The genetic architecture of bone metastases: unveiling the role of epigenetic and genetic modifications in drug resistance

Ahmad Dawalibi , Mohamad Bakir , Khalid S. Mohammad

Cancer Drug Resistance ›› 2025, Vol. 8 : 19

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :19 DOI: 10.20517/cdr.2025.28
review-article

The genetic architecture of bone metastases: unveiling the role of epigenetic and genetic modifications in drug resistance

Author information +
History +
PDF

Abstract

Bone metastases represent frequent and severe complications in various cancers, notably impacting prognosis and quality of life. This review article delves into the genetic and epigenetic mechanisms underpinning drug resistance in bone metastases, a key challenge in effective cancer treatment. The development of drug resistance in cancer can manifest as either intrinsic or acquired, with genetic heterogeneity playing a pivotal role. Intrinsic resistance is often due to pre-existing mutations, while acquired resistance evolves through genetic and epigenetic alterations during treatment. These alterations include mutations in driver genes like TP53 and RB1, epigenetic modifications such as DNA methylation and histone changes, and pathway alterations, notably involving RANK-RANKL signaling and the PI3K/AKT/mTOR cascade. Recent studies underline the significance of the tumor microenvironment in fostering drug resistance, with components such as cancer-associated fibroblasts and hypoxia playing crucial roles. The interactions between metastatic cancer cells and the bone microenvironment facilitate survival and the proliferation of drug-resistant clones. This review highlights the necessity of understanding these complex interactions to develop targeted therapies that can overcome resistance and improve treatment outcomes. Current therapeutic strategies and future directions are discussed, emphasizing the integration of genomic profiling and targeted interventions in managing bone metastases. The evolving landscape of genetic research, including the application of next-generation sequencing and CRISPR technology, offers promising avenues for novel and more effective therapeutic strategies. This comprehensive exploration aims to provide insights into the molecular intricacies of drug resistance in bone metastases, paving the way for improved clinical management and patient care.

Keywords

Bone metastases / drug resistance / genetic alterations / epigenetic modifications / tumor microenvironment

Cite this article

Download citation ▾
Ahmad Dawalibi, Mohamad Bakir, Khalid S. Mohammad. The genetic architecture of bone metastases: unveiling the role of epigenetic and genetic modifications in drug resistance. Cancer Drug Resistance, 2025, 8: 19 DOI:10.20517/cdr.2025.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vital CG,Freitas FR,Graziani SR.Use of paclitaxel carried in lipid core nanoparticles in patients with late-stage solid cancers with bone metastases: Lack of toxicity and therapeutic benefits.J Bone Oncol2022;34:100431 PMCID:PMC9065304

[2]

Mundy GR.Metastasis to bone: causes, consequences and therapeutic opportunities.Nat Rev Cancer2002;2:584-93

[3]

Selvaggi G.Management of bone metastases in cancer: a review.Crit Rev Oncol Hematol2005;56:365-78

[4]

Arakil N,Elaasser B.Intersecting paths: unraveling the complex journey of cancer to bone metastasis.Biomedicines2024;12:1075 PMCID:PMC11117796

[5]

Chaffer CL.A perspective on cancer cell metastasis.Science2011;331:1559-64

[6]

Amit M,Gil Z.Mechanisms of cancer dissemination along nerves.Nat Rev Cancer2016;16:399-408

[7]

Boire A,Garzia L.Brain metastasis.Nat Rev Cancer2020;20:4-11

[8]

Risson E,Maguer-Satta V.The current paradigm and challenges ahead for the dormancy of disseminated tumor cells.Nat Cancer2020;1:672-80 PMCID:PMC7929485

[9]

Oskarsson T,Massagué J.Metastatic stem cells: sources, niches, and vital pathways.Cell Stem Cell2014;14:306-21 PMCID:PMC3998185

[10]

Patel SA,Wesolowski L.Genomic control of metastasis.Br J Cancer2021;124:3-12 PMCID:PMC7782491

[11]

Priestley P,Lolkema MP.Pan-cancer whole-genome analyses of metastatic solid tumours.Nature2019;575:210-6 PMCID:PMC6872491

[12]

Jayarangaiah A,Theetha Kariyanna P. Bone metastasis. StatPearls. Treasure Island (FL): StatPearls Publishing; 2025. Available from: http://www.ncbi.nlm.nih.gov/books/NBK507911/. [Last accessed on 21 Apr 2025]

