Immune checkpoint inhibitors in hepatocellular carcinoma therapy: resistance mechanisms, liver transplantation challenges and management strategies

Yutao Chen , Desheng Chen , Zhixing Liang , Haoyuan Yu , Haobin Sun , Yongwei Hu , Peng Jiang , Mingshen Zhang , Linsen Ye , Hua Li

Cancer Drug Resistance ›› 2025, Vol. 8 : 48

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :48 DOI: 10.20517/cdr.2025.120
review-article

Immune checkpoint inhibitors in hepatocellular carcinoma therapy: resistance mechanisms, liver transplantation challenges and management strategies

Author information +
History +
PDF

Abstract

Hepatocellular carcinoma (HCC) poses a significant clinical burden due to its aggressive nature, profound tumor heterogeneity, and limited therapeutic efficacy. While immune checkpoint inhibitors (ICIs) have revolutionized treatment paradigms and demonstrated considerable promise, the emergence of resistance mechanisms has posed a critical challenge in contemporary clinical oncology. The accelerated development of novel agents and innovative combination strategies has further complicated this resistance landscape. In this review, we present a unique and comprehensive analysis of ICI resistance mechanisms in HCC by integrating insights into primary resistance, acquired resistance, and host-related factors. Building upon this mechanistic framework, we explore emerging therapeutic strategies to overcome ICI resistance. Furthermore, we evaluate the dual role of ICIs in HCC management - serving as a neoadjuvant therapy for transplant candidates while simultaneously posing risks of post-transplant rejection. By bridging preclinical discoveries with clinical realities, this analysis aims to inform rational therapeutic design and optimize immuno-oncology trials for HCC patients.

Keywords

Hepatocellular carcinoma / immune checkpoint inhibitors / resistance / liver transplantation / therapeutic strategy

Cite this article

Download citation ▾
Yutao Chen, Desheng Chen, Zhixing Liang, Haoyuan Yu, Haobin Sun, Yongwei Hu, Peng Jiang, Mingshen Zhang, Linsen Ye, Hua Li. Immune checkpoint inhibitors in hepatocellular carcinoma therapy: resistance mechanisms, liver transplantation challenges and management strategies. Cancer Drug Resistance, 2025, 8: 48 DOI:10.20517/cdr.2025.120

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang JD,Gores GJ,Plymoth A.A global view of hepatocellular carcinoma: trends, risk, prevention and management.Nat Rev Gastroenterol Hepatol2019;16:589-604 PMCID:PMC6813818

[2]

Kohansal-Nodehi M,Kroeniger K.Discovery of a haptoglobin glycopeptides biomarker panel for early diagnosis of hepatocellular carcinoma.Front Oncol2023;13:1213898 PMCID:PMC10619681

[3]

Zheng Y,Cai J,Fan J.The progress of immune checkpoint therapy in primary liver cancer.Biochim Biophys Acta Rev Cancer2021;1876:188638

[4]

Llovet JM,Heikenwalder M.Immunotherapies for hepatocellular carcinoma.Nat Rev Clin Oncol2022;19:151-72

[5]

Akula V,Acikgoz Y.Neoadjuvant immune checkpoint inhibitors for hepatocellular carcinoma.NPJ Precis Oncol2025;9:60 PMCID:PMC11885445

[6]

Shek D,Nagrial A.Immune-checkpoint inhibitors for advanced hepatocellular carcinoma: a synopsis of response rates.Oncologist2021;26:e1216-25 PMCID:PMC8265367

[7]

De Lorenzo S, Tovoli F, Trevisani F. Mechanisms of primary and acquired resistance to immune checkpoint inhibitors in patients with hepatocellular carcinoma.Cancers2022;14:4616 PMCID:PMC9564277

[8]

Zheng Y,Tu X.Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma.J Immunother Cancer2019;7:193 PMCID:PMC6651993

[9]

Ortiz V.Rethinking immune check point inhibitors use in liver transplantation: implications and resistance.Cell Mol Gastroenterol Hepatol2025;19:101407 PMCID:PMC11609388

