Disrupting resistance: novel therapeutic approaches to combat multidrug resistance in fusion-negative rhabdomyosarcoma

Silvia Codenotti , Francesco Marampon , Francesca Megiorni , Carlo Guglielmo Cattaneo , Stefano Gastaldello , Enrico Pozzo , Maurilio Sampaolesi , Rossella Rota , Charles Keller , Alessandro Fanzani

Cancer Drug Resistance ›› 2025, Vol. 8 : 62

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :62 DOI: 10.20517/cdr.2025.145
review-article

Disrupting resistance: novel therapeutic approaches to combat multidrug resistance in fusion-negative rhabdomyosarcoma

Author information +
History +
PDF

Abstract

Rhabdomyosarcomas (RMS) are aggressive pediatric soft tissue tumors. The fusion-negative subtype (FN-RMS) is characterized by RAS pathway mutations and genomic instability. While standard chemotherapies - vincristine, actinomycin D, and alkylating agents - are effective against localized disease, multidrug resistance (MDR) often leads to treatment failure in relapsed and metastatic RMS. Key drivers of MDR in FN-RMS include dysregulated RAS/PI3K signaling, enhanced DNA repair, evasion of apoptosis, and alterations in drug transport and metabolism. Preclinically, vertical inhibition of the RAS/MAPK and PI3K/AKT/mTOR pathways shows promise but is limited by toxicity and compensatory feedback. Combination strategies targeting MEK, IGF1R, and PI3K, as well as epigenetic regulators and metabolic pathways, demonstrate synergistic effects. BH3 mimetics can restore apoptotic sensitivity, especially in FBW7-deficient tumors. Radiotherapy resistance is mediated through the DNA-PK–mTORC2–AKT axis, while drug transporters such as ABCB1 and SLC7A11, along with age-dependent CYP enzyme expression, affect drug bioavailability. Targeting these convergent mechanisms offers a promising therapeutic strategy to overcome resistance in FN-RMS.

Keywords

Rhabdomyosarcoma / RAS / PI3K / drug resistance

Cite this article

Download citation ▾
Silvia Codenotti, Francesco Marampon, Francesca Megiorni, Carlo Guglielmo Cattaneo, Stefano Gastaldello, Enrico Pozzo, Maurilio Sampaolesi, Rossella Rota, Charles Keller, Alessandro Fanzani. Disrupting resistance: novel therapeutic approaches to combat multidrug resistance in fusion-negative rhabdomyosarcoma. Cancer Drug Resistance, 2025, 8: 62 DOI:10.20517/cdr.2025.145

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Skapek SX,Gupta AA.Rhabdomyosarcoma.Nat Rev Dis Primers2019;5:1 PMCID:PMC7456566

[2]

Shern JF,Izquierdo E.Genomic classification and clinical outcome in rhabdomyosarcoma: a report from an International Consortium.J Clin Oncol2021;39:2859-71 PMCID:PMC8425837

[3]

Chen X, Stewart E, Shelat AA, et al.; St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project. Targeting oxidative stress in embryonal rhabdomyosarcoma.Cancer Cell2013;24:710-24 PMCID:PMC3904731

[4]

Martin-Giacalone BA,Plon SE.Pediatric rhabdomyosarcoma: epidemiology and genetic susceptibility.J Clin Med2021;10:2028 PMCID:PMC8125975

[5]

Sankhe CS,Kendall GC.Fusion oncogenes in rhabdomyosarcoma: model systems, mechanisms of tumorigenesis, and therapeutic implications.Front Oncol2025;15:1570070 PMCID:PMC12209299

[6]

Marshall AD.Alveolar rhabdomyosarcoma - the molecular drivers of PAX3/7-FOXO1-induced tumorigenesis.Skelet Muscle2012;2:25 PMCID:PMC3564712

[7]

Turco GM,Ladle B.Towards directed therapy for fusion-positive rhabdomyosarcoma.Pharmacol Ther2025;276:108931

[8]

Miwa S,Hayashi K,Igarashi K.Recent advances and challenges in the treatment of rhabdomyosarcoma.Cancers2020;12:1758 PMCID:PMC7409313

[9]

Martino E,Castiglione S.Vinca alkaloids and analogues as anti-cancer agents: looking back, peering ahead.Bioorg Med Chem Lett2018;28:2816-26

[10]

Willits I,Parry A.Pharmacokinetics and metabolism of ifosfamide in relation to DNA damage assessed by the COMET assay in children with cancer.Br J Cancer2005;92:1626-35 PMCID:PMC2362048

