Tumor microenvironment-driven resistance to immunotherapy in non-small cell lung cancer: strategies for Cold-to-Hot tumor transformation

Jinglu Yu , Xiaoni Kong , Yu Feng

Cancer Drug Resistance ›› 2025, Vol. 8 : 21

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :21 DOI: 10.20517/cdr.2025.14
review-article

Tumor microenvironment-driven resistance to immunotherapy in non-small cell lung cancer: strategies for Cold-to-Hot tumor transformation

Author information +
History +
PDF

Abstract

Non-small cell lung cancer (NSCLC) represents a formidable challenge in oncology due to its molecular heterogeneity and the dynamic suppressive nature of its tumor microenvironment (TME). Despite the transformative impact of immune checkpoint inhibitors (ICIs) on cancer therapy, the majority of NSCLC patients experience resistance, necessitating novel approaches to overcome immune evasion. This review highlights shared and subtype-specific mechanisms of immune resistance within the TME, including metabolic reprogramming, immune cell dysfunction, and physical barriers. Beyond well-characterized components such as regulatory T cells, tumor-associated macrophages, and myeloid-derived suppressor cells, emerging players - neutrophil extracellular traps, tertiary lymphoid structures, and exosomal signaling networks - underscore the TME’s complexity and adaptability. A multi-dimensional framework is proposed to transform cold, immune-excluded tumors into hot, immune-reactive ones. Key strategies include enhancing immune infiltration, modulating immunosuppressive networks, and activating dormant immune pathways. Cutting-edge technologies, such as single-cell sequencing, spatial transcriptomics, and nanomedicine, are identified as pivotal tools for decoding TME heterogeneity and personalizing therapeutic interventions. By bridging mechanistic insights with translational innovations, this review advocates for integrative approaches that combine ICIs with metabolic modulators, vascular normalizers, and emerging therapies such as STING agonists and tumor vaccines. The synergistic potential of these strategies is poised to overcome resistance and achieve durable antitumor immunity. Ultimately, this vision underscores the importance of interdisciplinary collaboration and real-time TME profiling in refining precision oncology for NSCLC, offering a blueprint for extending these advances to other malignancies.

Keywords

Tumor microenvironments / non-small cell lung cancer / immunotherapy resistance / Cold-to-Hot tumor transformation / mechanism / strategy

Cite this article

Download citation ▾
Jinglu Yu, Xiaoni Kong, Yu Feng. Tumor microenvironment-driven resistance to immunotherapy in non-small cell lung cancer: strategies for Cold-to-Hot tumor transformation. Cancer Drug Resistance, 2025, 8: 21 DOI:10.20517/cdr.2025.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bray F,Sung H.Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2024;74:229-63

[2]

Howlader N,Mooradian MJ.The effect of advances in lung-cancer treatment on population mortality.N Engl J Med2020;383:640-9 PMCID:PMC8577315

[3]

Johnson ML, Cho BC, Luft A, et al; POSEIDON investigators. Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic non-small-cell lung cancer: the phase III POSEIDON study. J Clin Oncol. 2023;41:1213-27. PMCID:PMC9937097

[4]

Paz-Ares L,Cobo M.First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial.Lancet Oncol2021;22:198-211

[5]

Paz-Ares L,Tafreshi A.A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: protocol-specified final analysis of KEYNOTE-407.J Thorac Oncol2020;15:1657-69

[6]

Garassino MC,Speranza G.Pembrolizumab plus pemetrexed and platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 study.J Clin Oncol2023;41:1992-8 PMCID:PMC10082311

[7]

Schoenfeld JD,Ranasinghe S.Durvalumab plus tremelimumab alone or in combination with low-dose or hypofractionated radiotherapy in metastatic non-small-cell lung cancer refractory to previous PD(L)-1 therapy: an open-label, multicentre, randomised, phase 2 trial.Lancet Oncol2022;23:279-91 PMCID:PMC8813905

[8]

de Castro G Jr,Wu YL.Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and programmed death ligand-1 tumor proportion score ≥ 1% in the KEYNOTE-042 study.J Clin Oncol2023;41:1986-91 PMCID:PMC10082298

[9]

Schoenfeld AJ.Acquired resistance to immune checkpoint inhibitors.Cancer Cell2020;37:443-55 PMCID:PMC7182070

[10]

Gettinger SN,Goldberg SB.Clinical features and management of acquired resistance to PD-1 axis inhibitors in 26 patients with advanced non-small cell lung cancer.J Thorac Oncol2018;13:831-9 PMCID:PMC6485248

[11]

Schoenfeld AJ,Awad MM.Clinical definition of acquired resistance to immunotherapy in patients with metastatic non-small-cell lung cancer.Ann Oncol2021;32:1597-607

[12]

Ricciuti B,Puchala SR.Genomic and immunophenotypic landscape of acquired resistance to PD-(L)1 blockade in non-small-cell lung cancer.J Clin Oncol2024;42:1311-21 PMCID:PMC11095860

[13]

Li Y,Peng X,Tang B.Resistance to immune checkpoint inhibitors in KRAS-mutant non-small cell lung cancer.Cancer Drug Resist2022;5:129-46 PMCID:PMC8992585

[14]

Passaro A.Setting the benchmark for KRASG12C -mutated NSCLC.N Engl J Med2022;387:180-3

[15]

Liu C,Jin R.The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity.Cancer Lett2020;470:95-105

[16]

Herbst RS,de Marinis F.Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC.N Engl J Med2020;383:1328-39

[17]

Socinski MA, Jotte RM, Cappuzzo F, et al; IMpower150 Study Group. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378:2288-301.