[10]

Yin C,He AR.Immune checkpoint inhibitors in liver transplant recipients - a review of current literature.Hepatoma Res2021;7:52

[11]

Oura K,Tani J.Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review.Int J Mol Sci2021;22:5801 PMCID:PMC8198390

[12]

Shen KY,Xie SZ.Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives.J Hematol Oncol2024;17:25 PMCID:PMC11057182

[13]

Ping Y,Qin H.PD-1 signaling limits expression of phospholipid phosphatase 1 and promotes intratumoral CD8+ T cell ferroptosis.Immunity2024;57:2122-39.e9

[14]

Pu Q,Liu X.Prognostic value of CD8+ T cells related genes and exhaustion regulation of Notch signaling pathway in hepatocellular carcinoma.Front Immunol2024;15:1375864 PMCID:PMC11033358

[15]

Song G,Zhang M.Global immune characterization of HBV/HCV-related hepatocellular carcinoma identifies macrophage and T-cell subsets associated with disease progression.Cell Discov2020;6:90 PMCID:PMC7721904

[16]

Guo H,Ni C.TREM2 promotes the formation of a tumor-supportive microenvironment in hepatocellular carcinoma.J Exp Clin Cancer Res2025;44:20 PMCID:PMC11748316

[17]

Peña-Romero AC.Dual effect of immune cells within tumour microenvironment: pro- and anti-tumour effects and their triggers.Cancers2022;14:1681 PMCID:PMC8996887

[18]

Mempel TR,Altenburger LM.How chemokines organize the tumour microenvironment.Nat Rev Cancer2024;24:28-50 PMCID:PMC11480775

[19]

Ilyas SI,El-Khoueiry AB.Liver cancer immunity.Hepatology2021;73 Suppl 1:86-103 PMCID:PMC8218340

[20]

Langhans B,Krämer B.Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma.Cancer Immunol Immunother2019;68:2055-66 PMCID:PMC11028391

[21]

Nan J,Hu B.Endoplasmic reticulum stress induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma.Immunology2018;154:144-55 PMCID:PMC5904716

[22]

Li C,Wei S,Wang J.Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects.Mol Cancer2020;19:116 PMCID:PMC7367382

[23]

Wei R,Liu C.FAP upregulates PD-L1 expression in cancer-associated fibroblasts to exacerbate T cells dysfunction and suppress anti-tumor immunity.Cancer Lett2025;612:217475

[24]

Raimondo S,Alessandro R.Extracellular vesicles and tumor-immune escape: biological functions and clinical perspectives.Int J Mol Sci2020;21:2286 PMCID:PMC7177226

[25]

Vautrot V,Causse S,Gobbo J.Tumor-derived exosomes: hidden players in PD-1/PD-L1 resistance.Cancers2021;13:4537 PMCID:PMC8467727

[26]

Sun Y,Zhong Y.Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma.Cell2021;184:404-21.e16

[27]

Zheng C,Yoo JK.Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing.Cell2017;169:1342-56.e16

[28]

Lin J,Zhang M.Metabolic reprogramming in the tumor microenvironment of liver cancer.J Hematol Oncol2024;17:6 PMCID:PMC10832230

[29]

Li Q,Yang Q.Thymidine kinase 1 drives hepatocellular carcinoma in enzyme-dependent and -independent manners.Cell Metab2023;35:912-27.e7

[30]

Liu Q,Qi J.Comprehensive profiling of lipid metabolic reprogramming expands precision medicine for HCC.Hepatology2025;81:1164-80 PMCID:PMC11902616

[31]

Galassi C,Vitale I.The hallmarks of cancer immune evasion.Cancer Cell2024;42:1825-63

[32]

Jung J,Park S.High tumor mutational burden predicts favorable response to anti-PD-(L)1 therapy in patients with solid tumor: a real-world pan-tumor analysis.J Immunother Cancer2023;11:e006454 PMCID:PMC10152061

