The next frontier in antibody-drug conjugates: challenges and opportunities in cancer and autoimmune therapy

Meijiang Zhou , Zhiwen Huang , Zijun Ma , Jun Chen , Shunping Lin , Xuwei Yang , Quan Gong , Zachary Braunstein , Yingying Wei , Xiaoquan Rao , Jixin Zhong

Cancer Drug Resistance ›› 2025, Vol. 8 : 34

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :34 DOI: 10.20517/cdr.2025.49
review-article

The next frontier in antibody-drug conjugates: challenges and opportunities in cancer and autoimmune therapy

Author information +
History +
PDF

Abstract

Antibody-Drug Conjugates (ADCs) have achieved significant success in cancer therapy by combining the targeting specificity of monoclonal antibodies with cytotoxic payloads. However, the concomitant issue of drug resistance has become increasingly prominent, with primary mechanisms including alterations in target antigen expression, impaired drug transport, and inhibition of cell death pathways. ADCs have also shown emerging therapeutic potential in the treatment of autoimmune diseases; for instance, ABBV-3373 has achieved initial success in this area, yet it also faces unique challenges such as the safety of long-term administration, immunogenicity, and heterogeneity of target cells. Addressing these challenges requires multidimensional innovations, including optimizing molecular design, exploring combination therapy strategies, and introducing artificial intelligence (AI)-assisted development. These efforts aim to transition ADCs from the traditional “targeted killing” paradigm to intelligent and personalized precision delivery systems, thereby offering more therapeutic options for patients with cancer and autoimmune diseases.

Keywords

Drug resistance / ADC design innovations / combination therapies with ADCs

Cite this article

Download citation ▾
Meijiang Zhou, Zhiwen Huang, Zijun Ma, Jun Chen, Shunping Lin, Xuwei Yang, Quan Gong, Zachary Braunstein, Yingying Wei, Xiaoquan Rao, Jixin Zhong. The next frontier in antibody-drug conjugates: challenges and opportunities in cancer and autoimmune therapy. Cancer Drug Resistance, 2025, 8: 34 DOI:10.20517/cdr.2025.49

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Strebhardt K.Paul Ehrlich’s magic bullet concept: 100 years of progress.Nat Rev Cancer2008;8:473-80

[2]

Huang Z,Chen J.Precision medicine in rheumatic diseases: unlocking the potential of antibody-drug conjugates.Pharmacol Rev2024;76:579-98

[3]

Theocharopoulos C,Gogas H.An overview of antibody-drug conjugates in oncological practice.Ther Adv Med Oncol2020;12:1758835920962997 PMCID:PMC7543133

[4]

Drago JZ,Chandarlapaty S.Unlocking the potential of antibody-drug conjugates for cancer therapy.Nat Rev Clin Oncol2021;18:327-44 PMCID:PMC8287784

[5]

Rahat MA.Parallel aspects of the microenvironment in cancer and autoimmune disease.Mediators Inflamm2016;2016:4375120 PMCID:PMC4779817

[6]

Yasunaga M.Antibody therapeutics and immunoregulation in cancer and autoimmune disease.Semin Cancer Biol2020;64:1-12

[7]

Rogovskii V.Cancer and autoimmune diseases as two sides of chronic inflammation and the method of therapy.Curr Cancer Drug Targets2024;24:1089-103

[8]

van der Vlist M, Kuball J, Radstake TR, Meyaard L. Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us?.Nat Rev Rheumatol2016;12:593-604

[9]

Stark AK,Hessel EM.PI3K inhibitors in inflammation, autoimmunity and cancer.Curr Opin Pharmacol2015;23:82-91 PMCID:PMC4518027

[10]

Wei XH.Potential applications of JAK inhibitors, clinically approved drugs against autoimmune diseases, in cancer therapy.Front Pharmacol2023;14:1326281 PMCID:PMC10792058

[11]

Kruk L,Braun A.Inflammatory networks in renal cell carcinoma.Cancers2023;15:2212 PMCID:PMC10136567

[12]

