Targeting tumor-draining lymph node to overcome resistance to cancer immunotherapy: an update

Jianan Lu , Jiangnan Yu , Tuo Xu , Yina Li , Shuxian Chen , Qian Zhou , Lei Wang

Cancer Drug Resistance ›› 2025, Vol. 8 : 55

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :55 DOI: 10.20517/cdr.2025.126
review-article

Targeting tumor-draining lymph node to overcome resistance to cancer immunotherapy: an update

Author information +
History +
PDF

Abstract

Immune checkpoint inhibitor (ICI) resistance often stems from intratumoral T cell dysfunction. This review focuses on both tumor-intrinsic and tumor-draining lymph node (TDLN)-centric resistance mechanisms. We detail how specific defects within TDLNs - such as impaired dendritic cell migration and the establishment of immunosuppressive niches - initiate and perpetuate systemic immune dysfunction, ultimately leading to ICI resistance. To counter these challenges, we summarize the following TDLN-targeted strategies: (1) remodeling the TDLN immunosuppressive microenvironment to restore effective antigen presentation; (2) expanding the pool of progenitor exhausted T (Tpex) cells, with a focus on their primary reservoir in TDLNs; and (3) developing adoptive cell therapies using TDLN-derived Tpex cells to generate a robust, personalized antitumor response. By repositioning TDLNs as a central therapeutic target, recent findings suggest strategies aiming to overcome resistance at its source and improve ICI clinical outcomes.

Keywords

Immune checkpoint inhibitor / immunotherapy resistance / tumor microenvironment / tumor-draining lymph node

Cite this article

Download citation ▾
Jianan Lu, Jiangnan Yu, Tuo Xu, Yina Li, Shuxian Chen, Qian Zhou, Lei Wang. Targeting tumor-draining lymph node to overcome resistance to cancer immunotherapy: an update. Cancer Drug Resistance, 2025, 8: 55 DOI:10.20517/cdr.2025.126

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ribas A.Cancer immunotherapy using checkpoint blockade.Science2018;359:1350-5 PMCID:PMC7391259

[2]

Rini BI,Figlin RA.The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC).J Immunother Cancer2019;7:354 PMCID:PMC6924043

[3]

Doroshow DB,Hastings K.Immunotherapy in non-small cell lung cancer: facts and hopes.Clin Cancer Res2019;25:4592-602 PMCID:PMC6679805

[4]

Huuhtanen J,Peltola K.Single-cell characterization of anti-LAG-3 and anti-PD-1 combination treatment in patients with melanoma.J Clin Invest2023;133:e164809 PMCID:PMC10014104

[5]

Wang F,Wang Y.Small-molecule agents for cancer immunotherapy.Acta Pharm Sin B2024;14:905-52 PMCID:PMC10935485

[6]

Huang Q,Wang Z.The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes.Cell2022;185:4049-66.e25

[7]

Molodtsov AK,Vella JL.Resident memory CD8+ T cells in regional lymph nodes mediate immunity to metastatic melanoma.Immunity2021;54:2117-32.e7 PMCID:PMC9015193

[8]

Asrir A,Coudert J.Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy.Cancer Cell2022;40:318-34.e9

[9]

von Renesse J, Lin MC, Ho PC. Tumor-draining lymph nodes - friend or foe during immune checkpoint therapy?.Trends Cancer2025;11:676-90

[10]

du Bois H, Heim TA, Lund AW. Tumor-draining lymph nodes: at the crossroads of metastasis and immunity.Sci Immunol2021;6:eabg3551 PMCID:PMC8628268

[11]

Chen L.Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity.Nat Rev Immunol2004;4:336-47

[12]

Zhang X,Guo X.Structural and functional analysis of the costimulatory receptor programmed death-1.Immunity2004;20:337-47

[13]

Achleitner A,Bienzle D.T-regulatory cells infected with feline immunodeficiency virus up-regulate programmed death-1 (PD-1).Vet Immunol Immunopathol2011;143:307-13

[14]

Wang Z.Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker.Cancer Med2020;9:8086-121 PMCID:PMC7643687

[15]

Kubli SP,Araujo DV,Mak TW.Beyond immune checkpoint blockade: emerging immunological strategies.Nat Rev Drug Discov2021;20:899-919

[16]

Kluger HM,Ascierto ML.Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce.J Immunother Cancer2020;8:e000398 PMCID:PMC7174063

[17]

Dovedi SJ,Popple AL.Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade.Clin Cancer Res2017;23:5514-26

[18]

Gabrielson A,Wang H.Intratumoral CD3 and CD8 T-cell densities associated with relapse-free survival in HCC.Cancer Immunol Res2016;4:419-30 PMCID:PMC5303359

[19]

Jerby-Arnon L,Cuoco MS.A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade.Cell2018;175:984-97.e24 PMCID:PMC6410377

[20]

Zhou M.Viewing RCC with a DNA methylation lens enhances understanding of ICI resistance.Clin Cancer Res2023;29:1170-2 PMCID:PMC10073255

[21]

Jiang P,Pan D.Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response.Nat Med2018;24:1550-8 PMCID:PMC6487502

[22]