[18]

Shiraishi Y,Sugawara S.Atezolizumab and platinum plus pemetrexed with or without bevacizumab for metastatic nonsquamous non-small cell lung cancer: a phase 3 randomized clinical trial.JAMA Oncol2024;10:315-24 PMCID:PMC10739077

[19]

Watanabe S,Nakamura A.A phase II study of atezolizumab with bevacizumab, carboplatin, and paclitaxel for patients with EGFR-mutated NSCLC after TKI treatment failure (NEJ043 study).Eur J Cancer2024;197:113469

[20]

Provencio M,Coves-Sarto J.Atezolizumab plus bevacizumab as first-line treatment for patients with metastatic nonsquamous non-small cell lung cancer with high tumor mutation burden: a nonrandomized controlled trial.JAMA Oncol2023;9:344-53 PMCID:PMC9856905

[21]

Nassar AH,Feng J.Consolidation ALK tyrosine kinase inhibitors versus durvalumab or observation after chemoradiation in unresectable stage III ALK-positive NSCLC.J Thorac Oncol2025;20:109-18

[22]

Li H,Zhang L.Mutation-guided chemotherapy-free strategy in first-line immunotherapy for low PD-L1-expressing non-squamous NSCLC.J Immunother Cancer2024;12:e009693 PMCID:PMC11624766

[23]

Skoulidis F,Greenawalt DM.STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma.Cancer Discov2018;8:822-35 PMCID:PMC6030433

[24]

Zhou C, Hu Y, Arkania E, et al; ASTRUM-004 Investigators. A global phase 3 study of serplulimab plus chemotherapy as first-line treatment for advanced squamous non-small-cell lung cancer (ASTRUM-004). Cancer Cell. 2024;42:198-208.e3.

[25]

Xu JY,Wang X.Integrative proteomic characterization of human lung adenocarcinoma.Cell2020;182:245-61.e17

[26]

Soltis AR, Bateman NW, Liu J, et al; APOLLO Research Network. Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity, survival determinants, and therapeutically relevant pathways. Cell Rep Med. 2022;3:100819. PMCID:PMC9729884

[27]

Devarakonda S,Martins Rodrigues F.Genomic profiling of lung adenocarcinoma in never-smokers.J Clin Oncol2021;39:3747-58 PMCID:PMC8601276

[28]

Chen J,Teo ASM.Genomic landscape of lung adenocarcinoma in East Asians.Nat Genet2020;52:177-86

[29]

Wang C,Song T.The heterogeneous immune landscape between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing.Signal Transduct Target Ther2022;7:289 PMCID:PMC9411197

[30]

Lau SCM,Velcheti V.Squamous cell lung cancer: current landscape and future therapeutic options.Cancer Cell2022;40:1279-93

[31]

Satpathy S, Krug K, Jean Beltran PM, et al; Clinical Proteomic Tumor Analysis Consortium. A proteogenomic portrait of lung squamous cell carcinoma. Cell. 2021;184:4348-71.e40. PMCID:PMC8475722

[32]

Guo JH,Lin JW.Whole-exome and targeted gene sequencing of large-cell lung carcinoma reveals recurrent mutations in the PI3K pathway.Br J Cancer2023;129:366-73 PMCID:PMC10338432

[33]

Bagaev A,Nomie K.Conserved pan-cancer microenvironment subtypes predict response to immunotherapy.Cancer Cell2021;39:845-65.e7

[34]

Binnewies M,Kersten K.Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat Med2018;24:541-50 PMCID:PMC5998822

[35]

Bejarano L,Joyce JA.Therapeutic targeting of the tumor microenvironment.Cancer Discov2021;11:933-59

[36]

Yan Y,Hu J.Multi-omic profiling highlights factors associated with resistance to immuno-chemotherapy in non-small-cell lung cancer.Nat Genet2025;57:126-39

[37]

Tay C,Sakaguchi S.Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy.Cancer Cell2023;41:450-65

[38]

Exposito F,Houry M.PTEN loss confers resistance to anti-PD-1 therapy in non-small cell lung cancer by increasing tumor infiltration of regulatory T cells.Cancer Res2023;83:2513-26

[39]

Kumagai S,Itahashi K.Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments.Cancer Cell2022;40:201-18.e9

[40]

Skoulidis F,Do MT.CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors.Nature2024;635:462-71 PMCID:PMC11560846

[41]

Yin N,Weems C.Protein kinase Cι mediates immunosuppression in lung adenocarcinoma.Sci Transl Med2022;14:eabq5931 PMCID:PMC11457891

[42]

Li R,Crosson W.Inhibition of granulocytic myeloid-derived suppressor cells overcomes resistance to immune checkpoint inhibition in LKB1-deficient non-small cell lung cancer.Cancer Res2021;81:3295-308 PMCID:PMC8776246

[43]

La Fleur L,He F.Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function.Cancer Res2021;81:956-67

[44]

Yang L,Yu W.Blockade of purine metabolism reverses macrophage immunosuppression and enhances anti-tumor immunity in non-small cell lung cancer.Drug Resist Updat2025;78:101175

[45]

Liu M,Ding C.Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer.J Clin Invest2020;130:2081-96 PMCID:PMC7108920

[46]

Granville CA,Balogh A.A central role for Foxp3+ regulatory T cells in K-Ras-driven lung tumorigenesis.PLoS One2009;4:e5061 PMCID:PMC2659439

[47]

Zdanov S,Abu Eid R.Mutant KRAS conversion of conventional T cells into regulatory T cells.Cancer Immunol Res2016;4:354-65 PMCID:PMC4884020

[48]

Lasser SA,Arkhypov I,Umansky V.Myeloid-derived suppressor cells in cancer and cancer therapy.Nat Rev Clin Oncol2024;21:147-64

[49]

Zhang H,Liu J.Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers.Mol Cancer2023;22:58 PMCID:PMC10029244

[50]

Bai R,Jian L,Zhao L.The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies.Mol Cancer2022;21:177 PMCID:PMC9454207

[51]

Adrover JM,He XY,Egeblad M.NETworking with cancer: the bidirectional interplay between cancer and neutrophil extracellular traps.Cancer Cell2023;41:505-26 PMCID:PMC10280682

[52]

Lei Q,Zhang L,Yang L.A2AR-mediated CXCL5 upregulation on macrophages promotes NSCLC progression via NETosis.Cancer Immunol Immunother2024;73:108 PMCID:PMC11032303