Fan S,Sang D.Combination therapy with antibody-drug conjugate RC48 (disitamab vedotin) and zimberelimab (PD-1 inhibitor) successfully controlled recurrent HER2-positive breast cancer resistant to trastuzumab emtansine: a case report.Oncol Lett2023;26:359 PMCID:PMC10398622

[13]

Appleton E,Chan Wah Hak C.Kickstarting immunity in cold tumours: localised tumour therapy combinations with immune checkpoint blockade.Front Immunol2021;12:754436 PMCID:PMC8558396

[14]

Bodansky A,Rallistan A.Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR T cell therapies in autoimmunity.J Clin Invest2024;134:e180012 PMCID:PMC11213466

[15]

Kuroki K,Tsao BP.Polymorphisms of human CD19 gene: possible association with susceptibility to systemic lupus erythematosus in Japanese.Genes Immun2002;3:S21-30

[16]

Pecher AC,Klein R.CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome.JAMA2023;329:2154-62 PMCID:PMC10300719

[17]

Müller F,Knitza J.CD19-targeted CAR T cells in refractory antisynthetase syndrome.Lancet2023;401:815-8

[18]

Killock D.Anti-BCMA CAR T cells for MM.Nat Rev Clin Oncol2019;16:465

[19]

Tacchetti P,Barbato S.Antibody-drug conjugates, bispecific antibodies and CAR-T cells therapy in multiple myeloma.Expert Rev Anticancer Ther2024;24:379-95

[20]

Herrera AF.Investigational antibody-drug conjugates for treatment of B-lineage malignancies.Clin Lymphoma Myeloma Leuk2018;18:452-68.e4

[21]

Munshi NC,Shah N.Idecabtagene vicleucel in relapsed and refractory multiple myeloma.N Engl J Med2021;384:705-16

[22]

Dumontet C,Senter PD,Beck A.Antibody-drug conjugates come of age in oncology.Nat Rev Drug Discov2023;22:641-61

[23]

Shastry M,Chandarlapaty S,Powles T.Rise of antibody-drug conjugates: the present and future.Am Soc Clin Oncol Educ Book2023;43:e390094

[24]

U.S. food and drug administration. FDA approves datopotamab deruxtecan-dlnk for unresectable or metastatic, HR-positive, HER2-negative breast cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-datopotamab-deruxtecan-dlnk-unresectable-or-metastatic-hr-positive-her2-negative-breast. [Last accessed on 24 Jun 2025].

[25]

Long P,Pan L,Chen W.Cardiovascular adverse events associated with antibody-drug conjugates (ADCs): a pharmacovigilance study based on the FAERS database.Front Pharmacol2024;15:1378010 PMCID:PMC11099241

[26]

Phuna ZX,Haroun E,Lim SH.Antibody-drug conjugates: principles and opportunities.Life Sci2024;347:122676

[27]

Khongorzul P,Khan FU,Zhang J.Antibody-drug conjugates: a comprehensive review.Mol Cancer Res2020;18:3-19

[28]

De Cecco M, Galbraith DN, McDermott LL. What makes a good antibody-drug conjugate?.Expert Opin Biol Ther2021;21:841-7

[29]

Sasso JM,Bird R.The evolving landscape of antibody-drug conjugates: in depth analysis of recent research progress.Bioconjug Chem2023;34:1951-2000 PMCID:PMC10655051

[30]

Fu Z,Han S.Antibody drug conjugate: the “biological missile” for targeted cancer therapy.Sig Transduct Target Ther2022;7:93

[31]

Jeffrey SC,Bernhardt SX.Development and properties of beta-glucuronide linkers for monoclonal antibody-drug conjugates.Bioconjug Chem2006;17:831-40

[32]

Dan N,Kashyap VK.Antibody-drug conjugates for cancer therapy: chemistry to clinical implications.Pharmaceuticals2018;11:32 PMCID:PMC6027311

[33]

Hafeez U,Gan HK.Antibody-drug conjugates for cancer therapy.Molecules2020;25:4764 PMCID:PMC7587605

[34]

Kennedy L,Harper ME.Role of glutathione in cancer: from mechanisms to therapies.Biomolecules2020;10:1429 PMCID:PMC7600400

