Current applications of tumor local ablation (TLA) combined with immune checkpoint inhibitors in breast cancer treatment

Lingpeng Tang , Dandan Wang , Ting Hu , Xiaoying Lin , Songsong Wu

Cancer Drug Resistance ›› 2024, Vol. 7 : 33

PDF
Cancer Drug Resistance ›› 2024, Vol. 7 :33 DOI: 10.20517/cdr.2024.77
review-article

Current applications of tumor local ablation (TLA) combined with immune checkpoint inhibitors in breast cancer treatment

Author information +
History +
PDF

Abstract

Breast cancer is one of the most common cancers in women globally, posing significant challenges to treatment because of the diverse and complex pathological and molecular subtypes. The emergence of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of breast cancer, particularly for triple-negative breast cancer (TNBC), significantly improving patient outcomes. However, the overall tumor response rate remains suboptimal due to drug resistance to ICIs. This resistance is primarily due to the immune-suppressive tumor microenvironment (TME), tumor cells’ ability to evade immune surveillance, and other complex immune regulatory mechanisms. To address these challenges, clinical researchers are actively exploring combinatorial therapeutic strategies with ICIs. Tumor local ablation (TLA) technology is anticipated to overcome resistance to ICIs and enhance therapeutic efficacy by ablating tumor tissue, releasing tumor antigens, remodeling the TME, and stimulating local and systemic immune responses. Combination therapy with TLA and ICIs has demonstrated promising results in preclinical breast cancer studies, underscoring the feasibility and importance of addressing drug resistance mechanisms in breast cancer. This provides novel strategies for breast cancer treatment and is expected to drive further advancements in the field.

Keywords

Tumor microenvironment / antitumor immune response / ablation / immune checkpoint inhibitors

Cite this article

Download citation ▾
Lingpeng Tang, Dandan Wang, Ting Hu, Xiaoying Lin, Songsong Wu. Current applications of tumor local ablation (TLA) combined with immune checkpoint inhibitors in breast cancer treatment. Cancer Drug Resistance, 2024, 7: 33 DOI:10.20517/cdr.2024.77

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Harbeck N.Breast cancer.Lancet2017;389:1134-50

[2]

Ferlay J,Dikshit R.Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.Int J Cancer2015;136:E359-86

[3]

Torre LA,Siegel RL,Lortet-Tieulent J.Global cancer statistics, 2012.CA Cancer J Clin2015;65:87-108

[4]

Bray F,Sung H.Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2024;74:229-63

[5]

Burstein HJ, Curigliano G, Thürlimann B, et al; Panelists of the St Gallen Consensus Conference. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021. Ann Oncol 2021;32:1216-35. PMCID:PMC9906308

[6]

Greenlee H,Balneaves LG.Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment.CA Cancer J Clin2017;67:194-232 PMCID:PMC5892208

[7]

Cardoso F, Kyriakides S, Ohno S, et al; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2019;30:1194-220.

[8]

Kerr AJ,McGale P.Adjuvant and neoadjuvant breast cancer treatments: a systematic review of their effects on mortality.Cancer Treat Rev2022;105:102375 PMCID:PMC9096622

[9]

Wang H.Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer.Drug Des Devel Ther2020;14:2423-33 PMCID:PMC7308147

[10]

Meattini I,Boersma L.European Society for Radiotherapy and Oncology Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer.Lancet Oncol2022;23:e21-31

[11]

Haussmann J,Nestle-Kraemling C.Recent advances in radiotherapy of breast cancer.Radiat Oncol2020;15:71 PMCID:PMC7106718

[12]

Emens LA.Breast cancer immunotherapy: facts and hopes.Clin Cancer Res2018;24:511-20 PMCID:PMC5796849

[13]

Corti C,Sajjadi E,Curigliano G.CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress.Expert Opin Investig Drugs2022;31:593-605

[14]

Ye F,Li Y.Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer.Mol Cancer2023;22:105 PMCID:PMC10324146

[15]

Cejuela M,Pernas S.Immune checkpoint inhibitors and novel immunotherapy approaches for breast cancer.Curr Oncol Rep2022;24:1801-19

[16]

Rizzo A.Biomarkers for breast cancer immunotherapy: PD-L1, TILs, and beyond.Expert Opin Investig Drugs2022;31:549-55

[17]

Zhang H,Xin Q.Recent research and clinical progress of CTLA-4-based immunotherapy for breast cancer.Front Oncol2023;13:1256360 PMCID:PMC10582933