Sun D,Zhou H.Classification of tumor immune microenvironment according to programmed death-ligand 1 expression and immune infiltration predicts response to immunotherapy plus chemotherapy in advanced patients with NSCLC.J Thorac Oncol2023;18:869-81

[23]

Binnewies M,Kersten K.Understanding the tumor immune microenvironment (TIME) for effective therapy.Nat Med2018;24:541-50 PMCID:PMC5998822

[24]

Vesely MD,Chen L.Resistance mechanisms to anti-PD cancer immunotherapy.Annu Rev Immunol2022;40:45-74

[25]

Kim TK,Herbst RS.Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities.Nat Rev Drug Discov2022;21:529-40

[26]

Joyce JA.T cell exclusion, immune privilege, and the tumor microenvironment.Science2015;348:74-80

[27]

Chen DS.Elements of cancer immunity and the cancer-immune set point.Nature2017;541:321-30

[28]

Kim TK,Chen L.Defining and understanding adaptive resistance in cancer immunotherapy.Trends Immunol2018;39:624-31 PMCID:PMC6066429

[29]

Ren D,Yu B.Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy.Mol Cancer2020;19:19 PMCID:PMC6993488

[30]

Salem A,Mroueh R,Afarinkia K.CCR7 as a therapeutic target in cancer.Biochim Biophys Acta Rev Cancer2021;1875:188499

[31]

Schlechter BL.CCR5 and CCL5 in metastatic colorectal cancer.J Immunother Cancer2024;12:e008722 PMCID:PMC11086517

[32]

Liu C,Wang Z.KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer.Cancer Commun2022;42:828-47 PMCID:PMC9456691

[33]

Chow MT,Servis RL.Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy.Immunity2019;50:1498-512.e5 PMCID:PMC6527362

[34]

Neubert NJ,Bordry N.T cell-induced CSF1 promotes melanoma resistance to PD1 blockade.Sci Transl Med2018;10:eaan3311 PMCID:PMC5957531

[35]

Sun Y,Torphy RJ.Blockade of the CD93 pathway normalizes tumor vasculature to facilitate drug delivery and immunotherapy.Sci Transl Med2021;13:eabc8922 PMCID:PMC8749958

[36]

Anandappa AJ,Ott PA.Directing traffic: how to effectively drive T cells into tumors.Cancer Discov2020;10:185-97 PMCID:PMC7007384

[37]

Quan Y,Zou Q.Low molecular weight heparin synergistically enhances the efficacy of adoptive and anti-PD-1-based immunotherapy by increasing lymphocyte infiltration in colorectal cancer.J Immunother Cancer2023;11:e007080 PMCID:PMC10441131

[38]

Schoenfeld AJ.Acquired resistance to immune checkpoint inhibitors.Cancer Cell2020;37:443-55 PMCID:PMC7182070

[39]

Trujillo JA,Zha Y.Secondary resistance to immunotherapy associated with β-catenin pathway activation or PTEN loss in metastatic melanoma.J Immunother Cancer2019;7:295 PMCID:PMC6839232

[40]

van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells.Nat Rev Cancer2023;23:193-215

[41]

Martin CJ,Littlefield C.Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape.Sci Transl Med2020;12:eaay8456

[42]

Apte RS,Ferrara N.VEGF in signaling and disease: beyond discovery and development.Cell2019;176:1248-64 PMCID:PMC6410740

[43]

Cantallops Vilà P, Ravichandra A, Agirre Lizaso A, Perugorria MJ, Affò S. Heterogeneity, crosstalk, and targeting of cancer-associated fibroblasts in cholangiocarcinoma.Hepatology2024;79:941-58

[44]

Lee CJ,Jeon SE.The dysadherin/MMP9 axis modifies the extracellular matrix to accelerate colorectal cancer progression.Nat Commun2024;15:10422 PMCID:PMC11607440

[45]

Ford K,Mellone M.NOX4 inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumors.Cancer Res2020;80:1846-60 PMCID:PMC7611230

[46]

Cascone T,Mbofung RM.Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy.Cell Metab2018;27:977-87.e4 PMCID:PMC5932208

[47]

Kumagai S,Itahashi K.Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments.Cancer Cell2022;40:201-18.e9

[48]

Heuser C,Kreutz M.Targeting lactate metabolism for cancer immunotherapy - a matter of precision.Semin Cancer Biol2023;88:32-45

[49]

Zhang T,Cheng X.Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity.Sci Immunol2024;9:eadh2334

[50]

Semenza GL.Targeting HIF-1 for cancer therapy.Nat Rev Cancer2003;3:721-32

[51]

Ringel AE,Baker GJ.Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity.Cell2020;183:1848-66.e26 PMCID:PMC8064125

[52]

Fairfax BP,Watson RA.Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma.Nat Med2020;26:193-9 PMCID:PMC7611047

[53]

Griffiths JI,Pflieger LT.Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell interactions in patients during immunotherapy.Proc Natl Acad Sci U S A2020;117:16072-82 PMCID:PMC7355015

[54]