[35]

Yaghoubi S,Lotfinia M.Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy.J Cell Physiol2020;235:31-64

[36]

Birrer MJ,Betella I.Antibody-drug conjugate-based therapeutics: state of the science.J Natl Cancer Inst2019;111:538-49

[37]

Beck A,Dumontet C.Strategies and challenges for the next generation of antibody-drug conjugates.Nat Rev Drug Discov2017;16:315-37

[38]

Yurkovetskiy AV,Yin M.Dolaflexin: a novel antibody-drug conjugate platform featuring high drug loading and a controlled bystander effect.Mol Cancer Ther2021;20:885-95

[39]

Zhao P,Li W,Xiang G.Recent advances of antibody drug conjugates for clinical applications.Acta Pharm Sin B2020;10:1589-600 PMCID:PMC7564033

[40]

Aggarwal D,Salam MA.Antibody-drug conjugates: the paradigm shifts in the targeted cancer therapy.Front Immunol2023;14:1203073 PMCID:PMC10475555

[41]

Kovtun YV,Mayo MF.Antibody-maytansinoid conjugates designed to bypass multidrug resistance.Cancer Res2010;70:2528-37

[42]

Jia G,Li X.Targeted drug conjugates in cancer therapy: challenges and opportunities.Pharm Sci Adv2024;2:100048

[43]

Meddahi A,Caruelle JP,Hornebeck W.FGF protection and inhibition of human neutrophil elastase by carboxymethyl benzylamide sulfonate dextran derivatives.Int J Biol Macromol1996;18:141-5

[44]

Kawato Y,Hirota Y,Sato K.Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11.Cancer Res1991;51:4187-91

[45]

Donaghy H.Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates.MAbs2016;8:659-71 PMCID:PMC4966843

[46]

Dong W,Cao C.The evolution of antibody-drug conjugates: toward accurate DAR and multi-specificity.ChemMedChem2024;19:e202400109

[47]

Maecker H,Bhakta S,Junutula JR.Exploration of the antibody-drug conjugate clinical landscape.MAbs2023;15:2229101 PMCID:PMC10464553

[48]

Metrangolo V.Antibody-drug conjugates: the dynamic evolution from conventional to next-generation constructs.Cancers2024;16:447 PMCID:PMC10814585

[49]

Dragovich PS.Antibody-drug conjugates for immunology.J Med Chem2022;65:4496-9

[50]

He L,Wang Z.Immune modulating antibody-drug conjugate (IM-ADC) for cancer immunotherapy.J Med Chem2021;64:15716-26

[51]

Kesireddy M,Gundepalli SG.A review of the current FDA-approved antibody-drug conjugates: landmark clinical trials and indications.Pharmaceut Med2024;38:39-54

[52]

Yilmaz M,Jabbour E.The clinical potential of inotuzumab ozogamicin in relapsed and refractory acute lymphocytic leukemia.Ther Adv Hematol2015;6:253-61 PMCID:PMC4556970

[53]

Bross PF,Chen G.Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia.Clin Cancer Res2001;7:1490-6

[54]

Giles FJ,Kornblau SM.Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation.Cancer2001;92:406-13

[55]

Petersdorf SH,Slovak M.A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia.Blood2013;121:4854-60 PMCID:PMC3682338

[56]

Kantarjian HM,Jabbour EJ.Patient-reported outcomes from a phase 3 randomized controlled trial of inotuzumab ozogamicin versus standard therapy for relapsed/refractory acute lymphoblastic leukemia.Cancer2018;124:2151-60

[57]

Kantarjian HM,Stelljes M.Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia.N Engl J Med2016;375:740-53 PMCID:PMC5594743

[58]

Esapa B,Cheung A,Thurston DE.Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers.Cancers2023;15:1845 PMCID:PMC10046624

[59]

Sehn LH,Flowers CR.Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma.J Clin Oncol2020;38:155-65 PMCID:PMC7032881

[60]

Mirzaei Y,Fattah Maran B.Clinical and preclinical advances in PSMA-directed antibody-drug conjugates (ADCs): current status and hope for the future.Bioorg Chem2024;153:107803