[11]

Bergeron C, Jenney M, De Corti F, et al.; European paediatric Soft tissue sarcoma Study Group (EpSSG). Embryonal rhabdomyosarcoma completely resected at diagnosis: the European paediatric Soft tissue sarcoma Study Group RMS2005 experience.Eur J Cancer2021;146:21-9

[12]

Zarrabi A,Kavoosi M.Rhabdomyosarcoma: current therapy, challenges, and future approaches to treatment strategies.Cancers2023;15:5269 PMCID:PMC10650215

[13]

Vaidya FU,Mishra V.Molecular and cellular paradigms of multidrug resistance in cancer.Cancer Rep2022;5:e1291 PMCID:PMC9780431

[14]

Muñoz-Maldonado C,Medová M.A comparative analysis of individual RAS mutations in cancer biology.Front Oncol2019;9:1088 PMCID:PMC6813200

[15]

Danielli SG,De Micheli AJ.Single-cell profiling of alveolar rhabdomyosarcoma reveals RAS pathway inhibitors as cell-fate hijackers with therapeutic relevance.Sci Adv2023;9:eade9238 PMCID:PMC9908029

[16]

Papke B.Drugging RAS: know the enemy.Science2017;355:1158-63

[17]

Odeniyide P,Pollard K.Correction: Targeting farnesylation as a novel therapeutic approach in HRAS-mutant rhabdomyosarcoma.Oncogene2022;41:3037 PMCID:PMC9122821

[18]

Garcia N,Yohe ME.Vertical inhibition of the RAF-MEK-ERK cascade induces myogenic differentiation, apoptosis, and tumor regression in H/NRASQ61X mutant rhabdomyosarcoma.Mol Cancer Ther2022;21:170-83 PMCID:PMC8742779

[19]

Kim A,Krailo M.Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: a report from the Children’s Oncology Group.Pediatr Blood Cancer2015;62:1562-6 PMCID:PMC4515771

[20]

Yohe ME,Shern JF.MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma.Sci Transl Med2018;10:eaan4470 PMCID:PMC8054766

[21]

Hebron KE,Roth JS.The combination of Trametinib and Ganitumab is effective in RAS-mutated PAX-fusion negative rhabdomyosarcoma models.Clin Cancer Res2023;29:472-87 PMCID:PMC9852065

[22]

Dolgikh N,Vogler M.NRAS-mutated rhabdomyosarcoma cells are vulnerable to mitochondrial apoptosis induced by coinhibition of MEK and PI3Kα.Cancer Res2018;78:2000-13

[23]

Stewart E, McEvoy J, Wang H, et al.; St. Jude Children’s Research Hospital - Washington University Pediatric Cancer Genome Project. Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses.Cancer Cell2018;34:411-26.e19 PMCID:PMC6158019

[24]

Slemmons KK,Rudzinski E,Linardic CM.Role of the YAP oncoprotein in priming Ras-driven rhabdomyosarcoma.PLoS One2015;10:e0140781 PMCID:PMC4619859

[25]

Marampon F,Di Rocco A.MEK/ERK inhibitor U0126 increases the radiosensitivity of rhabdomyosarcoma cells in vitro and in vivo by downregulating growth and DNA repair signals.Mol Cancer Ther2011;10:159-68 PMCID:PMC3064485

[26]

Winkler M,Boedicker C.Co-targeting MCL-1 and ERK1/2 kinase induces mitochondrial apoptosis in rhabdomyosarcoma cells.Transl Oncol2022;16:101313 PMCID:PMC8681038

[27]

Vo KT,Williams PM.Phase II study of Ulixertinib in children and young adults with tumors harboring activating mitogen-activated protein kinase pathway alterations: APEC1621J of the National Cancer Institute-Children’s Oncology Group pediatric MATCH trial.JCO Precis Oncol2024;8:e2400103 PMCID:PMC11639582

[28]

Tenente IM,Ignatius MS.Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma.Elife2017;6:e19214 PMCID:PMC5231408

[29]

Pomella S,D’Archivio L.MYOD-SKP2 axis boosts tumorigenesis in fusion negative rhabdomyosarcoma by preventing differentiation through p57Kip2 targeting.Nat Commun2023;14:8373 PMCID:PMC10724275

[30]

Di Rocco A,Benedetti A.Anti-oncogenic and pro-myogenic action of the MKK6/p38/AKT axis induced by targeting MEK/ERK in embryonal rhabdomyosarcoma.Oncol Rep2022;48:151 PMCID:PMC9350981