Zhang F,Gao R.Dynamics of peripheral T cell clones during PD-1 blockade in non-small cell lung cancer.Cancer Immunol Immunother2020;69:2599-611 PMCID:PMC11027464

[55]

Wu TD,de Almeida PE.Peripheral T cell expansion predicts tumour infiltration and clinical response.Nature2020;579:274-8

[56]

Hudson D,Basham M,Koohy H.Can we predict T cell specificity with digital biology and machine learning?.Nat Rev Immunol2023;23:511-21 PMCID:PMC9908307

[57]

Kolumam GA,Thompson LJ,Murali-Krishna K.Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection.J Exp Med2005;202:637-50 PMCID:PMC2212878

[58]

Sharma P,Wargo JA.Primary, adaptive, and acquired resistance to cancer immunotherapy.Cell2017;168:707-23 PMCID:PMC5391692

[59]

Rosenthal R, Cadieux EL, Salgado R, et al; TRACERx consortium. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567:479-85. PMCID:PMC6954100

[60]

Verdegaal EME,Visser M.Neoantigen landscape dynamics during human melanoma-T cell interactions.Nature2016;536:91-5

[61]

Wang X,Di Federico A.Tumor mutational burden for the prediction of PD-(L)1 blockade efficacy in cancer: challenges and opportunities.Ann Oncol2024;35:508-22

[62]

Chan TA,Jaffee E.Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic.Ann Oncol2019;30:44-56 PMCID:PMC6336005

[63]

Hugo W,Sun L.Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.Cell2016;165:35-44 PMCID:PMC4808437

[64]

Rizvi NA,Snyder A.Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.Science2015;348:124-8 PMCID:PMC4993154

[65]

Yarchoan M,Lutz ER,Jaffee EM.Targeting neoantigens to augment antitumour immunity.Nat Rev Cancer2017;17:209-22

[66]

Lv J,Zhou N.Epigenetic modification of CSDE1 locus dictates immune recognition of nascent tumorigenic cells.Sci Transl Med2023;15:eabq6024

[67]

Le DT,Smith KN.Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.Science2017;357:409-13 PMCID:PMC5576142

[68]

Escobar G,Oliveras JP.Tumor immunogenicity dictates reliance on TCF1 in CD8+ T cells for response to immunotherapy.Cancer Cell2023;41:1662-79.e7 PMCID:PMC10529353

[69]

Siddiqui I,Chennupati V.Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy.Immunity2019;50:195-211.e10

[70]

Wherry EJ.Molecular and cellular insights into T cell exhaustion.Nat Rev Immunol2015;15:486-99 PMCID:PMC4889009

[71]

Sade-Feldman M,Chen JH.Resistance to checkpoint blockade therapy through inactivation of antigen presentation.Nat Commun2017;8:1136 PMCID:PMC5656607

[72]

Yang K,Chan TA.Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy.Nat Rev Clin Oncol2023;20:604-23

[73]

Gettinger S,Hastings K.Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer.Cancer Discov2017;7:1420-35 PMCID:PMC5718941

[74]

Zaretsky JM,Shin DS.Mutations associated with acquired resistance to PD-1 blockade in melanoma.N Engl J Med2016;375:819-29 PMCID:PMC5007206

[75]

Fu L,Mei J.BIRC2 blockade facilitates immunotherapy of hepatocellular carcinoma.Mol Cancer2025;24:113 PMCID:PMC11995630

[76]

Chowell D,Grigg CM.Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy.Science2018;359:582-7 PMCID:PMC6057471

[77]

Chang Y.CapHLA: a comprehensive tool to predict peptide presentation and binding to HLA class I and class II.Brief Bioinform2024;26:bbae595 PMCID:PMC11650860

[78]

Syn NL,Mok TSK.De-novo and acquired resistance to immune checkpoint targeting.Lancet Oncol2017;18:e731-41

[79]

Marijt KA.To TAP or not to TAP: alternative peptides for immunotherapy of cancer.Curr Opin Immunol2020;64:15-9

[80]

von Locquenghien M, Rozalén C, Celià-Terrassa T. Interferons in cancer immunoediting: sculpting metastasis and immunotherapy response.J Clin Invest2021;131:143296 PMCID:PMC7773346

[81]

Zhang X,Zhu Y.Double-edged effects of interferons on the regulation of cancer-immunity cycle.Oncoimmunology2021;10:1929005 PMCID:PMC8253121

[82]

Wawrzyniak P.Dual role of interferon-gamma in the response of melanoma patients to immunotherapy with immune checkpoint inhibitors.Mol Cancer2025;24:89 PMCID:PMC11924818

[83]

Hoekstra ME,Urbanus J.Distinct spatiotemporal dynamics of CD8+ T cell-derived cytokines in the tumor microenvironment.Cancer Cell2024;42:157-67.e9 PMCID:PMC10783802

[84]

Jacquelot N,Roberti MP.Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade.Cell Res2019;29:846-61 PMCID:PMC6796942

[85]

Jiang Z,Li Y,Hung MC.Cancer cell metabolism bolsters immunotherapy resistance by promoting an immunosuppressive tumor microenvironment.Front Oncol2020;10:1197 PMCID:PMC7387712

[86]