[61]

Caimi PF,Alderuccio JP.Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial.Lancet Oncol2021;22:790-800

[62]

Horwitz S,Pro B.The ECHELON-2 trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma.Ann Oncol2022;33:288-98 PMCID:PMC9447792

[63]

Lambert JM.Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review.Adv Ther2017;34:1015-35 PMCID:PMC5427099

[64]

Bardia A,Vahdat LT.Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer.N Engl J Med2019;380:741-51

[65]

Nucera S,Martorana F,Genta S.Antibody-drug conjugates to promote immune surveillance: lessons learned from breast cancer.Biomedicines2024;12:1491 PMCID:PMC11274676

[66]

Nader-Marta G,Debien V.Antibody-drug conjugates: the evolving field of targeted chemotherapy for breast cancer treatment.Ther Adv Med Oncol2023;15:17588359231183679 PMCID:PMC10331351

[67]

Corti C,Nicolò E,Curigliano G.Antibody-drug conjugates for the treatment of breast cancer.Cancers2021;13:2898 PMCID:PMC8229763

[68]

Chen YF,Shao ZM.Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions.Cancer Commun2023;43:297-337 PMCID:PMC10009672

[69]

Belluomini L,Avancini A.Unlocking new horizons in small-cell lung cancer treatment: the onset of antibody-drug conjugates.Cancers2023;15:5368 PMCID:PMC10670928

[70]

Johnson ML,Laktionov K.Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage-SCLC: results from the phase 3 MERU study.J Thorac Oncol2021;16:1570-81

[71]

Rudin CM,Bauer TM.Safety and efficacy of single-agent rovalpituzumab tesirine (SC16LD6.5), a delta-like protein 3 (DLL3)-targeted antibody-drug conjugate (ADC) in recurrent or refractory small cell lung cancer (SCLC).JCO2016;34:LBA8505

[72]

Rojo F,Mavroudis D.International real-world study of DLL3 expression in patients with small cell lung cancer.Lung Cancer2020;147:237-43

[73]

Khosravanian MJ,Mer AH.Nectin-4-directed antibody-drug conjugates (ADCs): spotlight on preclinical and clinical evidence.Life Sci2024;352:122910

[74]

Sarfaty M.Antibody-drug conjugates in urothelial carcinomas.Curr Oncol Rep2020;22:13

[75]

D’Cunha R,Arikan D.A first-in-human study of the novel immunology antibody-drug conjugate, ABBV-3373, in healthy participants.Br J Clin Pharmacol2024;90:189-99

[76]

Hobson AD,Hayes ME.Discovery of ABBV-3373, an anti-TNF glucocorticoid receptor modulator immunology antibody drug conjugate.J Med Chem2022;65:15893-934

[77]

Hobson AD,Hayes ME.Correction to “Discovery of ABBV-3373, an anti-TNF glucocorticoid receptor modulator immunology antibody drug conjugate”.J Med Chem2023;66:6010

[78]

Ichikawa S,Saito K.Successful treatment of methotrexate-associated classical Hodgkin lymphoma with brentuximab vedotin-combined chemotherapy: a case series.Int J Hematol2020;111:667-72

[79]

Matsuhashi M,Nasu Y.SAT0010 anti-CD30 immunotherapy ameliorates bone and cartilage destruction in experimental model of rheumatoid arthritis in mice.Ann Rheum Dis2020;79:935

[80]

Matsuhashi M,Sakamoto M.CD30-targeted therapy induces apoptosis of inflammatory cytokine-stimulated synovial fibroblasts and ameliorates collagen antibody-induced arthritis in mice.Inflamm Res2022;71:215-26

[81]

van Roon JA, Bijlsma JW, van de Winkel JG, Lafeber FP. Depletion of synovial macrophages in rheumatoid arthritis by an anti-FcgammaRI-calicheamicin immunoconjugate.Ann Rheum Dis2005;64:865-70 PMCID:PMC1755535

[82]

Furie R,Merola JF.Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus.J Clin Invest2019;129:1359-71 PMCID:PMC6391094

[83]