[31]

Ramadan F,Ghayad SE.Signaling pathways in rhabdomyosarcoma invasion and metastasis.Cancer Metastasis Rev2020;39:287-301

[32]

Piazzi M,Cenni V.Combined treatment with PI3K inhibitors BYL-719 and CAL-101 is a promising antiproliferative strategy in human rhabdomyosarcoma cells.Molecules2022;27:2742 PMCID:PMC9104989

[33]

Vanhaesebroeck B,Brown JR,Okkenhaug K.PI3K inhibitors are finally coming of age.Nat Rev Drug Discov2021;20:741-69 PMCID:PMC9297732

[34]

Codenotti S,Mignani L.Hyperactive Akt1 signaling increases tumor progression and DNA repair in embryonal rhabdomyosarcoma RD line and confers susceptibility to glycolysis and mevalonate pathway inhibitors.Cells2022;11:2859 PMCID:PMC9497225

[35]

Kilic-Eren M,Tabor V.Targeting PI3K/Akt represses Hypoxia inducible factor-1α activation and sensitizes rhabdomyosarcoma and Ewing’s sarcoma cells for apoptosis.Cancer Cell Int2013;13:36 PMCID:PMC3637483

[36]

Gallo-Oller G,Sansa-Girona J.TRIB3 silencing promotes the downregulation of Akt pathway and PAX3-FOXO1 in high-risk rhabdomyosarcoma.Exp Hematol Oncol2024;13:38 PMCID:PMC10996176

[37]

Renshaw J,Bishop R.Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo.Clin Cancer Res2013;19:5940-51 PMCID:PMC3818134

[38]

Guenther MK,Fulda S.Synthetic lethal interaction between PI3K/Akt/mTOR and Ras/MEK/ERK pathway inhibition in rhabdomyosarcoma.Cancer Lett2013;337:200-9

[39]

Fiorito E,Haugsten EM.Strategies to inhibit FGFR4 V550L-driven rhabdomyosarcoma.Br J Cancer2022;127:1939-53 PMCID:PMC9681859

[40]

Cen L,Lin HJ,Qualman SJ.PDK-1/AKT pathway as a novel therapeutic target in rhabdomyosarcoma cells using OSU-03012 compound.Br J Cancer2007;97:785-91 PMCID:PMC2360380

[41]

Manzella G,Breunis WB.Phenotypic profiling with a living biobank of primary rhabdomyosarcoma unravels disease heterogeneity and AKT sensitivity.Nat Commun2020;11:4629 PMCID:PMC7492191

[42]

Preuss E,Reimann R,Fulda S.Pan-mammalian target of rapamycin (mTOR) inhibitor AZD8055 primes rhabdomyosarcoma cells for ABT-737-induced apoptosis by down-regulating Mcl-1 protein.J Biol Chem2013;288:35287-96 PMCID:PMC3853277

[43]

Saxton RA.mTOR signaling in growth, metabolism, and disease.Cell2017;169:361-71

[44]

Felkai L,Kiss DJ.Characterization of mTOR activity and metabolic profile in pediatric rhabdomyosarcoma.Cancers2020;12:1947 PMCID:PMC7409076

[45]

Anderson JL,Akiyama R,Denny CT.Evaluation of in vitro activity of the class I PI3K inhibitor buparlisib (BKM120) in pediatric bone and soft tissue sarcomas.PLoS One2015;10:e0133610 PMCID:PMC4581723

[46]

Wan X,Shen N,Helman LJ.Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism.Oncogene2007;26:1932-40

[47]

Abraham J,Nishijo K.Evasion mechanisms to Igf1r inhibition in rhabdomyosarcoma.Mol Cancer Ther2011;10:697-707 PMCID:PMC4109806

[48]

De Giovanni C, Landuzzi L, Palladini A, Nicoletti G, Nanni P, Lollini PL. HER tyrosine kinase family and rhabdomyosarcoma: role in onset and targeted therapy.Cells2021;10:1808 PMCID:PMC8305095

[49]

Marampon F,Pietrantoni I.Pro-differentiating and radiosensitizing effects of inhibiting HDACs by PXD-101 (Belinostat) in in vitro and in vivo models of human rhabdomyosarcoma cell lines.Cancer Lett2019;461:90-101

[50]

Codenotti S,Mandracchia D.Statin-sensitive Akt1/Src/Caveolin-1 signaling enhances oxidative stress resistance in rhabdomyosarcoma.Cancers2024;16:853 PMCID:PMC11154391

[51]

