- 4882.
[49]
Liu W-R, Yang M-H, Wu H-C, Chiao SM, Wu N-L. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem Solid-State Lett. 2005; 8 (2): A100- A1003.
[50]
Wu C-C, Li C-C. Distribution uniformity of water-based binders in Si anodes and the distribution effects on cell performance. ACS Sustain Chem Eng. 2020; 8 (17): 6868- 6876.
[51]
Kovalenko I, Zdyrko B, Magasinski A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 2011; 334 (6052): 75- 79.
[52]
Nguyen CC, Yoon T, Seo DM, Guduru P, Lucht BL. Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl Mater Interfaces. 2016; 8 (19): 12211- 12220.
[53]
Magasinski A, Zdyrko B, Kovalenko I, et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces. 2010; 2 (11): 3004- 3010.
[54]
Zhao X, Niketic S, Yim CH, Zhou J, Wang J, Abu-Lebdeh Y. Revealing the role of poly(vinylidene fluoride) binder in Si/Graphite composite anode for Li-ion batteries. ACS Omega. 2018; 3 (9): 11684- 11690.
[55]
Lee J-H, Paik U, Hackley VA, Choi Y-M. Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J Electrochem Soc. 2005; 152 (9): A1763.
[56]
Kim J, Choi J, Park K, et al. Host-guest interlocked complex binder for silicon-graphite composite electrodes in lithium ion batteries. Adv Energy Mater. 2022; 12 (11): 2103718.
[57]
Xu Q, Sun J-K, Yin Y-X, Guo Y-G. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion battery anodes. Adv Funct Mater. 2018; 28 (8): 1705235.
[58]
Hamzelui N, Eshetu GG, Figgemeier E. Customizing active materials and polymeric binders: stern requirements to realize Silicon-Graphite anode based lithium-ion batteries. J Energy Storage. 2021; 35: 102098.
[59]
Lee J-H, Lee S, Paik U, Choi Y-M. Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance. J Power Sources. 2005; 147 (1-2): 249- 255.
[60]
Munao D, van Erven JWM, Valvo M, Garcia-Tamayo E, Kelder EM. Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries. J Power Sources. 2011; 196 (16): 6695- 6702.
[61]
Wei C, Obrovac MN. Small molecule slurry additives for Si alloy coatings with CMC/SBR binder. J Electrochem Soc. 2019; 166 (14): A3217- A3221.
[62]
Li S, Liu Y-M, Zhang Y-C, et al. A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries. J Power Sources. 2021; 485: 229331.
[63]
Choi N-S, Ha S-Y, Lee Y, et al. Recent progress on polymeric binders for silicon anodes in lithium-ion batteries. J Electrochem Sci Technol. 2015; 6 (2): 35- 49.
[64]
Gu Y, Yang S, Zhu G, et al. The effects of crosslinking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim Acta. 2018; 269: 405- 414.
[65]
Saleh TA. Polymer Hybrid Materials and Composites: Fundamentals and Applications. William Andrew Publishing; 2021.
[66]
Woo H, Park K, Kim J, Yun AJ, Nam S, Park B. 3D meshlike polyacrylamide hydrogel as a novel binder system via in situ polymerization for high-performance Si-based electrode. Adv Mater Interfaces. 2019; 7 (2): 1901475.
[67]
Jeong YK, Kwon T, Lee I, Kim T-S, Coskun A, Choi JW. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 2014; 14 (2): 864- 870.
[68]
Sarang KT, Li X, Miranda A, et al. Tannic acid as a smallmolecule binder for silicon anodes. ACS Appl Energy Mater. 2020; 3 (7): 6985- 6994.
[69]
Preman AN, Lee H, Yoo J, Kim IT, Saito T, Ahn S. Progress of 3D network binders in silicon anodes for lithium ion batteries. J Mater Chem A. 2020; 8 (48): 25548- 25570.
[70]
Koo B, Kim H, Cho Y, Lee KT, Choi N-S, Cho J. A highly crosslinked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed. 2012; 51 (35): 8762- 8767.
[71]
Jeena MT, Bok T, Kim SH, et al. A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries. Nanoscale. 2016; 8 (17): 9245- 9253.
[72]
Cao P-F, Yang G, Li B, et al. Rational design of a multifunctional binder for high-capacity silicon-based anodes. ACS Energy Lett. 2019; 4 (5): 1171- 1180.