[53]

Wang Y,Chen L.Neutrophil extracellular traps (NETs) promote non-small cell lung cancer metastasis by suppressing lncRNA MIR503HG to activate the NF-κB/NLRP3 inflammasome pathway.Front Immunol2022;13:867516 PMCID:PMC9190762

[54]

Schumacher TN.Tertiary lymphoid structures in cancer.Science2022;375:eabf9419

[55]

Fridman WH,Petitprez F,Italiano A.B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome.Nat Rev Clin Oncol2022;19:441-57

[56]

Liu Y,Chen Y.Complete pathological remission and tertiary lymphoid structures are associated with the efficacy of resectable NSCLC receiving neoadjuvant chemoimmunotherapy: a double-center retrospective study.Hum Vaccin Immunother2023;19:2285902 PMCID:PMC10760371

[57]

Patil NS,Müller S.Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer.Cancer Cell2022;40:289-300.e4

[58]

Hao D,Sinjab A.The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma.Cancer Discov2022;12:2626-45 PMCID:PMC9633381

[59]

Gao J,Ao YQ.Elevated circASCC3 limits antitumor immunity by sponging miR-432-5p to upregulate C5a in non-small cell lung cancer.Cancer Lett2022;543:215774

[60]

Gebhardt T,Parish IA.Stem-like exhausted and memory CD8+ T cells in cancer.Nat Rev Cancer2023;23:780-98

[61]

Baessler A.T Cell exhaustion.Annu Rev Immunol2024;42:179-206

[62]

Li H,Liu L.AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells.Cell Rep Med2022;3:100554 PMCID:PMC9040166

[63]

Koh J,Woo YD.TCF1+PD-1+ tumour-infiltrating lymphocytes predict a favorable response and prolonged survival after immune checkpoint inhibitor therapy for non-small-cell lung cancer.Eur J Cancer2022;174:10-20

[64]

Zhou Y,Liu L.NK cells are never alone: crosstalk and communication in tumour microenvironments.Mol Cancer2023;22:34 PMCID:PMC9933398

[65]

Myers JA.Exploring the NK cell platform for cancer immunotherapy.Nat Rev Clin Oncol2021;18:85-100 PMCID:PMC8316981

[66]

Brand A,Koehl GE.LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells.Cell Metab2016;24:657-71

[67]

Faubert B,De Berardinis RJ.Metabolic reprogramming and cancer progression.Science2020;368:eaaw5473 PMCID:PMC7227780

[68]

Poznanski SM,Ritchie TM.Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment.Cell Metab2021;33:1205-20.e5

[69]

Feng J,Zhang Y.Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells.Oncogene2017;36:5829-39

[70]

Elia I,Johnson S.Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells.Cell Metab2022;34:1137-50.e6 PMCID:PMC9357162

[71]

Zhang D,Huang H.Metabolic regulation of gene expression by histone lactylation.Nature2019;574:575-80 PMCID:PMC6818755

[72]

Liu N,Kuang D.Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression.J Clin Invest2019;129:631-46 PMCID:PMC6355226

[73]

Sosnowska A,Matryba P.Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma.Oncoimmunology2021;10:1956143 PMCID:PMC8312619

[74]

Miret JJ,Koyama S.Suppression of myeloid cell arginase activity leads to therapeutic response in a NSCLC mouse model by activating anti-tumor immunity.J Immunother Cancer2019;7:32 PMCID:PMC6366094

[75]

Yamasuge W,Fujigaki H.Indoleamine 2,3-dioxygenase 2 depletion suppresses tumor growth in a mouse model of Lewis lung carcinoma.Cancer Sci2019;110:3061-7 PMCID:PMC6778659

[76]

Luke JJ,Siu LL.Phase 1/2 study of the indoleamine 2,3-dioxygenase 1 inhibitor linrodostat mesylate combined with nivolumab or nivolumab and ipilimumab in advanced solid tumors or hematologic malignancies.Clin Cancer Res2024;Epub ahead of print:

[77]

Huang M,Pan J.Targeting glutamine metabolism to enhance immunoprevention of EGFR-driven lung cancer.Adv Sci2022;9:e2105885 PMCID:PMC9475521

[78]

Galan-Cobo A,Qu X.LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma.Cancer Res2019;79:3251-67 PMCID:PMC6606351

[79]

Chen X,Wang Y.CYP4F2-catalyzed metabolism of arachidonic acid promotes stromal cell-mediated immunosuppression in non-small cell lung cancer.Cancer Res2022;82:4016-30

[80]

Kerk SA,Shah YM.Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment.Nat Rev Cancer2021;21:510-25 PMCID:PMC10257891

[81]

Ugolini A,Tyurina YY.Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer.JCI Insight2020;5:138581 PMCID:PMC7455061

[82]

Menzner AK,Voelkl S.Hydrogen-peroxide synthesis and LDL-uptake controls immunosuppressive properties in monocyte-derived dendritic cells.Cancers2021;13:461 PMCID:PMC7865547

[83]

Wu F,Liu J.Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer.Signal Transduct Target Ther2021;6:218 PMCID:PMC8190181

[84]

Cruz-Bermúdez A,Vicente-Blanco RJ.Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling.Free Radic Biol Med2019;130:163-73

[85]

Fukumura D,Amoozgar Z,Jain RK.Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.Nat Rev Clin Oncol2018;15:325-40 PMCID:PMC5921900

[86]

Liu Y,Wang Y.Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy.J Hematol Oncol2022;15:89 PMCID:PMC9263050

[87]

Di Carlo SE,Varet H.Depletion of slow-cycling PDGFRα+ADAM12+ mesenchymal cells promotes antitumor immunity by restricting macrophage efferocytosis.Nat Immunol2023;24:1867-78 PMCID:PMC10602852

[88]

Kureshi CT.Cytokines in cancer.Cancer Cell2025;43:15-35 PMCID:PMC11841838

[89]