[13]

Rosner MH.Onco-nephrology: the pathophysiology and treatment of malignancy-associated hypercalcemia.Clin J Am Soc Nephrol2012;7:1722-9

[14]

Guise TA.Molecular mechanisms of osteolytic bone metastases.Cancer2000;88:2892-8

[15]

Li Y,van Pelt GW.c-Myb enhances breast cancer invasion and metastasis through the Wnt/β-Catenin/Axin2 pathway.Cancer Res2016;76:3364-75

[16]

DiMeo TA,Phadke P.A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer.Cancer Res2009;69:5364-73 PMCID:PMC2782448

[17]

Knopfová L,Pekarčíková L.c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis.Mol Cancer2012;11:15 PMCID:PMC3325857

[18]

Huang R,Zhu J,Wang Z.System analysis identifies MYBL2 as a novel oncogene target for metastatic prostate cancer.J Cancer2025;16:1768-81 PMCID:PMC11905402

[19]

Nirala BK,Yustein JT.Deciphering the signaling mechanisms of osteosarcoma tumorigenesis.Int J Mol Sci2023;24:11367 PMCID:PMC10379831

[20]

Alvarez-Calderon F,DeGregori J.Using functional genomics to overcome therapeutic resistance in hematological malignancies.Immunol Res2013;55:100-15 PMCID:PMC3673782

[21]

Rahim F,Mortaz E.Molecular regulation of bone marrow metastasis in prostate and breast cancer.Bone Marrow Res2014;2014:405920 PMCID:PMC4134798

[22]

Wang VE,Ali S.A case of metastatic atypical neuroendocrine tumor with ALK translocation and diffuse brain metastases.Oncologist2017;22:768-73 PMCID:PMC5507651

[23]

Burrell RA,Bartek J.The causes and consequences of genetic heterogeneity in cancer evolution.Nature2013;501:338-45

[24]

Fugazzola L,Pogliaghi G.Intratumoral genetic heterogeneity in papillary thyroid cancer: occurrence and clinical significance.Cancers2020;12:383 PMCID:PMC7072350

[25]

Mahgoub EO,Sharifi M.Role of functional genomics in identifying cancer drug resistance and overcoming cancer relapse.Heliyon2024;10:e22095 PMCID:PMC10797146

[26]

Okon IS.Mitochondrial ROS and cancer drug resistance: implications for therapy.Pharmacol Res2015;100:170-4 PMCID:PMC4893310

[27]

Giacomini I,Tinazzi M.Contribution of mitochondrial activity to doxorubicin-resistance in osteosarcoma cells.Cancers2023;15:1370 PMCID:PMC10000149

[28]

Roper N,Wei JS.Clonal evolution and heterogeneity of osimertinib acquired resistance mechanisms in EGFR mutant lung cancer.Cell Rep Med2020;1:100007 PMCID:PMC7263628

[29]

Sukocheva OA,Friedemann M,Hagelgans A.The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: current findings and future perspectives.Semin Cancer Biol2022;82:35-59

[30]

Kyrochristos ID,Roukos DH.Drug resistance: origins, evolution and characterization of genomic clones and the tumor ecosystem to optimize precise individualized therapy.Drug Discov Today2019;24:1281-94

[31]

Shaffer SM,Torborg SR.Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance.Nature2017;546:431-5 PMCID:PMC5542814

[32]

Vander Linden C, Corbet C. Reconciling environment-mediated metabolic heterogeneity with the oncogene-driven cancer paradigm in precision oncology.Semin Cell Dev Biol2020;98:202-10

[33]

Gremke N,Dort A.mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability.Nat Commun2020;11:4684 PMCID:PMC7499183

[34]

Niederst MJ.Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer.Sci Signal2013;6:re6 PMCID:PMC3876281

[35]

Wang Z,Li Z.Activation of the BMP-BMPR pathway conferred resistance to EGFR-TKIs in lung squamous cell carcinoma patients with EGFR mutations.Proc Natl Acad Sci U S A2015;112:9990-5 PMCID:PMC4538677

[36]

Lee HJ,Cao Y,Kim HJ.Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells.Cancer Cell2014;26:207-21

[37]

Zhang Z,Lin L.Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer.Nat Genet2012;44:852-60 PMCID:PMC3408577