Garris CS,Kohler RH.Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12.Immunity2018;49:1148-61.e7 PMCID:PMC6301092

[87]

Hu B,Ma X.IFNα potentiates anti-PD-1 efficacy by remodeling glucose metabolism in the hepatocellular carcinoma microenvironment.Cancer Discov2022;12:1718-41

[88]

Acha-Sagredo A,Clayton K.A constitutive interferon-high immunophenotype defines response to immunotherapy in colorectal cancer.Cancer Cell2025;43:292-307.e7

[89]

Boutsikou E,Hardavella G,Zarogoulidis K.Tumour necrosis factor, interferon-gamma and interleukins as predictive markers of antiprogrammed cell-death protein-1 treatment in advanced non-small cell lung cancer: a pragmatic approach in clinical practice.Ther Adv Med Oncol2018;10:1758835918768238 PMCID:PMC5894896

[90]

Benci JL,Choa R.Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade.Cell2019;178:933-48.e14 PMCID:PMC6830508

[91]

Boukhaled GM,Elsaesser HJ.Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy.Nat Immunol2022;23:1273-83

[92]

Müller MR.NFAT, immunity and cancer: a transcription factor comes of age.Nat Rev Immunol2010;10:645-56

[93]

Moskophidis D,Pircher H.Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells.Nature1993;362:758-61

[94]

McLane LM,Wherry EJ.CD8 T cell exhaustion during chronic viral infection and cancer.Annu Rev Immunol2019;37:457-95

[95]

Cheng H,Zhang L.The tumor microenvironment shapes the molecular characteristics of exhausted CD8+ T cells.Cancer Lett2021;506:55-66

[96]

Kurachi M.CD8+ T cell exhaustion.Semin Immunopathol2019;41:327-37

[97]

Utzschneider DT,Chisanga D.Early precursor T cells establish and propagate T cell exhaustion in chronic infection.Nat Immunol2020;21:1256-66

[98]

Giles JR,Kaech SM.CD8+ T cells in the cancer-immunity cycle.Immunity2023;56:2231-53 PMCID:PMC11237652

[99]

Miller BC,Al Abosy R.Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade.Nat Immunol2019;20:326-36 PMCID:PMC6673650

[100]

Chow A,Klebanoff CA.Clinical implications of T cell exhaustion for cancer immunotherapy.Nat Rev Clin Oncol2022;19:775-90 PMCID:PMC10984554

[101]

Lan X,Youngblood B.Cellular and molecular waypoints along the path of T cell exhaustion.Sci Immunol2023;8:eadg3868 PMCID:PMC10618911

[102]

Mortezaee K.Mechanisms of CD8+ T cell exclusion and dysfunction in cancer resistance to anti-PD-(L)1.Biomed Pharmacother2023;163:114824

[103]

Shayan G,Li J,Kane LP.Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer.Oncoimmunology2017;6:e1261779 PMCID:PMC5283618

[104]

Ren X,Zhang Y,Siemers N.Insights gained from single-cell analysis of immune cells in the tumor microenvironment.Annu Rev Immunol2021;39:583-609

[105]

Cillo AR,Shan F.Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8+ T cells to promote antitumor immunity.Cell2024;187:4373-88.e15 PMCID:PMC11346583

[106]

Spolski R,Leonard WJ.Biology and regulation of IL-2: from molecular mechanisms to human therapy.Nat Rev Immunol2018;18:648-59

[107]

Diab A,Bentebibel SE.Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02).Cancer Discov2020;10:1158-73

[108]

Tsui C,Rapelius S.MYB orchestrates T cell exhaustion and response to checkpoint inhibition.Nature2022;609:354-60 PMCID:PMC9452299

[109]

Chapman NM,Chi H.Metabolic coordination of T cell quiescence and activation.Nat Rev Immunol2020;20:55-70

[110]

Ikeda H,Nishi T.Immune evasion through mitochondrial transfer in the tumour microenvironment.Nature2025;638:225-36 PMCID:PMC11798832

[111]

Saha T,Jayabalan R.Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells.Nat Nanotechnol2022;17:98-106 PMCID:PMC10071558

[112]

Icard P,Farhat D,Alifano M.How the Warburg effect supports aggressiveness and drug resistance of cancer cells?.Drug Resist Updat2018;38:1-11

[113]

Wu H,Vaeth M.Metabolic regulation of T cell exhaustion.Immune Discov2025;1:10005

[114]

Lontos K,Joshi SK.Metabolic reprogramming via an engineered PGC-1α improves human chimeric antigen receptor T-cell therapy against solid tumors.J Immunother Cancer2023;11:e006522 PMCID:PMC10016249

[115]

Ma S,Mann TH.Nutrient-driven histone code determines exhausted CD8+ T cell fates.Science2025;387:eadj3020 PMCID:PMC11881194

[116]

Wilfahrt D.Metabolic waypoints during T cell differentiation.Nat Immunol2024;25:206-17

[117]

Reina-Campos M,Goldrath AW.CD8+ T cell metabolism in infection and cancer.Nat Rev Immunol2021;21:718-38 PMCID:PMC8806153

[118]