Zhao Y,Wang J.circNOX4 activates an inflammatory fibroblast niche to promote tumor growth and metastasis in NSCLC via FAP/IL-6 axis.Mol Cancer2024;23:47 PMCID:PMC10921747

[90]

Kuo IY,Yang PS.Converged Rab37/IL-6 trafficking and STAT3/PD-1 transcription axes elicit an immunosuppressive lung tumor microenvironment.Theranostics2021;11:7029-44 PMCID:PMC8171097

[91]

Matsuda S,Dubash TD.TGF-β in the microenvironment induces a physiologically occurring immune-suppressive senescent state.Cell Rep2023;42:112129 PMCID:PMC10187541

[92]

Yue M,Sun H.Extracellular vesicles remodel tumor environment for cancer immunotherapy.Mol Cancer2023;22:203 PMCID:PMC10717809

[93]

de Miguel-Perez D,Mamindla P.Validation of a multiomic model of plasma extracellular vesicle PD-L1 and radiomics for prediction of response to immunotherapy in NSCLC.J Exp Clin Cancer Res2024;43:81 PMCID:PMC10941547

[94]

Eslami-S Z,Sinoquet L.Circulating tumour cells and PD-L1-positive small extracellular vesicles: the liquid biopsy combination for prognostic information in patients with metastatic non-small cell lung cancer.Br J Cancer2024;130:63-72 PMCID:PMC10781977

[95]

de Miguel-Perez D,Gunasekaran M.Baseline extracellular vesicle TGF-β is a predictive biomarker for response to immune checkpoint inhibitors and survival in non-small cell lung cancer.Cancer2023;129:521-30

[96]

Samson N.The cGAS-STING pathway and cancer.Nat Cancer2022;3:1452-63

[97]

Liu Z,Zhang J.cGAS-STING signaling in the tumor microenvironment.Cancer Lett2023;577:216409

[98]

Hou Y,Rao E.Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy.Immunity2018;49:490-503.e4 PMCID:PMC6775781

[99]

Liang H,Hou Y.Host STING-dependent MDSC mobilization drives extrinsic radiation resistance.Nat Commun2017;8:1736 PMCID:PMC5701019

[100]

Thoresen D,Galls D,Xu L.The molecular mechanism of RIG-I activation and signaling.Immunol Rev2021;304:154-68 PMCID:PMC9293153

[101]

Huang T,Liu J.m6A methyltransferase METTL3 promotes non-small-cell lung carcinoma progression by inhibiting the RIG-I-MAVS innate immune pathway.Transl Oncol2025;51:102230 PMCID:PMC11652952

[102]

Jiang Y,Wang J.Exploiting RIG-I-like receptor pathway for cancer immunotherapy.J Hematol Oncol2023;16:8 PMCID:PMC9906624

[103]

Colegio OR,Szabo AL.Functional polarization of tumour-associated macrophages by tumour-derived lactic acid.Nature2014;513:559-63 PMCID:PMC4301845

[104]

Cui Z,Li M.Intermittent hypoxia inhibits anti-tumor immune response via regulating PD-L1 expression in lung cancer cells and tumor-associated macrophages.Int Immunopharmacol2023;122:110652

[105]

Zhang F,Li D.Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution.J Hematol Oncol2024;17:80 PMCID:PMC11367794

[106]

Kugeratski FG,Neilson LJ.Hypoxic cancer-associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling.Sci Signal2019;12:eaan8247 PMCID:PMC6794160

[107]

Chen G,Zhang W.Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response.Nature2018;560:382-6 PMCID:PMC6095740

[108]

Zhou C,Yan R.Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment.Cell Death Differ2021;28:715-29 PMCID:PMC7862304

[109]

Bauer R,Wroblewski M.Blockade of myeloid-derived suppressor cell expansion with all-trans retinoic acid increases the efficacy of antiangiogenic therapy.Cancer Res2018;78:3220-32

[110]

Patel SA,Cascone T.Estrogen promotes resistance to bevacizumab in murine models of NSCLC.J Thorac Oncol2021;16:2051-64 PMCID:PMC10324274

[111]

Dalton HJ,McGuire M.Macrophages facilitate resistance to anti-VEGF therapy by altered VEGFR expression.Clin Cancer Res2017;23:7034-46 PMCID:PMC5690831

[112]

La Fargue CJ,Noh K.Overcoming adaptive resistance to anti-VEGF therapy by targeting CD5L.Nat Commun2023;14:2407 PMCID:PMC10133315

[113]

Ammar N,Geismann C.Monocarboxylate transporter-1 (MCT1)-mediated lactate uptake protects pancreatic adenocarcinoma cells from oxidative stress during glutamine scarcity thereby promoting resistance against inhibitors of glutamine metabolism.Antioxidants2023;12:1818 PMCID:PMC10604597

[114]

Garcia I,Peterson CN.Roles of the oncometabolite enantiomers of 2-hydroxyglutarate and their metabolism by diverse dehydrogenases.Essays Biochem2024;68:161-71

[115]

Chen C,Liu Y.Single-cell and spatial transcriptomics reveal POSTN+ cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer.Clin Transl Med2023;13:e1515 PMCID:PMC10731139

[116]

Wu F,He Y.Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer.Nat Commun2021;12:2540 PMCID:PMC8100173

[117]

Lambrechts D,Boeckx B.Phenotype molding of stromal cells in the lung tumor microenvironment.Nat Med2018;24:1277-89

[118]

De Zuani M,Park JS.Single-cell and spatial transcriptomics analysis of non-small cell lung cancer.Nat Commun2024;15:4388 PMCID:PMC11116453

[119]

Enfield KSS, Colliver E, Lee C, et al; TRACERx consortium. Spatial architecture of myeloid and T cells orchestrates immune evasion and clinical outcome in lung cancer. Cancer Discov. 2024;14:1018-47. PMCID:PMC11145179

[120]