[38]

Li J.Current strategies for treating NSCLC: from biological mechanisms to clinical treatment.Cancers2020;12:1587 PMCID:PMC7352656

[39]

Engelman JA,Mitsudomi T.MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.Science2007;316:1039-43

[40]

Liu X,Zhen F.LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC.Mol Ther Nucleic Acids2019;16:155-61 PMCID:PMC6424064

[41]

Awad MM,McTigue M.Acquired resistance to crizotinib from a mutation in CD74-ROS1.N Engl J Med2013;368:2395-401 PMCID:PMC3878821

[42]

Montagut C,Bellosillo B.Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer.Nat Med2012;18:221-3

[43]

Engelman JA,Zejnullahu K.Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer.J Clin Invest2006;116:2695-706 PMCID:PMC1570180

[44]

Sequist LV,Dias-Santagata D.Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors.Sci Transl Med2011;3:75ra26 PMCID:PMC3132801

[45]

Dong JT.Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases.Cell Mol Life Sci2009;66:2691-706 PMCID:PMC11115749

[46]

Miyamoto S,Muto S.Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain.Mol Cell Biol2003;23:8528-41 PMCID:PMC262669

[47]

Matsumura T,Aizawa K.The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Krüppel-like factor 5 through direct interaction.J Biol Chem2005;280:12123-9

[48]

Huang Q,Zhang D.Nitazoxanide inhibits acetylated KLF5-induced bone metastasis by modulating KLF5 function in prostate cancer.BMC Med2023;21:68 PMCID:PMC9945734

[49]

Zhang B,Wu Q.Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer.Nat Commun2021;12:1714 PMCID:PMC7969754

[50]

Wang X,Chen X.Drug resistance and combating drug resistance in cancer.Cancer Drug Resist2019;2:141-60 PMCID:PMC8315569

[51]

Norouzi S,Mosaffa F,Zamani P.Crosstalk in cancer resistance and metastasis.Crit Rev Oncol Hematol2018;132:145-53

[52]

Ria R.Bone marrow stromal cells-induced drug resistance in multiple myeloma.Int J Mol Sci2020;21:613 PMCID:PMC7013615

[53]

Cabanos HF.Emerging insights into targeted therapy-tolerant persister cells in cancer.Cancers2021;13:2666 PMCID:PMC8198243

[54]

Kovac M,Ribi S.Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency.Nat Commun2015;6:8940 PMCID:PMC4686819

[55]

Thoenen E,Iwakuma T.TP53 in bone and soft tissue sarcomas.Pharmacol Ther2019;202:149-64 PMCID:PMC6746598

[56]

Iwasawa T,Morita S.A Japanese case of castration-resistant prostate cancer with BRCA2 and RB1 co-loss and TP53 mutation: a case report.BMC Med Genomics2022;15:138 PMCID:PMC9208097

[57]

Stevenson DA,Carey JC.Bone resorption in syndromes of the Ras/MAPK pathway.Clin Genet2011;80:566-73 PMCID:PMC3246507

[58]

Li Q,Ma J.RAS/RAF mutations in tumor samples and cell-free DNA from plasma and bone marrow aspirates in multiple myeloma patients.J Cancer2020;11:3543-50 PMCID:PMC7150446

[59]

Sharma G,Abdullah KM.Epigenetic regulation of bone remodeling and bone metastasis.Semin Cell Dev Biol2024;154:275-85 PMCID:PMC10175516

[60]

Wilting RH.Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance.Drug Resist Updat2012;15:21-38

[61]

Romero-Garcia S,Carlos-Reyes A.Role of DNA methylation in the resistance to therapy in solid tumors.Front Oncol2020;10:1152 PMCID:PMC7426728

[62]

Ni C,Liu S,Luo Z.KMT2C mutation as a predictor of immunotherapeutic efficacy in colorectal cancer.Sci Rep2024;14:8284 PMCID:PMC11004165

[63]

Oh S,Lee KW.Genomic and transcriptomic characterization of gastric cancer with bone metastasis.Cancer Res Treat2024;56:219-37 PMCID:PMC10789947

[64]

Chiappetta C,Lessi F.Whole-exome analysis in osteosarcoma to identify a personalized therapy.Oncotarget2017;8:80416-28 PMCID:PMC5655208

[65]

Sharma SV,Li B.A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations.Cell2010;141:69-80 PMCID:PMC2851638