[33]

Anagnostou V,Chan TA.The status of tumor mutational burden and immunotherapy.Nat Cancer2022;3:652-6

[34]

Chan TA,Jaffee E.Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic.Ann Oncol2019;30:44-56 PMCID:PMC6336005

[35]

Samstein RM,Shoushtari AN.Tumor mutational load predicts survival after immunotherapy across multiple cancer types.Nat Genet2019;51:202-6 PMCID:PMC6365097

[36]

Kepp O,Yamazaki T.ATP and cancer immunosurveillance.EMBO J2021;40:e108130 PMCID:PMC8246257

[37]

Li L,Zhao S,Cheng A.The role of ANXA1 in the tumor microenvironment.Int Immunopharmacol2024;131:111854

[38]

Liu P,Loos F.Immunosuppression by mutated calreticulin released from malignant cells.Mol Cell2020;77:748-60.e9

[39]

Galluzzi L,Schmidt D,Marincola FM.Targeting immunogenic cell stress and death for cancer therapy.Nat Rev Drug Discov2024;23:445-60 PMCID:PMC11153000

[40]

Yang W,Zhou J.A selective HDAC8 inhibitor potentiates antitumor immunity and efficacy of immune checkpoint blockade in hepatocellular carcinoma.Sci Transl Med2021;13:eaaz6804

[41]

Teijeira Á,Gato M.CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity.Immunity2020;52:856-71.e8

[42]

Peranzoni E,Vimeux L.Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment.Proc Natl Acad Sci U S A2018;115:E4041-50 PMCID:PMC5924916

[43]

Ho P,Rogava M.The CD58-CD2 axis is co-regulated with PD-L1 via CMTM6 and shapes anti-tumor immunity.Cancer Cell2023;41:1207-21.e12 PMCID:PMC10524902

[44]

Chan LC,Xia W.IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion.J Clin Invest2019;129:3324-38 PMCID:PMC6668668

[45]

Liu X,Zhang H.Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance.Cancer Cell2023;41:272-87.e9

[46]

Ritchie C,Li L.Biochemistry, cell biology, and pathophysiology of the innate immune cGAS-cGAMP-STING pathway.Annu Rev Biochem2022;91:599-628

[47]

Hung MH,Ma C.Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma.Nat Commun2021;12:1455 PMCID:PMC7935900

[48]

Ockfen E,Pereira Fernandes D,Thomas C.Actin cytoskeleton remodeling at the cancer cell side of the immunological synapse: good, bad, or both?.Front Immunol2023;14:1276602 PMCID:PMC10585106

[49]

Hu X,Fu M,Wang W.The JAK/STAT signaling pathway: from bench to clinic.Signal Transduct Target Ther2021;6:402 PMCID:PMC8617206

[50]

Wang H,Yuan X.Autophagy in tumor immune escape and immunotherapy.Mol Cancer2025;24:85 PMCID:PMC11921617

[51]

Lim CJ,Pan L.Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma.Gut2019;68:916-27

[52]

Gao Y,Huang X.HBV-associated hepatocellular carcinomas inhibit antitumor CD8+ T cell via the long noncoding RNA HDAC2-AS2.Nat Commun2025;16:2055 PMCID:PMC11871238

[53]

Yang C,Yang X.Targeting the immune privilege of tumor-initiating cells to enhance cancer immunotherapy.Cancer Cell2024;42:2064-81.e19

[54]

Wang G,Jin W.Elucidating the role of S100A10 in CD8+ T cell exhaustion and HCC immune escape via the cPLA2 and 5-LOX axis.Cell Death Dis2024;15:573 PMCID:PMC11310305

[55]

Zhang Z,Hu D.E-twenty-six-specific sequence variant 5 (ETV5) facilitates hepatocellular carcinoma progression and metastasis through enhancing polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC)-mediated immunosuppression.Gut2025;74:1137-49

[56]