[18]

Gaynor N,Collins DM.Immune checkpoint inhibitors: key trials and an emerging role in breast cancer.Semin Cancer Biol2022;79:44-57

[19]

Chen DS.Elements of cancer immunity and the cancer-immune set point.Nature2017;541:321-30

[20]

Zhang J,Saw PE.Turning cold tumors hot: from molecular mechanisms to clinical applications.Trends Immunol2022;43:523-45

[21]

Byrne A,Sant S.Tissue-resident memory T cells in breast cancer control and immunotherapy responses.Nat Rev Clin Oncol2020;17:341-8

[22]

Michel LL,Mavratzas A,Schütz F.Immune checkpoint blockade in patients with triple-negative breast cancer.Target Oncol2020;15:415-28

[23]

Santoni M,Saladino T.Triple negative breast cancer: key role of tumor-associated macrophages in regulating the activity of anti-PD-1/PD-L1 agents.Biochim Biophys Acta Rev Cancer2018;1869:78-84

[24]

Kundu M,Panda VK.Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer.Mol Cancer2024;23:92 PMCID:PMC11075356

[25]

Adams S,Rugo HS.Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study.Ann Oncol2019;30:397-404

[26]

Dirix LY,Jerusalem G.Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study.Breast Cancer Res Treat2018;167:671-86 PMCID:PMC5807460

[27]

Rugo HS,Im SA.Safety and antitumor activity of pembrolizumab in patients with estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer.Clin Cancer Res2018;24:2804-11

[28]

van de Voort EMF, Struik GM, Birnie E, Moelker A, Verhoef C, Klem TMAL. Thermal ablation as an alternative for surgical resection of small (≤ 2 cm) breast cancers: a meta-analysis.Clin Breast Cancer2021;21:e715-30

[29]

Mauri G,Pescatori LC.Technical success, technique efficacy and complications of minimally-invasive imaging-guided percutaneous ablation procedures of breast cancer: a systematic review and meta-analysis.Eur Radiol2017;27:3199-210

[30]

Chen Z,Zhang J.Progress in the cryoablation and cryoimmunotherapy for tumor.Front Immunol2023;14:1094009 PMCID:PMC9907027

[31]

Petitprez F,de Reyniès A,Fridman WH.The tumor microenvironment in the response to immune checkpoint blockade therapies.Front Immunol2020;11:784 PMCID:PMC7221158

[32]

Luo L,Zhu C.Sustained release of anti-PD-1 peptide for perdurable immunotherapy together with photothermal ablation against primary and distant tumors.J Control Release2018;278:87-99

[33]

van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune modulation plus tumor ablation: adjuvants and antibodies to prime and boost anti-tumor immunity in situ.Front Immunol2021;12:617365 PMCID:PMC8079760

[34]

Aldea M,Marabelle A,Barlesi F.Overcoming resistance to tumor-targeted and immune-targeted therapies.Cancer Discov2021;11:874-99

[35]

Will M,Metcalfe C.Therapeutic resistance to anti-oestrogen therapy in breast cancer.Nat Rev Cancer2023;23:673-85 PMCID:PMC10529099

[36]

Zou Y,Xie X.N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer.Nat Commun2022;13:2672 PMCID:PMC9106694

[37]

Hanker AB,Arteaga CL.Overcoming endocrine resistance in breast cancer.Cancer Cell2020;37:496-513 PMCID:PMC7169993

[38]

Lev S.Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis.Biochem Soc Trans2020;48:657-65

[39]

Siatis KE,Manou D.Resistance to hormone therapy in breast cancer cells promotes autophagy and EGFR signaling pathway.Am J Physiol Cell Physiol2023;325:C708-20 PMCID:PMC10625825

[40]

Li CX,Wang WN.Expression dynamics of periodic transcripts during cancer cell cycle progression and their correlation with anticancer drug sensitivity.Mil Med Res2022;9:71 PMCID:PMC9762028

[41]

Szebényi K,Bajtai E.Effective targeting of breast cancer by the inhibition of P-glycoprotein mediated removal of toxic lipid peroxidation byproducts from drug tolerant persister cells.Drug Resist Updat2023;71:101007

[42]

Wang CJ,Danielson JA.Proton pump inhibitors suppress DNA damage repair and sensitize treatment resistance in breast cancer by targeting fatty acid synthase.Cancer Lett2021;509:1-12 PMCID:PMC8167934

[43]