Takano Y,Nomura K.Spatially resolved gene expression profiling of tumor microenvironment reveals key steps of lung adenocarcinoma development.Nat Commun2024;15:10637 PMCID:PMC11621540

[121]

Mascaux C,Vasaturo A.Immune evasion before tumour invasion in early lung squamous carcinogenesis.Nature2019;571:570-5

[122]

Zhang C,Xu FP.Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma.J Thorac Oncol2019;14:1912-23 PMCID:PMC6986039

[123]

Zhang L,Zheng L.Lineage tracking reveals dynamic relationships of T cells in colorectal cancer.Nature2018;564:268-72

[124]

Yost KE,Wells DK.Clonal replacement of tumor-specific T cells following PD-1 blockade.Nat Med2019;25:1251-9 PMCID:PMC6689255

[125]

Lanitis E,Coukos G.Targeting the tumor vasculature to enhance T cell activity.Curr Opin Immunol2015;33:55-63 PMCID:PMC4896929

[126]

Hidalgo M,Le Tourneau C.First-in-human phase I study of single-agent vanucizumab, a first-in-class bispecific anti-angiopoietin-2/anti-VEGF-A antibody, in adult patients with advanced solid tumors.Clin Cancer Res2018;24:1536-45

[127]

Kienast Y,Scheuer W.Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy.Clin Cancer Res2013;19:6730-40

[128]

Hofmann I,Hofmann MH.Pharmacodynamic and antitumor activity of BI 836880, a dual vascular endothelial growth factor and angiopoietin 2 inhibitor, alone and combined with programmed cell death protein-1 inhibition.J Pharmacol Exp Ther2023;384:331-42

[129]

Voron T,Marcheteau E.VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors.J Exp Med2015;212:139-48 PMCID:PMC4322048

[130]

Martino EC,Pastina P.Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients.Cell Death Discov2016;2:16025 PMCID:PMC5045963

[131]

Schmittnaegel M,Kadioglu E.Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade.Sci Transl Med2017;9:eaak9670

[132]

Hauge A.Antifibrotic therapy to normalize the tumor microenvironment.J Transl Med2020;18:207 PMCID:PMC7240990

[133]

Abyaneh HS,McKee TD,Gauthier MA.Towards extracellular matrix normalization for improved treatment of solid tumors.Theranostics2020;10:1960-80 PMCID:PMC6993244

[134]

Amirkhosravi A,Karami-Mohajeri S,Mandegary A.Losartan enhances the suppressive effect of pirfenidone on the bleomycin-induced epithelial-mesenchymal transition and oxidative stress in A549 cell line.Iran J Basic Med Sci2023;26:972-8 PMCID:PMC10329237

[135]

Diop-Frimpong B,Krane S,Jain RK.Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors.Proc Natl Acad Sci U S A2011;108:2909-14 PMCID:PMC3041115

[136]

Whatcott CJ,Posner RG,Von Hoff DD.Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look.Cancer Discov2011;1:291-6 PMCID:PMC3204883

[137]

Jeannot V,Mazzaferro S.Anti-tumor efficacy of hyaluronan-based nanoparticles for the co-delivery of drugs in lung cancer.J Control Release2018;275:117-28

[138]

Chan JSK,Teo ZQ,Twang JS.Targeting nuclear receptors in cancer-associated fibroblasts as concurrent therapy to inhibit development of chemoresistant tumors.Oncogene2018;37:160-73 PMCID:PMC5770601

[139]

Wang Y,Xu M.Cancer-associated fibroblast-derived SDF-1 induces epithelial-mesenchymal transition of lung adenocarcinoma via CXCR4/β-catenin/PPARδ signalling.Cell Death Dis2021;12:214 PMCID:PMC7910618

[140]

Liu Q,Hou P.PRPS2-mediated modulation of the antitumor immune response in lung cancer through CCL2-mediated tumor-associated macrophages and myeloid-derived suppressor cells.Thorac Cancer2024;15:1739-48 PMCID:PMC11320087

[141]

Mittal P,Akimova T.The CCR2/MCP-1 chemokine pathway and lung adenocarcinoma.Cancers2020;12:3723 PMCID:PMC7763565

[142]

Pant A,Srivastava S.CCR2 and CCR5 co-inhibition modulates immunosuppressive myeloid milieu in glioma and synergizes with anti-PD-1 therapy.Oncoimmunology2024;13:2338965 PMCID:PMC11000615

[143]

Cheng CC,Ho AS.Tumor-intrinsic IFNα and CXCL10 are critical for immunotherapeutic efficacy by recruiting and activating T lymphocytes in tumor microenvironment.Cancer Immunol Immunother2024;73:175 PMCID:PMC11219622

[144]

Lim RJ,Tran LM.CXCL9/10-engineered dendritic cells promote T cell activation and enhance immune checkpoint blockade for lung cancer.Cell Rep Med2024;5:101479 PMCID:PMC11031384

[145]

Melese ES,Cederberg RA.CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development.Oncoimmunology2022;11:2010905 PMCID:PMC9038050

[146]

Tang N,Zhang X.TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors.JCI Insight2020;5:133977 PMCID:PMC7101140

[147]

Jackson JJ,Younai A.Discovery of a potent and selective CCR4 antagonist that inhibits Treg trafficking into the tumor microenvironment.J Med Chem2019;62:6190-213

[148]

Song D,Dong C.Two novel human anti-CD25 antibodies with antitumor activity inversely related to their affinity and in vitro activity.Sci Rep2021;11:22966 PMCID:PMC8617198

[149]

Peng Y,Liu H.Non-IL-2-blocking anti-CD25 antibody inhibits tumor growth by depleting Tregs and has synergistic effects with anti-CTLA-4 therapy.Int J Cancer2024;154:1285-97

[150]

Naing A,Pishvaian MJ.First-in-human phase 1 study of the arginase inhibitor INCB001158 alone or combined with pembrolizumab in patients with advanced or metastatic solid tumours.BMJ Oncol2024;3:e000249

[151]