Mondal A,DuHadaway JB.IDO1 is an integral mediator of inflammatory neovascularization.EBioMedicine2016;14:74-82 PMCID:PMC5161421

[119]

Heeren AM,Berry DRAI.Indoleamine 2,3-dioxygenase expression pattern in the tumor microenvironment predicts clinical outcome in early stage cervical cancer.Front Immunol2018;9:1598 PMCID:PMC6050387

[120]

Ladomersky E,Lenzen A.IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma.Clin Cancer Res2018;24:2559-73 PMCID:PMC5984675

[121]

Krähenbühl L,Mangana J.A longitudinal analysis of IDO and PDL1 expression during immune- or targeted therapy in advanced melanoma.Neoplasia2018;20:218-25 PMCID:PMC5767907

[122]

Forster M,Pousa AL.Eftilagimod alpha (Soluble LAG3 Protein) combined with pembrolizumab as second-line therapy for patients with metastatic head and neck squamous cell carcinoma.Clin Cancer Res2024;30:3726-34

[123]

Bell HN,Singhal R.Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer.Cell Metab2023;35:134-49.e6 PMCID:PMC9841369

[124]

Pauken KE,Odorizzi PM.Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade.Science2016;354:1160-5 PMCID:PMC5484795

[125]

Belk JA,Satpathy AT.Epigenetic regulation of T cell exhaustion.Nat Immunol2022;23:848-60 PMCID:PMC10439681

[126]

Belk JA,Ly N.Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence.Cancer Cell2022;40:768-86.e7 PMCID:PMC9949532

[127]

Chen F,Chen ZH,Luo C.T cell exhaustion methylation signature drives differential immune responses in glioblastoma.Discov Oncol2024;15:530 PMCID:PMC11461406

[128]

Huang C,Chen Y.PD-L1 methylation restricts PD-L1/PD-1 interactions to control cancer immune surveillance.Sci Adv2023;9:eade4186 PMCID:PMC10219601

[129]

Widschwendter M, Jones A, Evans I, et al; FORECEE (4C) Consortium. Epigenome-based cancer risk prediction: rationale, opportunities and challenges. Nat Rev Clin Oncol. 2018;15:292-309. PMCID:PMC7686703

[130]

Yan X,Liu Y.Case Report: Low-dose decitabine plus anti-PD-1 inhibitor camrelizumab for previously treated advanced metastatic non-small cell lung cancer.Front Oncol2020;10:558572 PMCID:PMC7649792

[131]

Jenkins E,Fellermeyer M,Sharma S.The current state and future of T-cell exhaustion research.Oxf Open Immunol2023;4:iqad006 PMCID:PMC10352049

[132]

Franco F,Romero P,Ho PC.Metabolic and epigenetic regulation of T-cell exhaustion.Nat Metab2020;2:1001-12

[133]

Tonnerre P,Subudhi S.Differentiation of exhausted CD8+ T cells after termination of chronic antigen stimulation stops short of achieving functional T cell memory.Nat Immunol2021;22:1030-41 PMCID:PMC8323980

[134]

Yates KB,Martin GE.Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans.Nat Immunol2021;22:1020-9 PMCID:PMC8600539

[135]

De Henau O,Winkler D.Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells.Nature2016;539:443-7 PMCID:PMC5634331

[136]

Ott PA,Keskin DB.An immunogenic personal neoantigen vaccine for patients with melanoma.Nature2017;547:217-21 PMCID:PMC5577644

[137]

Gangadhar TC,Bauer TM.Efficacy and safety of epacadostat plus pembrolizumab treatment of NSCLC: preliminary phase I/II results of ECHO-202/KEYNOTE-037.J Clin Oncol2017;35:9014

[138]

Fan L,Wang Y.Gut microbiota bridges dietary nutrients and host immunity.Sci China Life Sci2023;66:2466-514 PMCID:PMC10247344

[139]

Schneider E,Clarke G.Feeding gut microbes to nourish the brain: unravelling the diet-microbiota-gut-brain axis.Nat Metab2024;6:1454-78

[140]

Heintz-Buschart A.Human gut microbiome: function matters.Trends Microbiol2018;26:563-74

[141]

Li S,Yu J.The role of gut microbiota and metabolites in cancer chemotherapy.J Adv Res2024;64:223-35 PMCID:PMC11464465

[142]

Gopalakrishnan V,Nezi L.Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.Science2018;359:97-103 PMCID:PMC5827966

[143]

Simpson RC,Scolyer RA.Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors.Nat Rev Clin Oncol2023;20:697-715

[144]

Fernandes MR,Costa RGF,Trinchieri G.Targeting the gut microbiota for cancer therapy.Nat Rev Cancer2022;22:703-22

[145]

Wong SH,Wu CY.Clinical applications of gut microbiota in cancer biology.Semin Cancer Biol2019;55:28-36

[146]

Zhou CB,Fang JY.Gut microbiota in cancer immune response and immunotherapy.Trends Cancer2021;7:647-60

[147]

Wang T,Chen X.Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction.Nat Metab2020;2:635-47 PMCID:PMC7371628

[148]