Chaichian Y,Weisman MH.A promising approach to targeting type 1 IFN in systemic lupus erythematosus.J Clin Invest2019;129:958-61 PMCID:PMC6391084

[84]

Sim TM,Mak A.Type I interferons in systemic lupus erythematosus: a journey from bench to bedside.Int J Mol Sci2022;23:2505 PMCID:PMC8910773

[85]

Yohannan B,Buja M.Durable remission in hodgkin lymphoma treated with one cycle of bleomycin, vinblastine, dacarbazine and two doses of nivolumab and brentuximab vedotin.J Hematol2022;11:154-8 PMCID:PMC9451546

[86]

ClinicalTrials.gov. Brentuximab vedotin for systemic sclerosis (BRAVOS). Available from: https://clinicaltrials.gov/study/NCT03222492?cond=NCT03222492&rank=1&tab=results. [Last accessed on 24 Jun 2025].

[87]

Fernández-Codina A,Baron M.Brentuximab vedotin for skin involvement in refractory diffuse cutaneous systemic sclerosis, an open-label trial.Rheumatology2025;64:1476-81 PMCID:PMC11879290

[88]

Graversen JH,Dagnæs-Hansen F.Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone.Mol Ther2012;20:1550-8 PMCID:PMC3412497

[89]

Asgeirsdóttir SA,Everts M,Molema G.Delivery of pharmacologically active dexamethasone into activated endothelial cells by dexamethasone-anti-E-selectin immunoconjugate.Biochem Pharmacol2003;65:1729-39

[90]

Yu S,Lim RK.Targeted delivery of an anti-inflammatory PDE4 inhibitor to immune cells via an antibody-drug conjugate.Mol Ther2016;24:2078-89 PMCID:PMC5167782

[91]

Kern JC,Zhang R.Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs.Bioconjug Chem2016;27:2081-8

[92]

Brandish PE,Antonenko S.Development of anti-CD74 antibody-drug conjugates to target glucocorticoids to immune cells.Bioconjug Chem2018;29:2357-69

[93]

Mahalingaiah PK,Durbin KR.Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates.Pharmacol Ther2019;200:110-25

[94]

Long R,Tang G.Antibody-drug conjugates in cancer therapy: applications and future advances.Front Immunol2025;16:1516419 PMCID:PMC12133739

[95]

Guo J,Chipley M.Characterization and higher-order structure assessment of an interchain cysteine-based ADC: impact of drug loading and distribution on the mechanism of aggregation.Bioconjug Chem2016;27:604-15

[96]

Khera E.Pharmacokinetic and immunological considerations for expanding the therapeutic window of next-generation antibody-drug conjugates.BioDrugs2018;32:465-80

[97]

Géraud A,de Nonneville A.Pharmacology and pharmacokinetics of antibody-drug conjugates, where do we stand?.Cancer Treat Rev2025;135:102922

[98]

Zhou S,Miyagi E,Takagi H.Tolerability and toxicity profiles of antibody-drug conjugates for the treatment of malignant neoplasms: a meta-analysis of randomized clinical trials.JCO2023;41:e15011

[99]

Suzuki Y,Ota Y.Toxicity profiles of antibody-drug conjugates for anticancer treatment: a systematic review and meta-analysis.JNCI Cancer Spectr2023;7:pkad069 PMCID:PMC10579782

[100]

Eaton JS,Mannis MJ.Ocular adverse events associated with antibody-drug conjugates in human clinical trials.J Ocul Pharmacol Ther2015;31:589-604 PMCID:PMC4677113

[101]

Hinrichs MJ.Antibody drug conjugates: nonclinical safety considerations.AAPS J2015;17:1055-64 PMCID:PMC4540738

[102]

Xiang Y,Jiang D,Shi J.The role of inflammation in autoimmune disease: a therapeutic target.Front Immunol2023;14:1267091 PMCID:PMC10584158

[103]

Pal LB,Khan W.An overview of the development and preclinical evaluation of antibody-drug conjugates for non-oncological applications.Pharmaceutics2023;15:1807 PMCID:PMC10385119

[104]

Wemlinger SM.Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer.Eur J Immunol2024;54:e2249947