Mitchell TC,Smith DC.Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase i results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037).J Clin Oncol2018;36:3223-30 PMCID:PMC6225502

[152]

Tang KH,Khodadadi-Jamayran A.Combined inhibition of SHP2 and CXCR1/2 promotes antitumor T-cell response in NSCLC.Cancer Discov2022;12:47-61 PMCID:PMC8758507

[153]

Falchook GS,Rottey S.A phase 1a/1b trial of CSF-1R inhibitor LY3022855 in combination with durvalumab or tremelimumab in patients with advanced solid tumors.Invest New Drugs2021;39:1284-97

[154]

Kaneda MM,Ralainirina N.PI3Kγ is a molecular switch that controls immune suppression.Nature2016;539:437-42 PMCID:PMC5479689

[155]

Müller E,Halder S.Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages.Front Immunol2017;8:1383 PMCID:PMC5662546

[156]

Yu J,Xu Z.Targeting macrophage priming by polyphyllin VII triggers anti-tumor immunity via STING-governed cytotoxic T-cell infiltration in lung cancer.Sci Rep2020;10:21360 PMCID:PMC7721813

[157]

Xu W,Deng Y,Wang T.Extracellular vesicle-derived LINC00482 induces microglial M2 polarization to facilitate brain metastasis of NSCLC.Cancer Lett2023;561:216146

[158]

Xu W,Li P.Discovery and preclinical evaluation of BPB-101: a novel triple functional bispecific antibody targeting GARP-TGF-β complex/SLC, free TGF-β and PD-L1.Front Immunol2024;15:1479399 PMCID:PMC11615479

[159]

Jiang M,Meng J,Liu Y.Engineered exosomes in service of tumor immunotherapy: from optimizing tumor-derived exosomes to delivering CRISPR/Cas9 system.Int J Cancer2025;156:898-913

[160]

Luke JJ,Blumenschein GR.The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial.Nat Med2023;29:2814-24 PMCID:PMC10667103

[161]

Ngiow SF,Huang YJ.LAG-3 sustains TOX expression and regulates the CD94/NKG2-Qa-1b axis to govern exhausted CD8 T cell NK receptor expression and cytotoxicity.Cell2024;187:4336-54.e19 PMCID:PMC11337978

[162]

Adusumilli PS,Rusch VW.Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent.JCO2019;37:2511

[163]

Guedan S,Shaw C.Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation.JCI Insight2018;3:96976 PMCID:PMC5821198

[164]

Rafiq S,Jackson HJ.Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo.Nat Biotechnol2018;36:847-56 PMCID:PMC6126939

[165]

Hu B,Luo Y.Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18.Cell Rep2017;20:3025-33 PMCID:PMC6002762

[166]

Tousley AM,Labanieh L.Co-opting signalling molecules enables logic-gated control of CAR T cells.Nature2023;615:507-16 PMCID:PMC10564584

[167]

Bagley SJ,Fraietta JA.Intrathecal bivalent CAR T cells targeting EGFR and IL13Rα2 in recurrent glioblastoma: phase 1 trial interim results.Nat Med2024;30:1320-9

[168]

Lei T,Zhang Y.Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy.Leukemia2024;38:2517-43 PMCID:PMC11588664

[169]

Wrangle JM,Patel MR.ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial.Lancet Oncol2018;19:694-704 PMCID:PMC6089612

[170]

Song Y,Hu R,Rood D.In vivo antitumor activity of a recombinant IL7/IL15 hybrid cytokine in mice.Mol Cancer Ther2016;15:2413-21

[171]

Read KA.Making memories with Bcl-6.J Exp Med2022;219:e20212177 PMCID:PMC8605494

[172]

Zhong X,Ouyang C.Ncoa2 promotes CD8+ T cell-mediated antitumor immunity by stimulating T-cell activation via upregulation of PGC-1α critical for mitochondrial function.Cancer Immunol Res2023;11:1414-31 PMCID:PMC10592187

[173]

Dumauthioz N,Wenes M.Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity.Cell Mol Immunol2021;18:1761-71 PMCID:PMC8245409

[174]

Li F,Jackson KR.Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations.J Immunother Cancer2021;9:e002531 PMCID:PMC8268925

[175]

Patel MR,Jimeno A.A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab.JCO2020;38:3092

[176]

Gangaev A,Brandhorst N.mRNA-1273 vaccination induces polyfunctional memory CD4 and CD8 T cell responses in patients with solid cancers undergoing immunotherapy or/and chemotherapy.Front Immunol2024;15:1447555 PMCID:PMC11385311

[177]

Crist M,Palackdharry S.Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition.J Immunother Cancer2022;10:e005632 PMCID:PMC9639146

[178]

Wingert S,Knackmuss S.Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors.MAbs2021;13:1950264 PMCID:PMC8331026

[179]

Zolov S,Katkam SK,Keshamouni VG.Abstract 6360: a novel CAR-NK cell therapy to target lung adenocarcinoma cells.Cancer Research2024;84:6360

[180]

Diab A,Bentebibel SE.Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02).Cancer Discov2020;10:1158-73

[181]

Costin D,Gralla RJ,Wang M.A phase 2 study of EIK1001, a Toll-like receptor 7/8 (TLR7/8) agonist, in combination with pembrolizumab and chemotherapy in patients with stage 4 non-small cell lung cancer.JCO2024;42:TPS8667

[182]

Li S,Li JT,Link DC.TLR7/8 agonist treatment induces an increase in bone marrow resident dendritic cells and hematopoietic progenitor expansion and mobilization.Exp Hematol2021;96:35-43.e7 PMCID:PMC9900459

[183]

Fernandez-Rodriguez L,Bill R.Dual TLR9 and PD-L1 targeting unleashes dendritic cells to induce durable antitumor immunity.J Immunother Cancer2023;11:e006714 PMCID:PMC10201251

[184]

Garon EB,Johnson M.A phase Ib open-label, multicenter study of inhaled DV281, a TLR9 agonist, in combination with nivolumab in patients with advanced or metastatic non-small cell lung cancer.Clin Cancer Res2021;27:4566-73 PMCID:PMC11472608