Xiu W,Wang Z,Zhou Z.Microbiota-derived short chain fatty acid promotion of Amphiregulin expression by dendritic cells is regulated by GPR43 and Blimp-1.Biochem Biophys Res Commun2020;533:282-8

[149]

Fiorucci S,Urbani G.Immunology of bile acids regulated receptors.Prog Lipid Res2024;95:101291

[150]

Lu Y,Wang M.Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies.J Hematol Oncol2022;15:47 PMCID:PMC9052532

[151]

Luu M,Baldrich A.Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer.Nat Commun2021;12:4077 PMCID:PMC8249424

[152]

Yi M,Chu Q.The role of gut microbiota in immune checkpoint inhibitor therapy.Hepatobiliary Surg Nutr2018;7:481-3 PMCID:PMC6295392

[153]

Yi M,Qin S.Gut microbiome modulates efficacy of immune checkpoint inhibitors.J Hematol Oncol2018;11:47 PMCID:PMC5870075

[154]

Wang T,Luo Q.Probiotics Lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells.Front Immunol2019;10:1235 PMCID:PMC6558076

[155]

Wang S,Zhang Y.The role of intestinal flora on tumorigenesis, progression, and the efficacy of PD-1/PD-L1 antibodies in colorectal cancer.Cancer Biol Med2023;21:65-82 PMCID:PMC10875280

[156]

Park JS,Wu M.Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance.Nature2023;617:377-85 PMCID:PMC10219577

[157]

Gao Y,Wu X,Luo Y.[Bacterial resistance influences intestinal flora and host immune regulation].Chin J Biotechnol2018;34:1259-69

[158]

da Silva Souza D,Ferreira IN.The relationship between gut microbiota and immune system health.REASE2023;9:1173-83. (in Portuguese)

[159]

Hadi DK,Jabbarizadeh B.Improved survival in advanced melanoma patients treated with fecal microbiota transplantation using healthy donor stool in combination with anti-PD1: final results of the MIMic phase 1 trial.J Immunother Cancer2025;13:e012659 PMCID:PMC12359429

[160]

Davar D,McCulloch JA.Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients.Science2021;371:595-602 PMCID:PMC8097968

[161]

Routy B,Miller WH Jr.Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial.Nat Med2023;29:2121-32

[162]

Delclaux I,Jones D.The tumor-draining lymph node as a reservoir for systemic immune surveillance.Trends Cancer2024;10:28-37 PMCID:PMC10843049

[163]

Dammeijer F,Mulder EE.The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes.Cancer Cell2020;38:685-700.e8

[164]

Cruz de Casas P, Knöpper K, Dey Sarkar R, Kastenmüller W. Same yet different - how lymph node heterogeneity affects immune responses.Nat Rev Immunol2024;24:358-74

[165]

Blanchard L.High endothelial venules (HEVs) in immunity, inflammation and cancer.Angiogenesis2021;24:719-53 PMCID:PMC8487881

[166]

Vella G,Bergers G.High endothelial venules in cancer: regulation, function, and therapeutic implication.Cancer Cell2023;41:527-45

[167]

Breslin JW.Lymphatic clearance and pump function.Cold Spring Harb Perspect Med2023;13:a041187 PMCID:PMC9899645

[168]

Saddawi-Konefka R,Gutkind JS.Let it be: preserving tumor-draining lymph nodes in the era of immuno-oncology.Cancer Cell2024;42:930-3

[169]

Tian W,Qin G.Lymphocyte homing and recirculation with tumor tertiary lymphoid structure formation: predictions for successful cancer immunotherapy.Front Immunol2024;15:1403578 PMCID:PMC11284035

[170]

Lee CYC,Richoz N.Tumour-retained activated CCR7+ dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity.Nat Commun2024;15:682 PMCID:PMC10808534

[171]

Alanko J,Canigova N.CCR7 acts as both a sensor and a sink for CCL19 to coordinate collective leukocyte migration.Sci Immunol2023;8:eadc9584

[172]

Garcia-Seyda N,Seveau de Noray V.Naive T lymphocytes chemotax long distance to CCL21 but not to a source of bioactive S1P.iScience2023;26:107695 PMCID:PMC10562802

[173]

Gérard A,Kemper C,Köchl R.LFA-1 in T cell priming, differentiation, and effector functions.Trends Immunol2021;42:706-22 PMCID:PMC10734378

[174]

Förster R,Rot A.CCR7 and its ligands: balancing immunity and tolerance.Nat Rev Immunol2008;8:362-71

[175]

Kozai M,Katakai T.Essential role of CCL21 in establishment of central self-tolerance in T cells.J Exp Med2017;214:1925-35 PMCID:PMC5502431

[176]

Takeda A,Jalkanen S.Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system.Trends Immunol2023;44:72-86

[177]

Mirsky HP,Linderman JJ.Systems biology approaches for understanding cellular mechanisms of immunity in lymph nodes during infection.J Theor Biol2011;287:160-70 PMCID:PMC4504675

[178]

Acton SE,Astarita JL.Dendritic cells control fibroblastic reticular network tension and lymph node expansion.Nature2014;514:498-502 PMCID:PMC4235005

[179]