[73]
Chen C, Lee SH, Cho M, Kim J, Lee Y. Crosslinked chitosan as an efficient binder for Si anode of Li-ion batteries. ACS Appl Mater Interfaces. 2016; 8 (4): 2658- 2665.
[74]
Chen S, Ling HY, Chen H, Zhang S, Du A, Yan C. Development of crosslinked dextrin as aqueous binders for silicon based anodes. J Power Sources. 2020; 450: 227671.
[75]
Jiang H, Yang Y, Nie Y, et al. Cross-linked β-CD-CMC as an effective aqueous binder for silicon-based anodes in rechargeable lithium-ion batteries. RSC Adv. 2022; 12 (10): 5997- 6006.
[76]
Kuo T-C, Chiou C-Y, Li C-C, Lee J-T. In situ crosslinked poly (ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries. Electrochim Acta. 2019; 327: 135011.
[77]
Zhu X, Zhang F, Zhang L, et al. A highly stretchable crosslinked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv Funct Mater. 2018; 28 (11): 1705015.
[78]
Shi Z, Liu Q, Yang Z, et al. A chemical switch enabled autonomous two-stage crosslinking polymeric binder for high performance silicon anodes. J Mater Chem A. 2022; 10 (3): 1380- 1389.
[79]
Liu Z, Han S, Xu C, et al. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv. 2016; 6 (72): 68371- 68378.
[80]
Chuang Y-P, Lin Y-L, Wang C-C, Hong J-L. Dual crosslinked polymer networks derived from the hyperbranched poly (ethyleneimine) and poly(acrylic acid) as efficient binders for silicon anodes in lithium-ion batteries. ACS Appl Energy Mater. 2021; 4 (2): 1583- 1592.
[81]
Kwon T-w, Choi JW, Coskun A. Prospect for supramolecular chemistry in high-energy-density rechargeable batteries. Joule. 2019; 3 (3): 662- 682.
[82]
Hu W, Wang Z, Xiao Y, Zhang S, Wang J. Advances in crosslinking strategies of biomedical hydrogels. Biomater Sci. 2019; 7 (3): 843- 855.
[83]
Wu H, Yu G, Pan L, et al. Stable Li-ion battery anodes by insitu polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun. 2013; 4: 1943.
[84]
Kwon T, Jeong YK, Deniz E, Alqaradawi SY, Choi JW, Coskun A. Dynamic crosslinking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano. 2015; 9 (11): 11317- 11324.
[85]
Zhang L, Zhang L, Chai L, Xue P, Hao W, Zheng H. A coordinatively crosslinked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J Mater Chem A. 2014; 2 (44): 19036- 19045.
[86]
Xu Z, Yang J, Zhang T, Nuli Y, Wang J, Hirano S. Silicon microparticle anodes with self-healing multiple network binder. Joule. 2018; 2 (5): 950- 961.
[87]
Jiao X, Yin J, Xu X, et al. Highly energy-dissipative, fast selfhealing binder for stable Si anode in lithium-ion batteries. Adv Funct Mater. 2021; 31 (3): 2005699.
[88]
Wu S, Yang Y, Liu C, et al. In-situ polymerized binder: a three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries. ACS Energy Lett. 2021; 6 (1): 290- 297.
[89]
Park M, Zhang X, Chung M, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources. 2010; 195 (24): 7904- 7929.
[90]
Byles BW, Palapati NKR, Subramanian A, Pomerantseva E. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries. APL Mater. 2016; 4 (4): 046108.
[91]
Ma J, Wang C, Wroblewski S. Kinetic characteristics of mixed conductive electrodes for lithium ion batteries. J Power Sources. 2007; 164 (2): 849- 856.
[92]
Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2009; 22 (3): 587- 603.
[93]
Donnet J-B. Carbon Black: Science and Technology. CRC Press; 1993.
[94]
Higgins TM, Park SH, King PJ, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano. 2016; 10 (3): 3702- 3713.
[95]
Yao J, Jia Z, Zhang P, et al. Preparation of Si-PPy-Ag composites and their electrochemical performance as anode for lithium-ion batteries. Ionics. 2012; 19 (3): 401- 407.
[96]
Sengodu P, Deshmukh AD. Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. RSC Adv. 2015; 5 (52): 42109- 42130.