[185]

Meric-Bernstam F,Hodi FS.Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas.Clin Cancer Res2022;28:677-88

[186]

Srinivasan S.Controlled delivery of immunomodulators from a biomaterial scaffold niche to induce a tolerogenic phenotype in human dendritic cells.ACS Biomater Sci Eng2020;6:4062-76

[187]

Wang QT,Sun SN.Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients.Cancer Immunol Immunother2020;69:1375-87 PMCID:PMC11027674

[188]

Dong HP,Tang Z.Combined targeting of CCL7 and Flt3L to promote the expansion and infiltration of cDC1s in tumors enhances T-cell activation and anti-PD-1 therapy effectiveness in NSCLC.Cell Mol Immunol2023;20:850-3 PMCID:PMC10310796

[189]

Luo J,Hui Z.Blocking Tim-3 enhances the anti-tumor immunity of STING agonist ADU-S100 by unleashing CD4+ T cells through regulating type 2 conventional dendritic cells.Theranostics2023;13:4836-57 PMCID:PMC10526657

[190]

Ramalingam PS.Reverse vaccinology and immunoinformatics approaches to design multi-epitope based vaccine against oncogenic KRAS.Med Oncol2023;40:283

[191]

Dasari V,Beckett K.Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice.Nat Commun2023;14:4371 PMCID:PMC10409721

[192]

Wilkinson E.UK-BioNTech partnership for mRNA cancer vaccines.Lancet Oncol2023;24:846

[193]

Shalhout SZ,Emerick KS.Therapy with oncolytic viruses: progress and challenges.Nat Rev Clin Oncol2023;20:160-77

[194]

Kemp V,Camps MGM.Arming oncolytic reovirus with GM-CSF gene to enhance immunity.Cancer Gene Ther2019;26:268-81

[195]

Soni D,Scott DA.From hit to vial: precision discovery and development of an imidazopyrimidine TLR7/8 agonist adjuvant formulation.Sci Adv2024;10:eadg3747 PMCID:PMC11221515

[196]

Herck S, Feng B, Tang L. Delivery of STING agonists for adjuvanting subunit vaccines.Adv Drug Deliv Rev2021;179:114020

[197]

Pifferi C,Fernández-Tejada A.Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action.Nat Rev Chem2021;5:197-216 PMCID:PMC7829660

[198]

Castro Eiro MD,Li L.TLR9 plus STING agonist adjuvant combination induces potent neopeptide T cell immunity and improves immune checkpoint blockade efficacy in a tumor model.J Immunol2024;212:455-65 PMCID:PMC10784725

[199]

Qiao T,Feng Y.Inhibition of LDH-A by oxamate enhances the efficacy of anti-PD-1 treatment in an NSCLC humanized mouse model.Front Oncol2021;11:632364 PMCID:PMC8042335

[200]

Liu Y,Peng D.Activation and antitumor immunity of CD8+ T cells are supported by the glucose transporter GLUT10 and disrupted by lactic acid.Sci Transl Med2024;16:eadk7399

[201]

Halford S,Wedge SR.A phase I dose-escalation study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer.Clin Cancer Res2023;29:1429-39 PMCID:PMC7614436

[202]

Powderly JD,Naing A.Epacadostat plus pembrolizumab and chemotherapy for advanced solid tumors: results from the phase I/II ECHO-207/KEYNOTE-723 study.Oncologist2022;27:905-e848 PMCID:PMC9632315

[203]

Fu H,Fanti S.The glucose transporter 2 regulates CD8+ T cell function via environment sensing.Nat Metab2023;5:1969-85 PMCID:PMC10663157

[204]

Toledano Zur R,Barliya T.Genetically engineering glycolysis in T cells increases their antitumor function.J Immunother Cancer2024;12:e008434 PMCID:PMC11227835

[205]

Wan H,Zhu N.PGC-1α activator-induced fatty acid oxidation in tumor-infiltrating CTLs enhances effects of PD-1 blockade therapy in lung cancer.Tumori2020;106:55-63

[206]

Aksoylar HI.Treatment with exogenously added catalase alters CD8 T cell memory differentiation and function.Adv Biol2023;7:e2101320 PMCID:PMC9613814

[207]

Ma S,Wu W.Urolithin A hijacks ERK1/2-ULK1 cascade to improve CD8+ T cell fitness for antitumor immunity.Adv Sci2024;11:e2310065 PMCID:PMC11095213

[208]

Denk D,Conche C.Expansion of T memory stem cells with superior anti-tumor immunity by Urolithin A-induced mitophagy.Immunity2022;55:2059-73.e8

[209]

Chen X,Zhang W.Epigenetic strategies synergize with PD-L1/PD-1 targeted cancer immunotherapies to enhance antitumor responses.Acta Pharm Sin B2020;10:723-33 PMCID:PMC7276686

[210]

Franco F,Romero P,Ho PC.Metabolic and epigenetic regulation of T-cell exhaustion.Nat Metab2020;2:1001-12

[211]

Guo Y,Gao M.Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity.Nat Immunol2021;22:746-56 PMCID:PMC7610876

[212]

Naing A,Papadopoulos KP.PEGylated IL-10 (Pegilodecakin) induces systemic immune activation, CD8+ T cell invigoration and polyclonal T cell expansion in cancer patients.Cancer Cell2018;34:775-91.e3 PMCID:PMC8098754

[213]

Lontos K,Joshi SK.Metabolic reprogramming via an engineered PGC-1α improves human chimeric antigen receptor T-cell therapy against solid tumors.J Immunother Cancer2023;11:e006522 PMCID:PMC10016249

[214]

Chen J,Lu G.PFKP alleviates glucose starvation-induced metabolic stress in lung cancer cells via AMPK-ACC2 dependent fatty acid oxidation.Cell Discov2022;8:52 PMCID:PMC9156709

[215]