Ruhland MK,Cai E.Visualizing synaptic transfer of tumor antigens among dendritic cells.Cancer Cell2020;37:786-99.e5 PMCID:PMC7671443

[180]

Calzada-Fraile D,Ramírez-Huesca M.Immune synapse formation promotes lipid peroxidation and MHC-I upregulation in licensed dendritic cells for efficient priming of CD8+ T cells.Nat Commun2023;14:6772 PMCID:PMC10600134

[181]

Locati M,Mantovani A.Diversity, mechanisms, and significance of macrophage plasticity.Annu Rev Pathol2020;15:123-47 PMCID:PMC7176483

[182]

Reticker-Flynn NE,Belk JA.Lymph node colonization induces tumor-immune tolerance to promote distant metastasis.Cell2022;185:1924-42.e23 PMCID:PMC9149144

[183]

Xu Q,Hu Q.The role and clinical significance of tumor-draining lymph nodes in tumor progression and immunotherapy.Crit Rev Oncol Hematol2025;212:104745

[184]

Randolph GJ,Zinselmeyer BH.The lymphatic system: integral roles in immunity.Annu Rev Immunol2017;35:31-52 PMCID:PMC5551392

[185]

Ran S.Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors.Cancers2012;4:618-57 PMCID:PMC3430523

[186]

Chen DS.Oncology meets immunology: the cancer-immunity cycle.Immunity2013;39:1-10

[187]

Prokhnevska N,Valanparambil RM.CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor.Immunity2023;56:107-24.e5 PMCID:PMC10266440

[188]

Druzd D,Ince L.Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses.Immunity2017;46:120-32 PMCID:PMC5263259

[189]

Reticker-Flynn NE.Lymph nodes: at the intersection of cancer treatment and progression.Trends Cell Biol2023;33:1021-34 PMCID:PMC10624650

[190]

Ugur M,Fenton C.Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks.Immunity2023;56:1778-93.e10 PMCID:PMC10433941

[191]

Martin-Almedina S,Ostergaard P.Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema.Physiol Rev2021;101:1809-71

[192]

Sokol CL,Jones MC.The chemokine receptor CCR8 promotes the migration of dendritic cells into the lymph node parenchyma to initiate the allergic immune response.Immunity2018;49:449-63.e6 PMCID:PMC6192021

[193]

Okada N,Koretomo R.Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction.Gene Ther2005;12:129-39

[194]

Sun M,Yang Y.Mesoporous silica nanoparticles inflame tumors to overcome anti-PD-1 resistance through TLR4-NFκB axis.J Immunother Cancer2021;9:e002508 PMCID:PMC8202116

[195]

Wang L,He T.Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers.Biomaterials2020;255:120208

[196]

Dasoveanu DC,Ly CL.Lymph node stromal CCL2 limits antibody responses.Sci Immunol2020;5:eaaw0693 PMCID:PMC7490901

[197]

Gillot L,Rouaud L,Noël A.The pre-metastatic niche in lymph nodes: formation and characteristics.Cell Mol Life Sci2021;78:5987-6002 PMCID:PMC8316194

[198]

Louie DAP.Lymph node subcapsular sinus macrophages as the frontline of lymphatic immune defense.Front Immunol2019;10:347 PMCID:PMC6413714

[199]

Su H,Khan S.Immunotherapy shapes B-cell receptor repertoire to induce anti-tumor antibodies production in colon and lung cancer.Genome Instab Dis2024;5:183-96

[200]

Zhang Y,Ulbricht C.Recycling of memory B cells between germinal center and lymph node subcapsular sinus supports affinity maturation to antigenic drift.Nat Commun2022;13:2460 PMCID:PMC9072412

[201]

Lamorte S,Jin R.Lymph node macrophages drive immune tolerance and resistance to cancer therapy by induction of the immune-regulatory cytokine IL-33.Cancer Cell2025;43:955-69.e10 PMCID:PMC12074877

[202]

Dieterich LC.Tumor lymphangiogenesis and new drug development.Adv Drug Deliv Rev2016;99:148-60

[203]

Ji RC.Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis.Cell Mol Life Sci2012;69:897-914 PMCID:PMC11114502

[204]

Gardenier JC,Kataru RP.Diphtheria toxin-mediated ablation of lymphatic endothelial cells results in progressive lymphedema.JCI Insight2016;1:e84095 PMCID:PMC5033805

[205]

Zhang Y,Li L.Lymphangiogenesis in renal fibrosis arises from macrophages via VEGF-C/VEGFR3-dependent autophagy and polarization.Cell Death Dis2021;12:109 PMCID:PMC7820012

[206]

Liu P,Sun C.Lymphangiogenesis in gastric cancer: function and mechanism.Eur J Med Res2023;28:405 PMCID:PMC10559534

[207]

Blass E.Advances in the development of personalized neoantigen-based therapeutic cancer vaccines.Nat Rev Clin Oncol2021;18:215-29 PMCID:PMC7816749

[208]

Xi X,Lu G,Wei W.Lymph node-targeting nanovaccine through antigen-CpG self-assembly potentiates cytotoxic T cell activation.J Immunol Res2018;2018:3714960 PMCID:PMC6029500