[97]
Kane-Maguire LAP, Wallace GG. Chiral conducting polymers. Chem Soc Rev. 2010; 39 (7): 2545- 2576.
[98]
Bahry T, Cui Z, Deniset-Besseau A, et al. An alternative radiolytic route for synthesizing conducting polymers in an organic solvent. New J Chem. 2018; 42 (11): 8704- 8716.
[99]
Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater. 2000; 12 (7): 481- 494.
[100]
Dietrich M, Heinze J, Heywang G, Jonas F. Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J Electroanal Chem. 1994; 369 (1-2): 87- 92.
[101]
Jonas F, Krafft W, Muys B. Poly(3, 4-ethylenedioxythiophene): conductive coatings, technical applications and properties. Macromol Symp. 1995; 100 (1): 169- 173.
[102]
Winter I, Reese C, Hormes J, Heywang G, Jonas F. The thermal ageing of poly(3,4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy. Chem Phys. 1995; 194 (1): 207- 213.
[103]
Yue L, Wang S, Zhao X, Zhang L. Nano-silicon composites using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as elastic polymermatrix and carbon source for lithium-ion battery anode. J Mater Chem. 2012; 22 (3): 1094- 1099.
[104]
Shao D, Zhong H, Zhang L. Water-soluble conductive composite binder containing PEDOT:PSS as conduction promoting agent for Si anode of lithium-ion batteries. ChemElectroChem. 2014; 1 (10): 1679- 1687.
[105]
Wang L, Liu T, Peng X, et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv Funct Mater. 2018; 28 (3): 1704858.
[106]
Liu X, Iqbal A, Ali N, Qi R, Qian X. Ion-cross-linkingpromoted high-performance Si/PEDOT:PSS electrodes: the importance of cations' ionic potential and softness parameters. ACS Appl Mater Interfaces. 2020; 12 (17): 19431- 19438.
[107]
Hu S, Wang L, Huang T, Yu A. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. J Power Sources. 2020; 449: 227472.
[108]
Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources. 2006; 161 (1): 617- 622.
[109]
Liu G, Xun S, Vukmirovic N, et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater. 2011; 23 (40): 4679- 4683.
[110]
Zhao Y, Yang L, Zuo Y, et al. Conductive binder for Si anode with boosted charge transfer capability via n-type doping. ACS Appl Mater Interfaces. 2018; 10 (33): 27795- 27800.
[111]
Yu Y, Zhu J, Zeng K, Jiang M. Mechanically robust and superior conductive n-type polymer binders for highperformance micro-silicon anodes in lithium-ion batteries. J Mater Chem A. 2021; 9 (6): 3472- 3481.
[112]
Liu D, Zhao Y, Tan R, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy. 2017; 36: 206- 212.
[113]
Kim S-M, Kim MH, Choi SY, et al. Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes. Energy Environ Sci. 2015; 8 (5): 1538- 1543.
[114]
Wang C, Jung G-Y, Batsanov AS, Bryce MR, Petty MC. New electron-transporting materials for light emitting diodes: 1,3,4-oxadiazole-pyridine and 1,3,4-oxadiazole-pyrimidine hybrids. J Mater Chem. 2002; 12 (2): 173- 180.
[115]
Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z. Selfhealing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem. 2013; 5 (12): 1042- 1048.
[116]
Yang Y, Urban MW. Self-healing polymeric materials. Chem Soc Rev. 2013; 42 (17): 7446.
[117]
Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Selfhealing and thermoreversible rubber from supramolecular assembly. Nature. 2008; 451 (7181): 977- 980.
[118]
Tee BCK, Wang C, Allen R, Bao Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol. 2012; 7 (12): 825- 832.
[119]
Nam J, Kim E, K. K. R, Kim Y, Kim TH. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Sci Rep. 2020; 10 (1): 14966.
[120]
Liu H, Wu Q, Guan X, et al. Ionically conductive self-healing polymer binders with poly(ether-thioureas) segments for high-performance silicon anodes in lithiumion batteries. ACS Appl Energy Mater. 2022; 5 (4): 4934- 4944.
[121]
Jeong YK, Choi JW. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes. ACS Nano. 2019; 13 (7): 8364- 8373.
[122]
Ryu J, Kim S, Kim J, et al. Room-temperature crosslinkable natural polymer binder for high-rate and stable silicon anodes. Adv Funct Mater. 2020; 30 (9): 1908433.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/