[105]

Nguyen TD,Balthasar JP.Mechanisms of ADC toxicity and strategies to increase ADC tolerability.Cancers2023;15:713 PMCID:PMC9913659

[106]

Buttgereit F,Rojkovich B.Efficacy and safety of ABBV-3373, a novel anti-tumor necrosis factor glucocorticoid receptor modulator antibody-drug conjugate, in adults with moderate-to-severe rheumatoid arthritis despite methotrexate therapy: a randomized, double-blind, active-controlled proof-of-concept phase IIa trial.Arthritis Rheumatol2023;75:879-89

[107]

Dixit T,Ravindran S.Therapeutic potential of antibody-drug conjugates possessing bifunctional anti-inflammatory action in the pathogenies of rheumatoid arthritis.Arthritis Res Ther2024;26:216 PMCID:PMC11656801

[108]

Jiang M,Xu B.Spotlight on ideal target antigens and resistance in antibody-drug conjugates: strategies for competitive advancement.Drug Resist Updat2024;75:101086

[109]

Chang HL,McArthur HL.Antibody-drug conjugates in breast cancer: overcoming resistance and boosting immune response.J Clin Invest2023;133:e172156 PMCID:PMC10503805

[110]

Khoury R,Khalife N.Mechanisms of resistance to antibody-drug conjugates.Int J Mol Sci2023;24:9674 PMCID:PMC10253543

[111]

Loganzo F,Sung M.Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments.Mol Cancer Ther2015;14:952-63

[112]

Gebhart G,Wimana Z.Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial.Ann Oncol2016;27:619-24

[113]

Abelman RO,Spring LM,Bardia A.Mechanisms of resistance to antibody-drug conjugates.Cancers2023;15:1278 PMCID:PMC9954407

[114]

Scaltriti M,Ocaña A.Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer.J Natl Cancer Inst2007;99:628-38

[115]

Zhao Y,Kantarjian HM.Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL.Blood2024;144:61-73 PMCID:PMC11251222

[116]

Kalim M,Wang S.Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates.Drug Des Devel Ther2017;11:2265-76 PMCID:PMC5546728

[117]

Sung M,Lu B.Caveolae-mediated endocytosis as a novel mechanism of resistance to trastuzumab emtansine (T-DM1).Mol Cancer Ther2018;17:243-53

[118]

Ríos-Luci C,Díaz-Rodríguez E.Resistance to the antibody-drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity.Cancer Res2017;77:4639-51

[119]

Tomabechi R,Sato T.SLC46A3 is a lysosomal proton-coupled steroid conjugate and bile acid transporter involved in transport of active catabolites of T-DM1.PNAS Nexus2022;1:pgac063 PMCID:PMC9896951

[120]

Yu M,Tannock IF.Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit?.Cancer Metastasis Rev2013;32:211-27

[121]

Lambert JM.Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer.J Med Chem2014;57:6949-64

[122]

Li G,Shen BQ.Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells.Mol Cancer Ther2018;17:1441-53

[123]

Wang L,Gao M.STAT3 activation confers trastuzumab-emtansine (T-DM1) resistance in HER2-positive breast cancer.Cancer Sci2018;109:3305-15 PMCID:PMC6172075

[124]

Moore J,Kolitz J.A phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse.Leuk Res2006;30:777-83

[125]

Golfier S,Kahnert A.Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect.Mol Cancer Ther2014;13:1537-48

[126]

Mosele M,Dieras V.LBA1 unraveling the mechanism of action and resistance to trastuzumab deruxtecan (T-DXd): biomarker analyses from patients from DAISY trial.Ann Oncol2022;33:S123

[127]

Pizano-Martinez O,Vázquez-Del Mercado M.Anti-drug antibodies in the biological therapy of autoimmune rheumatic diseases.J Clin Med2023;12:3271 PMCID:PMC10179320

[128]

Carrasco-Triguero M,Milojic-Blair M.Immunogenicity of antibody-drug conjugates: observations across 8 molecules in 11 clinical trials.Bioanalysis2019;11:1555-68

[129]