Liu HY,Yang F.Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer.Nucleic Acids Res2020;48:3638-56 PMCID:PMC7144926

[44]

Liu Y,Xue J.Advances in immunotherapy for triple-negative breast cancer.Mol Cancer2023;22:145 PMCID:PMC10474743

[45]

Keenan TE,Barroso-Sousa R.Molecular correlates of response to eribulin and pembrolizumab in hormone receptor-positive metastatic breast cancer.Nat Commun2021;12:5563 PMCID:PMC8455578

[46]

Kieffer Y,Gentric G.Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer.Cancer Discov2020;10:1330-51

[47]

Huang H,Chen H.The immunomodulatory effects of endocrine therapy in breast cancer.J Exp Clin Cancer Res2021;40:19 PMCID:PMC7792133

[48]

Pinilla K,Lucey R.Precision breast cancer medicine: early stage triple negative breast cancer - a review of molecular characterisation, therapeutic targets and future trends.Front Oncol2022;12:866889 PMCID:PMC9393396

[49]

Deepak KGK,Nagaraju GP.Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer.Pharmacol Res2020;153:104683

[50]

Burke KP,Liang D.Immune checkpoint receptors in autoimmunity.Curr Opin Immunol2023;80:102283 PMCID:PMC10019320

[51]

Pauken KE,Rose NR,Sharpe AH.Adverse events following cancer immunotherapy: obstacles and opportunities.Trends Immunol2019;40:511-23 PMCID:PMC6527345

[52]

Bagchi S,Engleman EG.Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance.Annu Rev Pathol2021;16:223-49

[53]

Karim AM,Ali T.Triple-negative breast cancer: epidemiology, molecular mechanisms, and modern vaccine-based treatment strategies.Biochem Pharmacol2023;212:115545

[54]

Derakhshan F.Pathogenesis of triple-negative breast cancer.Annu Rev Pathol2022;17:181-204 PMCID:PMC9231507

[55]

Keenan TE.Role of immunotherapy in triple-negative breast cancer.J Natl Compr Canc Netw2020;18:479-89

[56]

Farshbafnadi M,Rezaei N.Immune checkpoint inhibitors for triple-negative breast cancer: from immunological mechanisms to clinical evidence.Int Immunopharmacol2021;98:107876

[57]

Reddy SM,Nanda R.Atezolizumab for the treatment of breast cancer.Expert Rev Anticancer Ther2020;20:151-8

[58]

Nanda R,Dees EC.Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study.J Clin Oncol2016;34:2460-7 PMCID:PMC6816000

[59]

Qi Y,Wang Z.Efficacy and safety of anti-PD-1/PD-L1 monotherapy for metastatic breast cancer: clinical evidence.Front Pharmacol2021;12:653521 PMCID:PMC8276035

[60]

Emens LA,Eder JP.Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study.JAMA Oncol2019;5:74-82 PMCID:PMC6439773

[61]

Voutsadakis IA.High tumor mutation burden and other immunotherapy response predictors in breast cancers: associations and therapeutic opportunities.Target Oncol2020;15:127-38

[62]

Loi S, Giobbie-Hurder A, Gombos A, et al; International Breast Cancer Study Group and the Breast International Group. Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial. Lancet Oncol 2019;20:371-82.

[63]

Emens LA,Beresford M.Overall survival (OS) in KATE2, a phase II study of programmed death ligand 1 (PD-L1) inhibitor atezolizumab (atezo)+trastuzumab emtansine (T-DM1) vs placebo (pbo)+T-DM1 in previously treated HER2+ advanced breast cancer (BC).Ann Oncol2019;30:v104-42

[64]

Ramos-Casals M,Callahan MK.Immune-related adverse events of checkpoint inhibitors.Nat Rev Dis Primers2020;6:38 PMCID:PMC9728094

[65]

Ramos-Casals M.Immune-related adverse events of immune checkpoint inhibitors.Ann Intern Med2024;177:ITC17-32

[66]

Patel RP,Gunturu KS.Cardiotoxicity of immune checkpoint inhibitors.Curr Oncol Rep2021;23:79 PMCID:PMC8088903

[67]

Kim ST,Misoi M.Distinct molecular and immune hallmarks of inflammatory arthritis induced by immune checkpoint inhibitors for cancer therapy.Nat Commun2022;13:1970 PMCID:PMC9005525

[68]

Berner F.Autoimmunity in immune checkpoint inhibitor-induced immune-related adverse events: a focus on autoimmune skin toxicity and pneumonitis.Immunol Rev2023;318:37-50

[69]

Cortes J, Cescon DW, Rugo HS, et al; KEYNOTE-355 Investigators. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020;396:1817-28.