Zhang Y,Ye L.HKDC1 promotes tumor immune evasion in hepatocellular carcinoma by coupling cytoskeleton to STAT1 activation and PD-L1 expression.Nat Commun2024;15:1314 PMCID:PMC10864387

[57]

Jiang X,Tao S.A RIPK3-independent role of MLKL in suppressing parthanatos promotes immune evasion in hepatocellular carcinoma.Cell Discov2023;9:7 PMCID:PMC9845215

[58]

Nguyen PHD,Tan CT.Trajectory of immune evasion and cancer progression in hepatocellular carcinoma.Nat Commun2022;13:1441 PMCID:PMC8931110

[59]

Tekguc M,Osaki M,Sakaguchi S.Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells.Proc Natl Acad Sci U S A2021;118:e2023739118 PMCID:PMC8325248

[60]

Graydon CG,Fowke KR.LAG3’s enigmatic mechanism of action.Front Immunol2020;11:615317 PMCID:PMC7820757

[61]

Shang S,Qian K.The role of neoantigens in tumor immunotherapy.Biomed Pharmacother2022;151:113118

[62]

Klempner SJ,Bane S.Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence.Oncologist2020;25:e147-59 PMCID:PMC6964127

[63]

Ang C,Ali SM.Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma.Oncotarget2019;10:4018-25 PMCID:PMC6592287

[64]

Sharma P,Wargo JA.Primary, adaptive, and acquired resistance to cancer immunotherapy.Cell2017;168:707-23 PMCID:PMC5391692

[65]

Xu J,Jia R.Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study.Clin Cancer Res2019;25:515-23

[66]

Zhu AX,de Galarreta MR.Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma.Nat Med2022;28:1599-611

[67]

Herhaus L,Eapen VV.IRGQ-mediated autophagy in MHC class I quality control promotes tumor immune evasion.Cell2024;187:7285-302.e29

[68]

Akazawa Y,Takahashi M.Higher human lymphocyte antigen class I expression in early-stage cancer cells leads to high sensitivity for cytotoxic T lymphocytes.Cancer Sci2019;110:1842-52 PMCID:PMC6549930

[69]

Umemoto Y,Matsumoto Y.Prognostic impact of programmed cell death 1 ligand 1 expression in human leukocyte antigen class I-positive hepatocellular carcinoma after curative hepatectomy.J Gastroenterol2015;50:65-75

[70]

Yoshida S,Tokuno K.Concomitant overexpression of heat-shock protein 70 and HLA class-I in hepatitis C virus-related hepatocellular carcinoma.Anticancer Res2009;29:539-44

[71]

Yao H,Li C.Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours.Nat Biomed Eng2019;3:306-17

[72]

Huang J,Fang XN.FASN inhibition decreases MHC-I degradation and synergizes with PD-L1 checkpoint blockade in hepatocellular carcinoma.Cancer Res2024;84:855-71

[73]

Ruiz de Galarreta M,Molina-Sánchez P.β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma.Cancer Discov2019;9:1124-41 PMCID:PMC6677618

[74]

Li X,Li F,Li B.WNT/β-Catenin signaling pathway regulating T cell-inflammation in the tumor microenvironment.Front Immunol2019;10:2293 PMCID:PMC6775198

[75]

Takeuchi Y,Sato E.Highly immunogenic cancer cells require activation of the WNT pathway for immunological escape.Sci Immunol2021;6:eabc6424

[76]

Cadoux M,Pham S.Expression of NKG2D ligands is downregulated by β-catenin signalling and associates with HCC aggressiveness.J Hepatol2021;74:1386-97

[77]

Harding JJ,Armenia J.Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies.Clin Cancer Res2019;25:2116-26 PMCID:PMC6689131

[78]

Pinyol R,Llovet JM.Immune exclusion-Wnt/CTNNB1 class predicts resistance to immunotherapies in HCC.Clin Cancer Res2019;25:2021-3 PMCID:PMC6445700

[79]

Shin DS,Escuin-Ordinas H.Primary resistance to PD-1 blockade mediated by JAK1/2 mutations.Cancer Discov2017;7:188-201 PMCID:PMC5296316