[66]

Zeller C,Steele NL.Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling.Oncogene2012;31:4567-76

[67]

Zhang YW,Wang JZ.Integrated analysis of DNA methylation and mRNA expression profiling reveals candidate genes associated with cisplatin resistance in non-small cell lung cancer.Epigenetics2014;9:896-909 PMCID:PMC4065187

[68]

Garrido-Laguna I,Wade M.A phase I/II study of decitabine in combination with panitumumab in patients with wild-type (wt) KRAS metastatic colorectal cancer.Invest New Drugs2013;31:1257-64

[69]

Bauer S,Mühlenberg T.Phase I study of panobinostat and imatinib in patients with treatment-refractory metastatic gastrointestinal stromal tumors.Br J Cancer2014;110:1155-62 PMCID:PMC3950855

[70]

Falchook GS,Naing A.Methylation and histone deacetylase inhibition in combination with platinum treatment in patients with advanced malignancies.Invest New Drugs2013;31:1192-200 PMCID:PMC3809091

[71]

Glasspool RM, Brown R, Gore ME, et al; Scottish Gynaecological Trials Group. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br J Cancer. 2014;110:1923-9. PMCID:PMC3992493

[72]

Turajlic S, Xu H, Litchfield K, et al; PEACE, TRACERx Renal Consortium. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell. 2018;173:581-94.e12. PMCID:PMC5938365

[73]

Makohon-Moore AP,Reiter JG.Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer.Nat Genet2017;49:358-66 PMCID:PMC5663439

[74]

Yates LR,Wedge D.Genomic evolution of breast cancer metastasis and relapse.Cancer Cell2017;32:169-84.e7 PMCID:PMC5559645

[75]

Brastianos PK,Santagata S.Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets.Cancer Discov2015;5:1164-77 PMCID:PMC4916970

[76]

Yates LR,Knappskog S.Subclonal diversification of primary breast cancer revealed by multiregion sequencing.Nat Med2015;21:751-9 PMCID:PMC4500826

[77]

Shih DJH,Bihun I.Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma.Nat Genet2020;52:371-7 PMCID:PMC7136154

[78]

Reiter JG,Gerold JM.Minimal functional driver gene heterogeneity among untreated metastases.Science2018;361:1033-7 PMCID:PMC6329287

[79]

Bertucci F,Patsouris A.Genomic characterization of metastatic breast cancers.Nature2019;569:560-4

[80]

Ostendorf BN,Adaku N.Common germline variants of the human APOE gene modulate melanoma progression and survival.Nat Med2020;26:1048-53 PMCID:PMC8058866

[81]

Radeczky P,Laszlo V.The effects of bisphosphonate and radiation therapy in bone-metastatic lung adenocarcinoma: the impact of KRAS mutation.Transl Lung Cancer Res2021;10:675-84 PMCID:PMC7947398

[82]

Zhang G,Zhang Z.Bisphosphonates enhance antitumor effect of EGFR-TKIs in patients with advanced EGFR mutant NSCLC and bone metastases.Sci Rep2017;7:42979 PMCID:PMC5314405

[83]

Christgen M,Luft A.Activating human epidermal growth factor receptor 2 (HER2) gene mutation in bone metastases from breast cancer.Virchows Arch2018;473:577-82

[84]

Nayar U,Kapstad C.Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies.Nat Genet2019;51:207-16

[85]

Bose R,Searleman AC.Activating HER2 mutations in HER2 gene amplification negative breast cancer.Cancer Discov2013;3:224-37 PMCID:PMC3570596

[86]

Li X,Pan B,Li M.Acquired NF2 mutations confer resistance to HER2 targeted therapy in HER2-mutant breast cancer.J Clin Oncol2019;37:e12518

[87]

Bon G,Filomeno L.HER2 mutation as an emerging target in advanced breast cancer.Cancer Sci2024;115:2147-58 PMCID:PMC11247561

[88]

Sun Z,Shen Y,Zhang W.Analysis of different HER-2 mutations in breast cancer progression and drug resistance.J Cell Mol Med2015;19:2691-701 PMCID:PMC4687700

[89]

Pernas S.HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance.Ther Adv Med Oncol2019;11:1758835919833519 PMCID:PMC6425535

[90]