[70]

Schmid P, Cortes J, Pusztai L, et al; KEYNOTE-522 Investigators. Pembrolizumab for early triple-negative breast cancer. N Engl J Med 2020;382:810-21.

[71]

Chen G, Gu X, Xue J, et al; Northeastern Clinical Research Alliance of Oncology (NCRAO). Effects of neoadjuvant stereotactic body radiotherapy plus adebrelimab and chemotherapy for triple-negative breast cancer: a pilot study. Elife 2023;12:e91737. PMCID:PMC10746137

[72]

Emens LA,Barrios CH.First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis.Ann Oncol2021;32:983-93

[73]

Zhang Z.The role of PI3K inhibition in the treatment of breast cancer, alone or combined with immune checkpoint inhibitors.Front Mol Biosci2021;8:648663 PMCID:PMC8139556

[74]

Zhou Z,Fang Y.An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity.Nat Biomed Eng2021;5:1320-35 PMCID:PMC8647932

[75]

Jungles KM,Pearson AN.Updates in combined approaches of radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer.Front Oncol2022;12:1022542 PMCID:PMC9643771

[76]

Patel RB,Carlson P.Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade.Sci Transl Med2021;13:eabb3631 PMCID:PMC8449934

[77]

Ho AY,Arnold BB.A phase 2 clinical trial assessing the efficacy and safety of pembrolizumab and radiotherapy in patients with metastatic triple-negative breast cancer.Cancer2020;126:850-60

[78]

Demaria S,Yang AM.Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer.Clin Cancer Res2005;11:728-34

[79]

Dewan MZ,Kawashima N.Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody.Clin Cancer Res2009;15:5379-88 PMCID:PMC2746048

[80]

Gu T,Zhou C.Adverse reactions associated with immune checkpoint inhibitors and bevacizumab: a pharmacovigilance analysis.Int J Cancer2023;152:480-95

[81]

Yu S,He P.Effective combinations of immunotherapy and radiotherapy for cancer treatment.Front Oncol2022;12:809304 PMCID:PMC8858950

[82]

Dai Y,Yu J.Percutaneous management of breast cancer: a systematic review.Curr Oncol Rep2022;24:1443-59

[83]

Carriero S,Pellegrino G.Ablative therapies for breast cancer: state of art.Technol Cancer Res Treat2023;22:15330338231157193 PMCID:PMC10017926

[84]

Orsi F.Interventional oncology in breast cancer.J Med Imaging Radiat Oncol2023;67:876-85

[85]

Benot-Dominguez R,Castelli V.Olive leaf extract impairs mitochondria by pro-oxidant activity in MDA-MB-231 and OVCAR-3 cancer cells.Biomed Pharmacother2021;134:111139

[86]

García-Tejedor A,Soler T.Radiofrequency ablation followed by surgical excision versus lumpectomy for early stage breast cancer: a randomized phase II clinical trial.Radiology2018;289:317-24

[87]

Slovak R,Gettinger SN,Kim HS.Immuno-thermal ablations - boosting the anticancer immune response.J Immunother Cancer2017;5:78 PMCID:PMC5644150

[88]

Chu KF.Thermal ablation of tumours: biological mechanisms and advances in therapy.Nat Rev Cancer2014;14:199-208

[89]

Shi L,Wu C.PD-1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor.Clin Cancer Res2016;22:1173-84 PMCID:PMC4780056

[90]

Chen L,Yang X.Radiofrequency ablation-combined multimodel therapies for hepatocellular carcinoma: current status.Cancer Lett2016;370:78-84 PMCID:PMC4686130

[91]

Ahmed M,Lee FT Jr.Principles of and advances in percutaneous ablation.Radiology2011;258:351-69 PMCID:PMC6939957

[92]

Carrafiello G,Mangini M.Microwave tumors ablation: principles, clinical applications and review of preliminary experiences.Int J Surg2008;6 Suppl 1:S65-9

[93]

Chiang J,Brace CL.Flow-dependent vascular heat transfer during microwave thermal ablation.Annu Int Conf IEEE Eng Med Biol Soc2012;2012:5582-5 PMCID:PMC3563104

[94]