[80]

Tsimberidou AM,Arora SP.Phase I trial of TTI-101, a first-in-class oral inhibitor of STAT3, in patients with advanced solid tumors.Clin Cancer Res2025;31:965-74 PMCID:PMC11911802

[81]

Wang S,Li T.Disruption of MerTK increases the efficacy of checkpoint inhibitor by enhancing ferroptosis and immune response in hepatocellular carcinoma.Cell Rep Med2024;5:101415 PMCID:PMC10897610

[82]

Xu Y,Jin HY.Translation control of the immune checkpoint in cancer and its therapeutic targeting.Nat Med2019;25:301-11 PMCID:PMC6613562

[83]

Montironi C,Haber PK.Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification.Gut2023;72:129-40 PMCID:PMC9395551

[84]

Shen J,Zhao W.ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade.Nat Med2018;24:556-62 PMCID:PMC6076433

[85]

Li J,Zhang Y.Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy.J Clin Invest2020;130:2712-26 PMCID:PMC7190935

[86]

Zhou J,Sun H.Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy.Gut2018;67:931-44 PMCID:PMC5961939

[87]

Fu L,Mei J.BIRC2 blockade facilitates immunotherapy of hepatocellular carcinoma.Mol Cancer2025;24:113 PMCID:PMC11995630

[88]

Joyce JA.T cell exclusion, immune privilege, and the tumor microenvironment.Science2015;348:74-80

[89]

Tian X,Li Z,Wang S.Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment.J Hematol Oncol2019;12:84 PMCID:PMC6704713

[90]

Hoechst B,Ormandy L.Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor.Hepatology2009;50:799-807 PMCID:PMC6357774

[91]

Xie P,Zhang B.CRKL dictates anti-PD-1 resistance by mediating tumor-associated neutrophil infiltration in hepatocellular carcinoma.J Hepatol2024;81:93-107

[92]

Xie P,Yu Q.ACE2 enhances sensitivity to PD-L1 blockade by inhibiting macrophage-induced immunosuppression and angiogenesis.Cancer Res2025;85:299-313

[93]

Lan T,Cai Y.The protein circPETH-147aa regulates metabolic reprogramming in hepatocellular carcinoma cells to remodel immunosuppressive microenvironment.Nat Commun2025;16:333 PMCID:PMC11696079

[94]

Kim JM.Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure).Ann Oncol2016;27:1492-504

[95]

Bai X,Jiao Y,Wu K.Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor.Onco Targets Ther2019;12:9527-38 PMCID:PMC6857659

[96]

Zhang Z,Xiao R.Palmitoylation of TIM-3 promotes immune exhaustion and restrains antitumor immunity.Sci Immunol2024;9:eadp7302

[97]

Ganjalikhani Hakemi M, Jafarinia M, Azizi M, Rezaeepoor M, Isayev O, Bazhin AV. The role of TIM-3 in hepatocellular carcinoma: a promising target for immunotherapy?.Front Oncol2020;10:601661 PMCID:PMC7793963

[98]

Jiang Y,Huang Y.Ligand-induced ubiquitination unleashes LAG3 immune checkpoint function by hindering membrane sequestration of signaling motifs.Cell2025;188:2354-71.e18

[99]

Terry S,Ortiz-Cuaran S.New insights into the role of EMT in tumor immune escape.Mol Oncol2017;11:824-46 PMCID:PMC5496499

[100]

Soundararajan R,Konen JM.Targeting the interplay between epithelial-to-mesenchymal-transition and the immune system for effective immunotherapy.Cancers2019;11:714 PMCID:PMC6562947

[101]

Pallotta MT,Suvieri C.Indoleamine 2,3-dioxygenase 1 (IDO1): an up-to-date overview of an eclectic immunoregulatory enzyme.FEBS J2022;289:6099-118 PMCID:PMC9786828

[102]