Codenotti S,Poli M.Synthetic inhibition of SREBP2 and the mevalonate pathway blocks rhabdomyosarcoma tumor growth in vitro and in vivo and promotes chemosensitization.Mol Metab2025;92:102085 PMCID:PMC11750561

[52]

Cao Z,Su M,Jin J.AKT and ERK dual inhibitors: the way forward?.Cancer Lett2019;459:30-40

[53]

Shimizu T,Papadopoulos KP.The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer.Clin Cancer Res2012;18:2316-25

[54]

Ghomlaghi M,Hoang N,Nguyen LK.Feedback, crosstalk and competition: ingredients for emergent non-linear behaviour in the PI3K/mTOR signalling network.Int J Mol Sci2021;22:6944 PMCID:PMC8267830

[55]

Godwin P,Heavey S,O’Byrne KJ.Targeting nuclear factor-kappa B to overcome resistance to chemotherapy.Front Oncol2013;3:120 PMCID:PMC3655421

[56]

Tago K,Ohta S.Oncogenic Ras mutant causes the hyperactivation of NF-κB via acceleration of its transcriptional activation.Mol Oncol2019;13:2493-510 PMCID:PMC6822247

[57]

Londhe P,Ijiri Y.Classical NF-κB metabolically reprograms sarcoma cells through regulation of hexokinase 2.Front Oncol2018;8:104 PMCID:PMC5904193

[58]

Salucci S,Stella AB.The cytotoxic effect of curcumin in rhabdomyosarcoma is associated with the modulation of AMPK, AKT/mTOR, STAT, and p53 signaling.Nutrients2023;15:740 PMCID:PMC9920154

[59]

Cleary MM,Settelmeyer T.NFκB signaling in alveolar rhabdomyosarcoma.Dis Model Mech2017;10:1109-15 PMCID:PMC5611971

[60]

Crose LEC,Kephart JG.Alveolar rhabdomyosarcoma-associated PAX3-FOXO1 promotes tumorigenesis via Hippo pathway suppression.J Clin Invest2014;124:285-96 PMCID:PMC3871220

[61]

Mohamed A,De Mello V.The Hippo effector TAZ (WWTR1) transforms myoblasts and TAZ abundance is associated with reduced survival in embryonal rhabdomyosarcoma.J Pathol2016;240:3-14 PMCID:PMC4995731

[62]

Adams JM.The BCL-2 arbiters of apoptosis and their growing role as cancer targets.Cell Death Differ2018;25:27-36 PMCID:PMC5729526

[63]

Armistead PM,Roh JS.Expression of receptor tyrosine kinases and apoptotic molecules in rhabdomyosarcoma: correlation with overall survival in 105 patients.Cancer2007;110:2293-303

[64]

Montero J.Why do BCL-2 inhibitors work and where should we use them in the clinic?.Cell Death Differ2018;25:56-64 PMCID:PMC5729538

[65]

Meister MT,Klingebiel T.Hedgehog signaling negatively co-regulates BH3-only protein Noxa and TAp73 in TP53-mutated cells.Cancer Lett2018;429:19-28

[66]

Faqar-Uz-Zaman SF,Meister MT,Fulda S.BCL-xL-selective BH3 mimetic sensitizes rhabdomyosarcoma cells to chemotherapeutics by activation of the mitochondrial pathway of apoptosis.Cancer Lett2018;412:131-42

[67]

Heinicke U,Kehr S,Fulda S.BCL-2 selective inhibitor ABT-199 primes rhabdomyosarcoma cells to histone deacetylase inhibitor-induced apoptosis.Oncogene2018;37:5325-39

[68]

Alcon C,Prada E.Sequential combinations of chemotherapeutic agents with BH3 mimetics to treat rhabdomyosarcoma and avoid resistance.Cell Death Dis2020;11:634 PMCID:PMC7429859

[69]

Alcon C,Prada E.MEK and MCL-1 sequential inhibition synergize to enhance rhabdomyosarcoma treatment.Cell Death Discov2022;8:172 PMCID:PMC8989976

[70]

Emran TB,Mahmud AR.Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches.Front Oncol2022;12:891652 PMCID:PMC9262248

[71]

Wertz IE,Lam C.Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7.Nature2011;471:110-4

[72]

Shern JF,Chmielecki J.Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors.Cancer Discov2014;4:216-31 PMCID:PMC4462130

[73]

Toulany M,Fattah KR.Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair.Mol Cancer Res2012;10:945-57

[74]