Zhu J,Chen L.Enhanced antitumor efficacy through microwave ablation in combination with immune checkpoints blockade in breast cancer: a pre-clinical study in a murine model.Diagn Interv Imaging2018;99:135-42

[95]

Yu Z,Zhang M,Fan Q.Treatment of osteosarcoma with microwave thermal ablation to induce immunogenic cell death.Oncotarget2014;5:6526-39 PMCID:PMC4171648

[96]

Zhao J,Muktiali M.Effect of microwave ablation treatment of hepatic malignancies on serum cytokine levels.BMC Cancer2020;20:812 PMCID:PMC7448515

[97]

Ahmad F,Bhardwaj N.Changes in interleukin-1β and 6 after hepatic microwave tissue ablation compared with radiofrequency, cryotherapy and surgical resections.Am J Surg2010;200:500-6

[98]

Pusceddu C,Nigri G.Cryoablation in the management of breast cancer: evidence to date.Breast Cancer2019;11:283-92 PMCID:PMC6791835

[99]

Beer D.New ablation technology keeps getting cooler.JACC Clin Electrophysiol2022;8:1040-1

[100]

Olagunju A,Ward RC.An update on the use of cryoablation and immunotherapy for breast cancer.Front Immunol2022;13:1026475 PMCID:PMC9647043

[101]

Sabel MS,Su G,Ferrara JL.Immunologic response to cryoablation of breast cancer.Breast Cancer Res Treat2005;90:97-104

[102]

Huang ML,Lane DL,Candelaria RP.Breast cancer cryoablation fundamentals past and present: technique optimization and imaging pearls.Acad Radiol2023;30:2383-95

[103]

Mauda-Havakuk M,Owen JW.Comparative analysis of the immune response to RFA and cryoablation in a colon cancer mouse model.Sci Rep2022;12:18229 PMCID:PMC9617942

[104]

Sainani NI,Tuna IS.Incidence and clinical sequelae of portal and hepatic venous thrombosis following percutaneous cryoablation of liver tumors.Abdom Radiol2016;41:970-7

[105]

Kasuya A,Tokura Y.Structural and immunological effects of skin cryoablation in a mouse model.PLoS One2015;10:e0123906 PMCID:PMC4379110

[106]

Tasu JP,Rols MP.Irreversible electroporation and electrochemotherapy in oncology: state of the art.Diagn Interv Imaging2022;103:499-509

[107]

Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - a review.Bioelectrochemistry2021;141:107871

[108]

Shao Q,Lam T.Engineering T cell response to cancer antigens by choice of focal therapeutic conditions.Int J Hyperthermia2019;36:130-8

[109]

Pastori C,Wagh MS,Neal RE 2nd.Pulsed electric field ablation versus radiofrequency thermal ablation in murine breast cancer models: anticancer immune stimulation, tumor response, and abscopal effects.J Vasc Interv Radiol2024;35:442-51.e7

[110]

Lochab V,Alkandry E.Evaluation of electrical properties of ex vivo human hepatic tissue with metastatic colorectal cancer.Physiol Meas2020;41:085005

[111]

Wang Y,Van de Moortele PF.Mapping electrical properties heterogeneity of tumor using boundary informed electrical properties tomography (BIEPT) at 7T.Magn Reson Med2019;81:393-409 PMCID:PMC6258314

[112]

Kalra N,Gorsi U.Irreversible electroporation for unresectable hepatocellular carcinoma: initial experience.Cardiovasc Intervent Radiol2019;42:584-90

[113]

Morad G,Sharma P.Hallmarks of response, resistance, and toxicity to immune checkpoint blockade.Cell2021;184:5309-37 PMCID:PMC8767569

[114]

Wang Z,Gao P.Immune checkpoint inhibitor resistance in hepatocellular carcinoma.Cancer Lett2023;555:216038

[115]

Zhang C,Wang H.Immune-checkpoint inhibitor resistance in cancer treatment: current progress and future directions.Cancer Lett2023;562:216182

[116]

Baba Y,Okadome K.Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma.Cancer Sci2020;111:3132-41 PMCID:PMC7469863

[117]

Hu-Lieskovan S,Jacobs I,Liu L.Addressing resistance to immune checkpoint inhibitor therapy: an urgent unmet need.Future Oncol2021;17:1401-39

[118]

Lee KM,Servetto A.Epigenetic repression of STING by MYC promotes immune evasion and resistance to immune checkpoint inhibitors in triple-negative breast cancer.Cancer Immunol Res2022;10:829-43 PMCID:PMC9250627