Xue HY.TGF-β: an active participant in the immune and metabolic microenvironment of multiple myeloma: TGF-β in the microenvironment of multiple myeloma.Ann Hematol2024;103:4351-62 PMCID:PMC11534828

[103]

Cherney EC,Nara S.Discovery and preclinical evaluation of BMS-986242, a potent, selective inhibitor of indoleamine-2,3-dioxygenase 1.ACS Med Chem Lett2021;12:288-94 PMCID:PMC7883469

[104]

Schoenfeld AJ.Acquired resistance to immune checkpoint inhibitors.Cancer Cell2020;37:443-55 PMCID:PMC7182070

[105]

Zaretsky JM,Shin DS.Mutations associated with acquired resistance to PD-1 blockade in melanoma.N Engl J Med2016;375:819-29 PMCID:PMC5007206

[106]

Sade-Feldman M,Chen JH.Resistance to checkpoint blockade therapy through inactivation of antigen presentation.Nat Commun2017;8:1136 PMCID:PMC5656607

[107]

Gettinger S,Hastings K.Impaired HLA Class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer.Cancer Discov2017;7:1420-35 PMCID:PMC5718941

[108]

Le DT,Smith KN.Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.Science2017;357:409-13 PMCID:PMC5576142

[109]

Trujillo JA,Zha Y.Secondary resistance to immunotherapy associated with β-catenin pathway activation or PTEN loss in metastatic melanoma.J Immunother Cancer2019;7:295 PMCID:PMC6839232

[110]

Zhao F,Evans KS.Paracrine Wnt5a-β-catenin signaling triggers a metabolic program that drives dendritic cell tolerization.Immunity2018;48:147-60.e7 PMCID:PMC5777287

[111]

Kakavand H,Menzies AM.Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients.Mod Pathol2017;30:1666-76

[112]

Wang B,Zhang Y.Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms.Cell Biosci2023;13:120 PMCID:PMC10311815

[113]

Spranger S.Tumor heterogeneity and tumor immunity: a chicken-and-egg problem.Trends Immunol2016;37:349-51

[114]

Ling YH,Yin YX.Integrated genetic and epigenetic analysis reveals DNA repair alterations in multifocal hepatocellular carcinoma.Signal Transduct Target Ther2023;8:244 PMCID:PMC10287708

[115]

Ma C,Heinrich B.Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells.Science2018;360:eaan5931 PMCID:PMC6407885

[116]

Yoshimoto S,Atarashi K.Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome.Nature2013;499:97-101

[117]

Vétizou M,Daillère R.Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.Science2015;350:1079-84 PMCID:PMC4721659

[118]

Bianca C,Tiribelli C,Sukowati CHC.Role of hepatitis B virus in development of hepatocellular carcinoma: focus on covalently closed circular DNA.World J Hepatol2022;14:866-84 PMCID:PMC9157711

[119]

Kao C,Tsai HL.Age-related divergence of circulating immune responses in patients with solid tumors treated with immune checkpoint inhibitors.Nat Commun2025;16:3531 PMCID:PMC12012091

[120]

Ho JK,Leo J,Fan KH.Sex differences in hepatocellular carcinoma.Hepatoma Res2024;10:53

[121]

Qiao ZY,Lv ZC.Neoadjuvant programmed cell death 1 (PD-1) inhibitor treatment in patients with hepatocellular carcinoma before liver transplant: a cohort study and literature review.Front Immunol2021;12:653437 PMCID:PMC8326904

[122]

Moeckli B,El Hajji S.Determining safe washout period for immune checkpoint inhibitors prior to liver transplantation: an international retrospective cohort study.Hepatology2025;

[123]

Kayali S,Plaz Torres MC.Immune checkpoint inhibitors in malignancies after liver transplantation: a systematic review and pooled analysis.Liver Int2023;43:8-17 PMCID:PMC10087158

[124]

Au KP.Immunotherapy after liver transplantation: where are we now?.World J Gastrointest Surg2021;13:1267-78 PMCID:PMC8554723

[125]