Zhao M,Zhao M,Wu H.The application of single-cell RNA sequencing in studies of autoimmune diseases: a comprehensive review.Clin Rev Allergy Immunol2021;60:68-86

[130]

Plückthun A.Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy.Annu Rev Pharmacol Toxicol2015;55:489-511

[131]

Deonarain MP,Stamati I.Small-format drug conjugates: a viable alternative to ADCs for solid tumours?.Antibodies2018;7:16 PMCID:PMC6698822

[132]

Liu Z,Wang W.Asymmetrical Fc engineering greatly enhances antibody-dependent cellular cytotoxicity (ADCC) effector function and stability of the modified antibodies.J Biol Chem2014;289:3571-90 PMCID:PMC3916558

[133]

Nolting B.Linker technologies for antibody-drug conjugates. In: Ducry L, Editor. Antibody-drug conjugates. Totowa, NJ: Humana Press; 2013. pp. 71-100.

[134]

Ye J,Liu E.Temperature switchable linkers suitable for triggered drug release in cancer thermo-chemotherapy.Int J Pharm2024;666:124757

[135]

Li J,Xie F.Novel antibody-drug conjugate with UV-controlled cleavage mechanism for cytotoxin release.Bioorg Chem2021;111:104475

[136]

Damelin M.Innovations for next-generation antibody-drug conjugates. Springer; 2018.

[137]

Andreev J,Perez Bay AE.Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs.Mol Cancer Ther2017;16:681-93

[138]

Luo M,Yu G,Li L.Development of a bispecific antibody-drug conjugate targeting EpCAM and CLDN3 for the treatment of multiple solid tumors.Exp Hematol Oncol2025;14:33 PMCID:PMC11889805

[139]

Yamazaki CM,Anami Y.Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance.Nat Commun2021;12:3528 PMCID:PMC8192907

[140]

Kumar A,Masterson L.Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads.Bioorg Med Chem Lett2018;28:3617-21

[141]

Jhaveri K,Dotan E.460MO preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers.Ann Oncol2022;33:S749-50

[142]

Ma Y,Zhao Y.BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study.Lancet Oncol2024;25:901-11

[143]

Nilchan N,Pedzisa L,Roush WR.Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation.Antib Ther2019;2:71-8 PMCID:PMC6953743

[144]

Wang AJ,Shi YY,Cai HB.A review of recent advances on single use of antibody-drug conjugates or combination with tumor immunology therapy for gynecologic cancer.Front Pharmacol2022;13:1093666 PMCID:PMC9813853

[145]

Nicolò E,Ascione L.Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives.Cancer Treat Rev2022;106:102395

[146]

Müller P,Khan T.Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade.Sci Transl Med2015;7:315ra188

[147]

Gerber HP,Loganzo F.Combining antibody-drug conjugates and immune-mediated cancer therapy: what to expect?.Biochem Pharmacol2016;102:1-6

[148]

Wei Q,Yang T.The promise and challenges of combination therapies with antibody-drug conjugates in solid tumors.J Hematol Oncol2024;17:1 PMCID:PMC10768262

[149]

Sabbaghi M,Guardia C.Defective cyclin B1 induction in trastuzumab-emtansine (T-DM1) acquired resistance in HER2-positive breast cancer.Clin Cancer Res2017;23:7006-19

[150]

Witkiewicz AK,Knudsen ES.CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models.Genes Cancer2014;5:261-72 PMCID:PMC4162138

[151]

Zoeller JJ,Taneja K.Neutralization of BCL-2/XL enhances the cytotoxicity of T-DM1 in vivo.Mol Cancer Ther2019;18:1115-26 PMCID:PMC6758547

[152]

Patel TA,Creamer SL.A randomized, controlled phase II trial of neoadjuvant ado-trastuzumab emtansine, lapatinib, and nab-paclitaxel versus trastuzumab, pertuzumab, and paclitaxel in HER2-positive breast cancer (TEAL study).Breast Cancer Res2019;21:100 PMCID:PMC6720931

[153]

Martin M,Dewar JA.Trastuzumab emtansine (T-DM1) plus docetaxel with or without pertuzumab in patients with HER2-positive locally advanced or metastatic breast cancer: results from a phase Ib/IIa study.Ann Oncol2016;27:1249-56