Vernieri C,Brambilla M.Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: current knowledge, new research directions and therapeutic perspectives.Crit Rev Oncol Hematol2019;139:53-66

[91]

Warner WA,Palma-Diaz F,Momand J.Clinicopathological and targeted exome gene features of a patient with metastatic acinic cell carcinoma of the parotid gland harboring an ARID2 nonsense mutation and CDKN2A/B deletion.Case Rep Oncol Med2015;2015:893694 PMCID:PMC4655020

[92]

Bakhoum SF.The multifaceted role of chromosomal instability in cancer and its microenvironment.Cell2018;174:1347-60 PMCID:PMC6136429

[93]

Siri SO,Gottifredi V.Structural chromosome instability: types, origins, consequences, and therapeutic opportunities.Cancers2021;13:3056 PMCID:PMC8234978

[94]

Holland AJ.Losing balance: the origin and impact of aneuploidy in cancer.EMBO Rep2012;13:501-14 PMCID:PMC3367240

[95]

van Eijk M, Boosman RJ, Schinkel AH, Huitema ADR, Beijnen JH. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: relevance for resistance to taxanes.Cancer Chemother Pharmacol2019;84:487-99 PMCID:PMC6682574

[96]

Ghiaur G,Esteb C.Bone marrow niche chemoprotection of metastatic solid tumors mediated by CYP3A4.Cancer2023;129:1744-51 PMCID:PMC10966383

[97]

Verma H,Choudhary S,Silakari O.Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it.Drug Metab Rev2019;51:196-223

[98]

La Manna F,Patel N.Dual-mTOR inhibitor rapalink-1 reduces prostate cancer patient-derived xenograft growth and alters tumor heterogeneity.Front Oncol2020;10:1012 PMCID:PMC7324765

[99]

Menéndez ST,Murillo D,Rodríguez R.Cancer stem cells as a source of drug resistance in bone sarcomas.J Clin Med2021;10:2621 PMCID:PMC8232081

[100]

Garcia-Mayea Y,Masson F,LLeonart ME.Insights into new mechanisms and models of cancer stem cell multidrug resistance.Semin Cancer Biol2020;60:166-80

[101]

Konieczkowski DJ,Abudayyeh O.A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors.Cancer Discov2014;4:816-27 PMCID:PMC4154497

[102]

Straussman R,Shee K.Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.Nature2012;487:500-4 PMCID:PMC3711467

[103]

Khan KH,Yan L.Targeting the PI3K-AKT-mTOR signaling network in cancer.Chin J Cancer2013;32:253-65 PMCID:PMC3845556

[104]

Samuels Y,Bardelli A.High frequency of mutations of the PIK3CA gene in human cancers.Science2004;304:554

[105]

Yuan TL.PI3K pathway alterations in cancer: variations on a theme.Oncogene2008;27:5497-510 PMCID:PMC3398461

[106]

Knuefermann C,Liu B.HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells.Oncogene2003;22:3205-12

[107]

Prescott JA,Cook SJ.Inhibitory feedback control of NF-κB signalling in health and disease.Biochem J2021;478:2619-64 PMCID:PMC8286839

[108]

Dawalibi A,Mohammad KS.Balancing the scales: the dual role of interleukins in bone metastatic microenvironments.Int J Mol Sci2024;25:8163 PMCID:PMC11311339

[109]

Jones SA,Topley N,Fuller GM.The soluble interleukin 6 receptor: mechanisms of production and implications in disease.FASEB J2001;15:43-58

[110]

Kar S,Katti DR.Wnt/β-Catenin signaling pathway regulates osteogenesis for breast cancer bone metastasis: experiments in an in vitro nanoclay scaffold cancer testbed.ACS Biomater Sci Eng2020;6:2600-11

[111]

Sato S,Koizumi M.Bone marrow adipocytes induce cancer-associated fibroblasts and immune evasion, enhancing invasion and drug resistance.Cancer Sci2023;114:2674-88 PMCID:PMC10236619

[112]

Pang X,Zhang X,Cui Y.Osteopontin as a multifaceted driver of bone metastasis and drug resistance.Pharmacol Res2019;144:235-44

[113]

Han B,Han Y.The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin.Int J Biol Macromol2019;125:544-56

[114]

Gu B,Méndez O,Sierra A.Organ-selective chemoresistance in metastasis from human breast cancer cells: inhibition of apoptosis, genetic variability and microenvironment at the metastatic focus.Carcinogenesis2004;25:2293-301