[209]

Thomas SN,Lund AW,Swartz MA.Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response.Biomaterials2014;35:814-24

[210]

Chu Y,Ke Y.Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma.J Nanobiotechnology2022;20:190 PMCID:PMC9006542

[211]

Chen J,Huang C.Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response.Proc Natl Acad Sci U S A2022;119:e2207841119 PMCID:PMC9407666

[212]

Sun L,Jiao A,Zhang B.T cells in health and disease.Signal Transduct Target Ther2023;8:235 PMCID:PMC10277291

[213]

Ni L.Potential mechanisms of cancer stem-like progenitor T-cell bio-behaviours.Clin Transl Med2024;14:e1817 PMCID:PMC11338842

[214]

Rahim MK,Jones KB.Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes.Cell2023;186:1127-43.e18 PMCID:PMC10348701

[215]

Kang TG,Mi T.Epigenetic regulators of clonal hematopoiesis control CD8 T cell stemness during immunotherapy.Science2024;386:eadl4492 PMCID:PMC11697317

[216]

Chen Z,Ngiow SF.TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision.Immunity2019;51:840-55.e5 PMCID:PMC6943829

[217]

Im SJ,Hudson WH,Ahmed R.PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection.Proc Natl Acad Sci U S A2020;117:4292-9 PMCID:PMC7049149

[218]

Brummelman J,Alvisi G.High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors.J Exp Med2018;215:2520-35 PMCID:PMC6170179

[219]

Sade-Feldman M,Bjorgaard SL.Defining T cell states associated with response to checkpoint immunotherapy in melanoma.Cell2018;175:998-1013.e20 PMCID:PMC6641984

[220]

Xiong D,Sun ZJ.Unlocking T cell exhaustion: insights and implications for CAR-T cell therapy.Acta Pharm Sin B2024;14:3416-31 PMCID:PMC11365448

[221]

Lee M,Baek S.rhIL-7-hyFc and hIL-2/TCB2c combination promotes an immune-stimulatory tumor microenvironment that improves antitumor efficacy of checkpoint inhibitors.J Immunother Cancer2024;12:e008001 PMCID:PMC10936464

[222]

Lee J,Bae H.IL-15 promotes self-renewal of progenitor exhausted CD8 T cells during persistent antigenic stimulation.Front Immunol2023;14:1117092 PMCID:PMC10319055

[223]

Li X,Dong L.Decitabine priming increases anti-PD-1 antitumor efficacy by promoting CD8+ progenitor exhausted T cell expansion in tumor models.J Clin Invest2023;133:e165673 PMCID:PMC10065084

[224]

Duraiswamy J,Minasyan A.Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation.Cancer Cell2021;39:1623-42.e20 PMCID:PMC8861565

[225]

Woroniecka KI,Dechant C.4-1BB agonism averts TIL exhaustion and licenses PD-1 blockade in glioblastoma and other intracranial cancers.Clin Cancer Res2020;26:1349-58 PMCID:PMC7073290

[226]

Mullard A.FDA approves first tumour-infiltrating lymphocyte (TIL) therapy, bolstering hopes for cell therapies in solid cancers.Nat Rev Drug Discov2024;23:238

[227]

Hu W,Ji H.TIL Therapy in lung cancer: current progress and perspectives.Adv Sci2024;11:e2409356 PMCID:PMC11633538

[228]

Creelan B,Teer J.Abstract CT056: Durable complete responses to adoptive cell transfer using tumor infiltrating lymphocytes (TIL) in non-small cell lung cancer (NSCLC): a phase I trial.Cancer Res2020;80:CT056

[229]

Tran E,Lu YC.T-cell transfer therapy targeting mutant KRAS in cancer.N Engl J Med2016;375:2255-62 PMCID:PMC5178827

[230]

Wang S,Chen K.Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors.BMC Med2021;19:140 PMCID:PMC8194199

[231]

Klobuch S,Schumacher TN.Tumour-infiltrating lymphocyte therapy for patients with advanced-stage melanoma.Nat Rev Clin Oncol2024;21:173-84

[232]

Huang H,Liu XF.Phase I study of adjuvant immunotherapy with autologous tumor-infiltrating lymphocytes in locally advanced cervical cancer.J Clin Invest2022;132:e157726 PMCID:PMC9337833

[233]

van den Berg JH,van Rooij N.Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up.J Immunother Cancer2020;8:e000848 PMCID:PMC7406109

[234]

Okamura K,Tate T,Kiyotani K.Lymphocytes in tumor-draining lymph nodes co-cultured with autologous tumor cells for adoptive cell therapy.J Transl Med2022;20:241 PMCID:PMC9125345

[235]

Zhen YH,Yang Y.Phase I/II study of adjuvant immunotherapy with sentinel lymph node T lymphocytes in patients with colorectal cancer.Cancer Immunol Immunother2015;64:1083-93 PMCID:PMC4540776

[236]

Burga RA,Ao Z.IL-2-independent expansion, persistence, and antitumor activity in TIL expressing regulatable membrane-bound IL-15.Mol Ther2025;33:3605-23 PMCID:PMC12461655

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/