[154]

Kim YJ,Zhelev DV,Dimitrov DS.Chimeric antigen receptor-T cells are effective against CEACAM5 expressing non-small cell lung cancer cells resistant to antibody-drug conjugates.Front Oncol2023;13:1124039 PMCID:PMC10010383

[155]

Zhao L.Defeating cancer with armed antibodies and genetically modified immune cells.HSET2025;129:57-66

[156]

OncLive. BiTEs, CAR T-cell therapy, and ADCs offer variety of lymphoma treatment options, but questions remain. Available from: https://www.onclive.com/view/bites-car-t-cell-therapy-and-adcs-offer-variety-of-lymphoma-treatment-options-but-questions-remain. [Last accessed on 24 Jun 2025].

[157]

Wang C,Chen W,Xing D.New-generation advanced PROTACs as potential therapeutic agents in cancer therapy.Mol Cancer2024;23:110 PMCID:PMC11107062

[158]

Cao W,Pei X.Antibody-siRNA conjugates (ARC): emerging siRNA drug formulation.Med Drug Discov2022;15:100128

[159]

Wang RE,Wang Y.An immunosuppressive antibody-drug conjugate.J Am Chem Soc2015;137:3229-32 PMCID:PMC4472444

[160]

Siwe GT,Mugeri M,Barth S.Revisiting immunotherapeutic strategies for the management of atopic dermatitis.Explor Asthma Allergy2024;2:373-98

[161]

Everts M,Asgeirsdóttir SA.Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate.J Immunol2002;168:883-9

[162]

Khuat TT,Otte E,Gabrys B.Applications of machine learning in antibody discovery, process development, manufacturing and formulation: current trends, challenges, and opportunities.Comput Chem Eng2024;182:108585

[163]

Zheng J,Liang Q,Wang L.The application of machine learning on antibody discovery and optimization.Molecules2024;29:5923 PMCID:PMC11679646

[164]

Abramson J,Dunger J.Accurate structure prediction of biomolecular interactions with AlphaFold 3.Nature2024;630:493-500 PMCID:PMC11168924

[165]

Wang J,Lisanza SL.Protein design using structure-prediction networks: AlphaFold and RoseTTAFold as protein structure foundation models.Cold Spring Harb Perspect Biol2024;16:a041472 PMCID:PMC11216169

[166]

Scheuher B,McGirr K.Towards a platform quantitative systems pharmacology (QSP) model for preclinical to clinical translation of antibody drug conjugates (ADCs).J Pharmacokinet Pharmacodyn2024;51:429-47 PMCID:PMC11576657

[167]

Conde-Sousa E,Feng M.HEROHE challenge: predicting HER2 status in breast cancer from hematoxylin-eosin whole-slide imaging.J Imaging2022;8:213 PMCID:PMC9410129

[168]

Howard FM,Kochanny S.Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence.NPJ Breast Cancer2023;9:25 PMCID:PMC10104799

[169]

Zhao S,Lv H.Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer.Fundam Res2024;4:678-89 PMCID:PMC11197495

[170]

Szep M,Boca B.Whole-tumor ADC texture analysis is able to predict breast cancer receptor status.Diagnostics2023;13:1414 PMCID:PMC10137680

[171]

Chaunzwa TL,Xu Y.Deep learning classification of lung cancer histology using CT images.Sci Rep2021;11:5471 PMCID:PMC7943565

[172]

Harmon SA,Sanford T,Türkbey B.Artificial intelligence at the intersection of pathology and radiology in prostate cancer.Diagn Interv Radiol2019;25:183-8 PMCID:PMC6521904

[173]

Rai A.Explainable AI: from black box to glass box.J of the Acad Mark Sci2020;48:137-41

[174]

Neri E, Aghakhanyan G, Zerunian M, et al; SIRM expert group on Artificial Intelligence. Explainable AI in radiology: a white paper of the Italian Society of Medical and Interventional Radiology. Radiol Med. 2023;128:755-64. PMCID:PMC10264482

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/