Integrated multi-omics profiling of immune microenvironment and drug resistance signatures for precision prognosis in prostate cancer
Chao Li , Longxiang Wu , Bowen Zhong , Yu Gan , Lei Zhou , Shuo Tan , Weibin Hou , Kun Yao , Bingzhi Wang , Zhenyu Ou , Shengwang Zhang , Wei Xiong
Cancer Drug Resistance ›› 2025, Vol. 8 : 31
Integrated multi-omics profiling of immune microenvironment and drug resistance signatures for precision prognosis in prostate cancer
Introduction: Prostate cancer (PCa) continues to be a significant cause of mortality among men, with treatment resistance often influenced by the complexity of the tumor microenvironment (TME). This study aims to develop an immune-centric prognostic model that correlates TME dynamics, genomic instability, and the heterogeneity of drug resistance in PCa.
Methods: Multi-omics data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were integrated, encompassing transcriptomic profiles of 554 TCGA-PRAD samples and 329 external validation samples. Immune cell infiltration was assessed using CIBERSORT and ESTIMATE. Weighted gene co-expression network analysis (WGCNA) was employed to identify immune-related modules. Single-cell RNA sequencing (ScRNA-seq) of 835 PCa cells uncovered subtype-specific resistance patterns. Prognostic models were constructed using least absolute shrinkage and selection operator (LASSO) regression and subsequently validated experimentally in PCa cell lines.
Results: Two immune subtypes were identified: high-risk subgroups displayed TP53 mutations, increased tumor mutation burden (TMB), and enriched energy metabolism pathways. ScRNA-seq delineated three PCa cell clusters, with high-risk subtypes being sensitive to bendamustine/dacomitinib and resistant to apalutamide/neratinib. A 10-gene prognostic model (e.g., MUC5B, TREM1) categorized patients into high/low-risk groups with distinct survival outcomes (log-rank P < 0.0001). Validation in external datasets confirmed the robust predictive accuracy (AUC: 0.854-0.889). Experimental assays verified subtype-specific drug responses and dysregulation of key model genes.
Discussion: This study establishes a TME-driven prognostic framework that connects immune heterogeneity, genomic instability, and therapeutic resistance in PCa. By pinpointing metabolic dependencies and subtype-specific vulnerabilities, our findings provide actionable strategies to circumvent treatment failure, such as targeting energy metabolism or tailoring therapies based on resistance signatures.
Tumor microenvironment / prostate cancer / drug resistance / immunotherapy / prognostic model
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Ross-Adams H, Lamb AD, Dunning MJ, et al; CamCaP Study Group. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine. 2015;2:1133-44. PMCID:PMC4588396 |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
van der Maaten L, Hinton G. Visualizing high-dimensional data using t-SNE. J Mach Learn Res 2008;9:2579-605. Available from: https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbcl. [Last accessed on 23 Jun 2025] |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
/
| 〈 |
|
〉 |