Guo Z,Ling Q.Pretransplant use of immune checkpoint inhibitors for hepatocellular carcinoma: a multicenter, retrospective cohort study.Am J Transplant2024;24:1837-56

[126]

Abdelrahim M,Divatia MK.Utilization of immunotherapy as a neoadjuvant therapy for liver transplant recipients with hepatocellular carcinoma.J Clin Med2024;13:3068 PMCID:PMC11172993

[127]

Jin X,Zhao D,Ma N.Immune microenvironment and therapeutic progress of recurrent hepatocellular carcinoma after liver transplantation.Transl Oncol2023;28:101603 PMCID:PMC9794975

[128]

Li J,Xing H.The absence of intra-tumoral tertiary lymphoid structures is associated with a worse prognosis and mTOR signaling activation in hepatocellular carcinoma with liver transplantation: a multicenter retrospective study.Adv Sci2024;11:e2309348 PMCID:PMC11151010

[129]

Martínez Burgos M,López Ortega S.Liver transplantation for hepatocarcinoma: results over two decades of a transplantation programme and analysis of factors associated with recurrence.Biomedicines2024;12:1302 PMCID:PMC11200972

[130]

Shi GM,Huang XW.Graft programmed death ligand 1 expression as a marker for transplant rejection following anti-programmed death 1 immunotherapy for recurrent liver tumors.Liver Transpl2021;27:444-9

[131]

Dendy MS,Stein SM.Locoregional therapy, immunotherapy and the combination in hepatocellular carcinoma: future directions.Liver Cancer2019;8:326-40 PMCID:PMC6873025

[132]

Liang J,Ha FS,Deng HT.Combining local regional therapy and systemic therapy: expected changes in the treatment landscape of recurrent hepatocellular carcinoma.World J Gastrointest Oncol2023;15:1-18 PMCID:PMC9850755

[133]

Dai Z,Lei K.Irreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth.Cancer Lett2021;503:1-10

[134]

Qian J,Wu Q.Blocking exposed PD-L1 elicited by nanosecond pulsed electric field reverses dysfunction of CD8+ T cells in liver cancer.Cancer Lett2020;495:1-11

[135]

Cheng AL,Ikeda M.Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma.J Hepatol2022;76:862-73 PMCID:PMC9630017

[136]

Galle PR,Qin S.Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): an open-label, randomised, phase 3 trial.Lancet Oncol2021;22:991-1001

[137]

Qin S, Chan SL, Gu S, et al; CARES-310 Study Group. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresectable hepatocellular carcinoma (CARES-310): a randomised, open-label, international phase 3 study. Lancet. 2023;402:1133-46.

[138]

Li Y,Wang Q.Dual targeting of TIGIT and PD-1 with a novel small molecule for cancer immunotherapy.Biochem Pharmacol2024;223:116162

[139]

Yau T, Galle PR, Decaens T, et al; CheckMate 9DW investigators. Nivolumab plus ipilimumab versus lenvatinib or sorafenib as first-line treatment for unresectable hepatocellular carcinoma (CheckMate 9DW): an open-label, randomised, phase 3 trial. Lancet. 2025;405:1851-64.

[140]

Abou-Alfa GK,Kudo M.Tremelimumab plus durvalumab in unresectable hepatocellular carcinoma.NEJM Evid2022;1:EVIDoa2100070

[141]

Liu F,Chen Z.Tim-3 expression and its role in hepatocellular carcinoma.J Hematol Oncol2018;11:126 PMCID:PMC6182863

[142]

Jia G,Dai T.Spatial immune scoring system predicts hepatocellular carcinoma recurrence.Nature2025;640:1031-41

[143]

Zhou Z,Yang G.Targeting β-catenin and PD-L1 simultaneously by a racemic supramolecular peptide for the potent immunotherapy of hepatocellular carcinoma.Theranostics2023;13:3371-86 PMCID:PMC10283047

[144]

Höchst B,Sauerborn P.Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion.J Hepatol2013;59:528-35

AI Summary AI Mindmap
PDF

577

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/