[119]

Oura K,Tani J.Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review.Int J Mol Sci2021;22:5801 PMCID:PMC8198390

[120]

Finn RS,Zhu AX.Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma.J Clin Oncol2020;38:2960-70 PMCID:PMC7479760

[121]

Ringelhan M,O’Connor T,Heikenwalder M.The immunology of hepatocellular carcinoma.Nat Immunol2018;19:222-32

[122]

Litchfield K,Puttick C.Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition.Cell2021;184:596-614.e14 PMCID:PMC7933824

[123]

Schoenfeld AJ.Acquired resistance to immune checkpoint inhibitors.Cancer Cell2020;37:443-55 PMCID:PMC7182070

[124]

Caushi JX,Ji Z.Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers.Nature2021;596:126-32 PMCID:PMC8338555

[125]

Horning SJ.A new cancer ecosystem.Science2017;355:1103

[126]

Roma-Rodrigues C,Baptista PV.Targeting tumor microenvironment for cancer therapy.Int J Mol Sci2019;20:840 PMCID:PMC6413095

[127]

De Re V,Rosignoli A.Hepatocellular carcinoma intrinsic cell death regulates immune response and prognosis.Front Oncol2022;12:897703 PMCID:PMC9303009

[128]

Wang G,Zhao J.Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice.Nat Commun2020;11:220 PMCID:PMC6954189

[129]

Krysko DV,Kaczmarek A,Agostinis P.Immunogenic cell death and DAMPs in cancer therapy.Nat Rev Cancer2012;12:860-75

[130]

Guo S,Burcus NI.Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases.Int J Cancer2018;142:629-40

[131]

Kim D.Postablation immune microenvironment: synergy between interventional oncology and immuno-oncology.Semin Intervent Radiol2019;36:334-42 PMCID:PMC6823044

[132]

Regen-Tuero HC,Sikov WM.Cryoablation and immunotherapy for breast cancer: overview and rationale for combined therapy.Radiol Imaging Cancer2021;3:e200134 PMCID:PMC8011444

[133]

Tian Z,Chen J.Combination of radiofrequency ablation with resiquimod to treat hepatocellular carcinoma via inflammation of tumor immune microenvironment and suppression of angiogenesis.Front Oncol2022;12:891724 PMCID:PMC9201999

[134]

Faraoni EY,Strickland LN.Radiofrequency ablation remodels the tumor microenvironment and promotes neutrophil-mediated abscopal immunomodulation in pancreatic cancer.Cancer Immunol Res2023;11:4-12 PMCID:PMC9808367

[135]

Sang J.Potential biomarkers for predicting immune response and outcomes in lung cancer patients undergoing thermal ablation.Front Immunol2023;14:1268331 PMCID:PMC10646301

[136]

Chen C,Ding Y.Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma.Front Immunol2023;14:1133308 PMCID:PMC9950271

[137]

De Grandis MC,Lanza C.Locoregional therapies and remodeling of tumor microenvironment in pancreatic cancer.Int J Mol Sci2023;24:12681 PMCID:PMC10454061

[138]

Merchant AA,Willingham FF.Radiofrequency ablation for the management of pancreatic mass lesions.Curr Opin Gastroenterol2023;39:448-54

[139]

Lou Y,Peng P,Liu P.Downregulated TNF-α levels after cryo-thermal therapy drive tregs fragility to promote long-term antitumor immunity.Int J Mol Sci2021;22:9951 PMCID:PMC8468796

[140]

Szturz P.Steering decision making by terminology: oligometastatic versus argometastatic.Br J Cancer2022;127:587-91 PMCID:PMC9381792

[141]

Mizukoshi E,Arai K.Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma.Hepatology2013;57:1448-57

[142]

Li L,Pan H.Microwave ablation combined with OK-432 induces Th1-type response and specific antitumor immunity in a murine model of breast cancer.J Transl Med2017;15:23 PMCID:PMC5282633

[143]

Guo X,Liu Q.Immunological effect of irreversible electroporation on hepatocellular carcinoma.BMC Cancer2021;21:443 PMCID:PMC8061072

[144]

Babikr F,Xu A.Distinct roles but cooperative effect of TLR3/9 agonists and PD-1 blockade in converting the immunotolerant microenvironment of irreversible electroporation-ablated tumors.Cell Mol Immunol2021;18:2632-47 PMCID:PMC8633376

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/