Yang H,Kong SJ.STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade.J Clin Invest2019;129:4350-64 PMCID:PMC6763266

[216]

Lanitis E,Kosti P.Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression.J Exp Med2021;218:e20192203 PMCID:PMC7653685

[217]

Tao L,Shi S.Bevacizumab improves the antitumor efficacy of adoptive cytokine-induced killer cells therapy in non-small cell lung cancer models.Med Oncol2014;31:777

[218]

Chinnasamy D,Kerkar SP.Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice.Clin Cancer Res2012;18:1672-83 PMCID:PMC6390958

[219]

Läubli H,D’Amico L,Kashyap AS.The multi-receptor inhibitor axitinib reverses tumor-induced immunosuppression and potentiates treatment with immune-modulatory antibodies in preclinical murine models.Cancer Immunol Immunother2018;67:815-24 PMCID:PMC11028099

[220]

Ajona D,Moreno H.A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis.Cancer Discov2017;7:694-703

[221]

Nandagopal S,Xu Y,Graves EE.C3aR signaling inhibits NK-cell infiltration into the tumor microenvironment in mouse models.Cancer Immunol Res2022;10:245-58 PMCID:PMC9351714

[222]

Albrengues J,Ng D.Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice.Science2018;361:eaao4227

[223]

Cho JW,Kim G.Dysregulation of TFH-B-TRM lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer.Nat Commun2021;12:6068 PMCID:PMC8523541

[224]

de Chaisemartin L,Damotte D.Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer.Cancer Res2011;71:6391-9

[225]

Bodogai M,Wejksza K.Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L.Cancer Res2013;73:2127-38 PMCID:PMC3618504

[226]

Wang Z,Tang K.Lipid mediator lipoxin A4 inhibits tumor growth by targeting IL-10-producing regulatory B (Breg) cells.Cancer Lett2015;364:118-24

[227]

Gao L,Yi C.Adverse events of concurrent immune checkpoint inhibitors and antiangiogenic agents: a systematic review.Front Pharmacol2019;10:1173 PMCID:PMC6812341

[228]

Li H,Li M,Han Q.Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy.Front Immunol2022;13:1046755 PMCID:PMC9768337

[229]

Zhu Z,Jiang W,Kalinski P.Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways.Mol Cancer2022;21:196 PMCID:PMC9554963

[230]

Sorin M,Karimi E.Single-cell spatial landscapes of the lung tumour immune microenvironment.Nature2023;614:548-54 PMCID:PMC9931585

[231]

Veith I,Mencattini A.Assessing personalized responses to anti-PD-1 treatment using patient-derived lung tumor-on-chip.Cell Rep Med2024;5:101549 PMCID:PMC11148770

[232]

Taverna JA,Williams M.Ex vivo drug testing of patient-derived lung organoids to predict treatment responses for personalized medicine.Lung Cancer2024;190:107533

[233]

Park S,Kim H.Artificial intelligence-powered spatial analysis of tumor-infiltrating lymphocytes as complementary biomarker for immune checkpoint inhibition in non-small-cell lung cancer.J Clin Oncol2022;40:1916-28 PMCID:PMC9177249

[234]

Zugazagoitia J,Liu Y.Biomarkers associated with beneficial PD-1 checkpoint blockade in non-small cell lung cancer (NSCLC) identified using high-plex digital spatial profiling.Clin Cancer Res2020;26:4360-8 PMCID:PMC7442721

[235]

Leung EL,Fan XX.Longitudinal high-dimensional analysis identifies immune features associating with response to anti-PD-1 immunotherapy.Nat Commun2023;14:5115 PMCID:PMC10444872

[236]

Rochigneux P,Garcia A.Mass cytometry reveals classical monocytes, NK Cells, and ICOS+ CD4+ T cells associated with pembrolizumab efficacy in patients with lung cancer.Clin Cancer Res2022;28:5136-48 PMCID:PMC10085054

[237]

Anthiya S,Yanik H.Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors.J Control Release2023;357:67-83

[238]

Wang X,Zou S.Combination therapy of KRAS G12V mRNA vaccine and pembrolizumab: clinical benefit in patients with advanced solid tumors.Cell Res2024;34:661-4 PMCID:PMC11369195

[239]

Liang J,Ding W.Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity.Sci Adv2020;6:eabc3646 PMCID:PMC7455183

[240]

Park KS,Sun X,Moon JJ.Improving STING agonist delivery for cancer immunotherapy using biodegradable mesoporous silica nanoparticles.Adv Ther2020;3:2000130 PMCID:PMC8294168

[241]

Kim GB,Nam GH.Design of PD-1-decorated nanocages targeting tumor-draining lymph node for promoting T cell activation.J Control Release2021;333:328-38

[242]

Liu Y,Ma Y.Nanomedicines with high drug availability and drug sensitivity overcome hypoxia-associated drug resistance.Biomaterials2023;294:122023

[243]

Li Y,Long M,Chen Z.Nitroimidazole derivative incorporated liposomes for hypoxia-triggered drug delivery and enhanced therapeutic efficacy in patient-derived tumor xenografts.Acta Biomater2019;83:334-48

[244]

Thambiraj S,Vijayalakshmi R.Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery.Cancer Treat Res Commun2019;21:100157

[245]

Ruiz-Hernández E,Vallet-Regí M.Smart drug delivery through DNA/magnetic nanoparticle gates.ACS Nano2011;5:1259-66

[246]

Wagner J,Ustyanovska N.Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice.ACS Nano2021;15:4450-66

[247]

Vaghasiya K,Sharma A,Verma RK.Matrix metalloproteinase-responsive mesoporous silica nanoparticles cloaked with cleavable protein for “self-actuating” on-demand controlled drug delivery for cancer therapy.ACS Appl Bio Mater2020;3:4987-99

[248]

Shen Y,Snyder NR,Eles JR.ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier.J Nanobiotechnology2018;16:13 PMCID:PMC5810018

AI Summary AI Mindmap
PDF

488

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/