Liu L,Yin S.DNA-PK promotes activation of the survival kinase AKT in response to DNA damage through an mTORC2-ECT2 pathway.Sci Signal2022;15:eabh2290 PMCID:PMC8992387

[75]

Shin S,Yoon SO.The PIKK-AKT connection in the DNA damage response.Sci Signal2022;15:eabm6211 PMCID:PMC8860323

[76]

Fok JHL,Vazquez-Chantada M.AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity.Nat Commun2019;10:5065 PMCID:PMC6838110

[77]

Roberts AG.The structure and mechanism of drug transporters.Methods Mol Biol2021;2342:193-234 PMCID:PMC8542452

[78]

Fruci D,Nobili V,Alisi A.Drug transporters and multiple drug resistance in pediatric solid tumors.Curr Drug Metab2016;17:308-16

[79]

Xiao H,Ma L,Sun Q.Clinically-relevant ABC transporter for anti-cancer drug resistance.Front Pharmacol2021;12:648407 PMCID:PMC8089384

[80]

Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease.Heliyon2022;8:e09777 PMCID:PMC9249865

[81]

Komdeur R,van der Graaf WT.Multidrug resistance proteins in rhabdomyosarcomas: comparison between children and adults.Cancer2003;97:1999-2005

[82]

Seitz G,Vokuhl CO.Effects of standard chemotherapy on tumor growth and regulation of multidrug resistance genes and proteins in childhood rhabdomyosarcoma.Pediatr Surg Int2007;23:431-9

[83]

Citti A,Inserra A.Expression of multidrug resistance-associated proteins in paediatric soft tissue sarcomas before and after chemotherapy.Int J Oncol2012;41:117-24

[84]

Rashid K,Liang L,Cui Y.Solute carriers as potential oncodrivers or suppressors: their key functions in malignant tumor formation.Drug Discov Today2021;26:1689-701

[85]

Roth M,Hagenbuch B.OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies.Br J Pharmacol2012;165:1260-87 PMCID:PMC3372714

[86]

Koppula P,Gan B.Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy.Protein Cell2021;12:599-620 PMCID:PMC8310547

[87]

Codenotti S,Asperti M,Marampon F.Cell growth potential drives ferroptosis susceptibility in rhabdomyosarcoma and myoblast cell lines.J Cancer Res Clin Oncol2018;144:1717-30 PMCID:PMC11813460

[88]

Picher EA,Barth S,Shipley J.The capacity of drug-metabolising enzymes in modulating the therapeutic efficacy of drugs to treat rhabdomyosarcoma.Cancers2024;16:1012 PMCID:PMC10930814

[89]

Manikandan P.Cytochrome P450 structure, function and clinical significance: a review.Curr Drug Targets2018;19:38-54

[90]

Dennison JB,Barbuch RJ,Ehlhardt WJ.Selective metabolism of vincristine in vitro by CYP3A5.Drug Metab Dispos2006;34:1317-27

[91]

Yao D,Burchell B,Friedberg T.Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: implications for the development of drug resistance.J Pharmacol Exp Ther2000;294:387-95

[92]

Molina-Ortiz D,González-Zamora JF.Differential expression of cytochrome P450 enzymes in normal and tumor tissues from childhood rhabdomyosarcoma.PLoS One2014;9:e93261 PMCID:PMC3974704

[93]

Molina-Ortiz D,Cárdenas-Cardós R.Aberrant expression of CYP2W1 in pediatric soft tissue sarcomas: clinical significance and potential as a therapeutic target.Curr Oncol2025;32:131 PMCID:PMC11941694

[94]

Hettmer S,Kelsey A.Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: a consensus view from European paediatric Soft tissue sarcoma Study Group, Children’s Oncology Group and Cooperative Weichteilsarkom-Studiengruppe.Eur J Cancer2022;172:367-86

[95]

Pacenta HL,Langenau D.Prioritization of novel agents for patients with rhabdomyosarcoma: a report from the Children’s Oncology Group (COG) New Agents for Rhabdomyosarcoma Task Force.J Clin Med2021;10:1416 PMCID:PMC8037615

[96]

Ghilu S,Vaseva AV,Kurmasheva RT.Approaches to identifying drug resistance mechanisms to clinically relevant treatments in childhood rhabdomyosarcoma.Cancer Drug Resist2022;5:80-9 PMCID:PMC8992598

[97]

Fan R,Wang LL.An integrative morphologic and molecular approach for diagnosis and subclassification of rhabdomyosarcoma.Arch Pathol Lab Med2022;146:953-9

AI Summary AI Mindmap
PDF

448

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/