[115]

Cha S,Won HH.Comprehensive characterization of distinct genetic alterations in metastatic breast cancer across various metastatic sites.NPJ Breast Cancer2021;7:93 PMCID:PMC8285498

[116]

Guerrero-Martínez JA.High expression of SMARCA4 or SMARCA2 is frequently associated with an opposite prognosis in cancer.Sci Rep2018;8:2043 PMCID:PMC5794756

[117]

Paget S.The distribution of secondary growths in cancer of the breast.Lancet1889;133:571-3

[118]

Lu J,Zhang Y,Shen L.Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials.Front Oncol2023;13:1133828 PMCID:PMC9969102

[119]

Bu L,Yasuda T,Ishimoto T.Functional diversity of cancer-associated fibroblasts in modulating drug resistance.Cancer Sci2020;111:3468-77 PMCID:PMC7541012

[120]

Kadel D,Sun HR,Dong QZ.Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy.Cell Biol Toxicol2019;35:407-21 PMCID:PMC6881418

[121]

Fiori ME,Villanova L,Stassi G.Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance.Mol Cancer2019;18:70 PMCID:PMC6441236

[122]

Czekay RP,Samarakoon R,Higgins PJ.Cancer-associated fibroblasts: mechanisms of tumor progression and novel therapeutic targets.Cancers2022;14:1231 PMCID:PMC8909913

[123]

Shiga K,Nagasaki T,Takahashi H.Cancer-associated fibroblasts: their characteristics and their roles in tumor growth.Cancers2015;7:2443-58 PMCID:PMC4695902

[124]

Kwa MQ,Brakebusch C.Cancer-associated fibroblasts: how do they contribute to metastasis?.Clin Exp Metastasis2019;36:71-86

[125]

Galbo PM Jr,Zheng D.Molecular features of cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance.Clin Cancer Res2021;27:2636-47 PMCID:PMC8102353

[126]

Asif PJ,Hahne M.The role of cancer-associated fibroblasts in cancer invasion and metastasis.Cancers2021;13:4720 PMCID:PMC8472587

[127]

Kazakova AN,Anufrieva KS.Exploring the diversity of cancer-associated fibroblasts: insights into mechanisms of drug resistance.Front Cell Dev Biol2024;12:1403122 PMCID:PMC11137237

[128]

De P,Sulaiman R.Bête Noire of chemotherapy and targeted therapy: CAF-mediated resistance.Cancers2022;14:1519 PMCID:PMC8946545

[129]

Bendinelli P,Matteucci E,Perrucchini G.Hypoxia inducible factor-1 is activated by transcriptional co-activator with PDZ-binding motif (TAZ) versus WWdomain-containing oxidoreductase (WWOX) in hypoxic microenvironment of bone metastasis from breast cancer.Eur J Cancer2013;49:2608-18

[130]

Guan G,Lu Y.The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells.Cancer Lett2015;357:254-64

[131]

Wu HT,Hung JJ.K63-polyubiquitinated HAUSP deubiquitinates HIF-1α and dictates H3K56 acetylation promoting hypoxia-induced tumour progression.Nat Commun2016;7:13644 PMCID:PMC5155157

[132]

Liu Y,Li W.Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1α mediated XPC transcription.Oncogene2020;39:6893-905

[133]

Zhang R,Gao H.Mechanisms of angiogenesis in tumour.Front Oncol2024;14:1359069 PMCID:PMC10999665

[134]

Yang QK,Wang SQ,Yao ZX.Apatinib as targeted therapy for advanced bone and soft tissue sarcoma: a dilemma of reversing multidrug resistance while suffering drug resistance itself.Angiogenesis2020;23:279-98

[135]

Aceto N,Miyamoto DT.Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis.Cell2014;158:1110-22 PMCID:PMC4149753

[136]

Labelle M,Hynes RO.Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis.Cancer Cell2011;20:576-90 PMCID:PMC3487108

[137]

Piskounova E,Murphy MM.Oxidative stress inhibits distant metastasis by human melanoma cells.Nature2015;527:186-91 PMCID:PMC4644103

[138]

Haemmerle M,Gutschner T.Platelets reduce anoikis and promote metastasis by activating YAP1 signaling.Nat Commun2017;8:310 PMCID:PMC5566477

[139]

Mason JA,Hawk MA.Metabolism during ECM detachment: achilles heel of cancer cells?.Trends Cancer2017;3:475-81

[140]

Palumbo JS,Massari JV.Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells.Blood2005;105:178-85

[141]

Tauro M.Cutting to the chase: how matrix metalloproteinase-2 activity controls breast-cancer-to-bone metastasis.Cancers2018;10:185 PMCID:PMC6025260

[142]

Deryugina EI.Matrix metalloproteinases and tumor metastasis.Cancer Metastasis Rev2006;25:9-34

[143]

Lynch CC.Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis.Bone2011;48:44-53

[144]

Kim S,Ko J.Small leucine zipper protein promotes the metastasis of castration-resistant prostate cancer through transcriptional regulation of matrix metalloproteinase-13.Carcinogenesis2021;42:1089-99

[145]

Kumar P,Sreedhar AS.The matrix metalloproteinase 7 (MMP7) links Hsp90 chaperone with acquired drug resistance and tumor metastasis.Cancer Rep2022;5:e1261 PMCID:PMC9780424

[146]

Chambers AF.Changing views of the role of matrix metalloproteinases in metastasis.J Natl Cancer Inst1997;89:1260-70

[147]

Siddhartha R.Molecular and clinical insights of matrix metalloproteinases into cancer spread and potential therapeutic interventions.Toxicol Appl Pharmacol2021;426:115593

[148]

Juurikka K,Salo T,Åström P.The role of MMP8 in cancer: a systematic review.Int J Mol Sci2019;20:4506 PMCID:PMC6770849

[149]

Nordstrand A,Thysell E.Bone cell activity in clinical prostate cancer bone metastasis and its inverse relation to tumor cell androgen receptor activity.Int J Mol Sci2018;19:1223 PMCID:PMC5979457

[150]

Ren D,Yu B.Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy.Mol Cancer2020;19:19 PMCID:PMC6993488

[151]

Wang Z.Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker.Cancer Med2020;9:8086-121 PMCID:PMC7643687

[152]

Shergold AL,Nibbs RJB.Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade.Pharmacol Res2019;145:104258

[153]

Subudhi SK,Aparicio AM.Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment.J Immunother Cancer2021;9:e002919 PMCID:PMC8524287

[154]

Wang H,Du J.Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells.J Exp Clin Cancer Res2020;39:29 PMCID:PMC7003365

[155]

Hamza FN.Immunotherapy in the battle against bone metastases: mechanisms and emerging treatments.Pharmaceuticals2024;17:1591 PMCID:PMC11679356

[156]

Bie F,Sun N.Research progress of anti-PD-1/PD-L1 immunotherapy related mechanisms and predictive biomarkers in NSCLC.Front Oncol2022;12:769124 PMCID:PMC8863729

[157]

Khunger M,Pasupuleti V.Programmed cell death 1 (PD-1) ligand (PD-L1) expression in solid tumors as a predictive biomarker of benefit from PD-1/PD-L1 axis inhibitors: a systematic review and meta-analysis.JCO Precis Oncol2017;1:1-15

[158]

Monette A,Barrett JC.Biomarker development for PD-(L)1 axis inhibition: a consensus view from the SITC Biomarkers Committee.J Immunother Cancer2024;12:e009427 PMCID:PMC11261685

[159]

Long Y,Chen R,Gong L.Noncanonical PD-1/PD-L1 axis in relation to the efficacy of anti-PD therapy.Front Immunol2022;13:910704 PMCID:PMC9157498

[160]

Rushing BR.Multi-omics analysis of NCI-60 cell line data reveals novel metabolic processes linked with resistance to alkylating anti-cancer agents.Int J Mol Sci2023;24:13242 PMCID:PMC10487847

[161]

Bredel M,Juric D.Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas.J Clin Oncol2006;24:274-87

[162]

Weiler M,Pusch S.mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy.Proc Natl Acad Sci U S A2014;111:409-14 PMCID:PMC3890826

[163]

Holmes K,Dupai C.Abstract 5870: Taxane-based chemotherapy leads to acquired resistance through ecDNA-based amplification of multi-drug resistance genes.Cancer Res2024;84:5870

[164]

Nami B.Genetics and expression profile of the tubulin gene superfamily in breast cancer subtypes and its relation to taxane resistance.Cancers2018;10:274 PMCID:PMC6116153

[165]

Montalbo R,Mila M.Cell plasticity associated to taxane-resistance in preclinical cell models and in circulating tumor cells from metastatic castration-resistant prostate cancer patients.J Clin Oncol2019;37:238

[166]

Insua-Rodríguez J,Hongu T.Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis.EMBO Mol Med2018;10:e9003 PMCID:PMC6180299

[167]

Bittner N,Sárosi V.Bone metastases and the EGFR and KRAS mutation status in lung adenocarcinoma - the results of three year retrospective analysis.Pathol Oncol Res2015;21:1217-21

[168]

Zacchi F,Gonzalez M.Case report: Exceptional and durable response to Radium-223 and suspension of androgen deprivation therapy in a metastatic castration-resistant prostate cancer patient.Front Oncol2024;14:1331643 PMCID:PMC10959003

[169]

Huang P,Peng AF.Serum calcium, alkaline phosphotase and hemoglobin as risk factors for bone metastases in bladder cancer.PLoS One2017;12:e0183835 PMCID:PMC5597169

[170]

Zhang W,Hu J.The bone microenvironment invigorates metastatic seeds for further dissemination.Cell2021;184:2471-86

[171]

Lawson DA,Davis RT,Werb Z.Tumour heterogeneity and metastasis at single-cell resolution.Nat Cell Biol2018;20:1349-60 PMCID:PMC6477686

[172]

Ye X,Fu X.Myeloid-like tumor hybrid cells in bone marrow promote progression of prostate cancer bone metastasis.J Hematol Oncol2023;16:46 PMCID:PMC10155318

[173]

Croucher PI,Martin TJ.Bone metastasis: the importance of the neighbourhood.Nat Rev Cancer2016;16:373-86

[174]

Ma RY,Li XF.Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth.J Exp Med2020;217 PMCID:PMC7596825

[175]

Delgado-Calle J,Kaur J.Single-cell transcriptome analysis identifies senescent osteocytes as contributors to bone destruction in breast cancer metastasis. 2024. PMCID:PMC10980159

[176]

Stevens-Kroef MJ,Verwiel ET.Microarray-based genomic profiling and in situ hybridization on fibrotic bone marrow biopsies for the identification of numerical chromosomal abnormalities in myelodysplastic syndrome.Mol Cytogenet2015;8:33 PMCID:PMC4447009

[177]

Sethakorn N,Sánchez-de-Diego C.Advancing treatment of bone metastases through novel translational approaches targeting the bone microenvironment.Cancers2022;14:757 PMCID:PMC8833657

[178]

Esposito M.Targeting tumor-stromal interactions in bone metastasis.Pharmacol Ther2014;141:222-33 PMCID:PMC3947254

[179]

Wang H,Liu J.The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability.Cancer Cell2018;34:823-39.e7 PMCID:PMC6239211

[180]

Lindenberg L.In molecular pursuit of bone metastasis by fluciclovine PET.Theranostics2017;7:2065-6 PMCID:PMC5479287

[181]

O’Sullivan GJ,Cronin CG.Imaging of bone metastasis: an update.World J Radiol2015;7:202-11 PMCID:PMC4553252

[182]

Doré-Savard L,Midavaine É.Mammary cancer bone metastasis follow-up using multimodal small-animal MR and PET imaging.J Nucl Med2013;54:944-52

[183]

Fatima H,Riaz F,Abbas SR.Castration resistant prostate cancer: recent advances in novel therapeutic treatments.Int J Surg2024;7:e0400

[184]

Rieunier G,Macaulay VM,Weyer-Czernilofsky U.Bad to the bone: the role of the insulin-like growth factor axis in osseous metastasis.Clin Cancer Res2019;25:3479-85

[185]

Duan L,Chen WJ.The role of GDF15 in bone metastasis of lung adenocarcinoma cells.Oncol Rep2019;41:2379-88

[186]

Adjei IM,Brown SB.Targeted nanomedicine to treat bone metastasis.Pharmaceutics2018;10:205 PMCID:PMC6320768

[187]

Mu X,Wei A.Doxorubicin and PD-L1 siRNA co-delivery with stem cell membrane-coated polydopamine nanoparticles for the targeted chemoimmunotherapy of PCa bone metastases.Nanoscale2021;13:8998-9008

AI Summary AI Mindmap
PDF

69

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/