Unraveling the complexity of drug resistance mechanisms to SINE, T cell-engaging therapies and CELMoDs in multiple myeloma: a comprehensive review

Jacqueline Schütt , Kerstin Brinkert , Andrzej Plis , Tino Schenk , Annamaria Brioli

Cancer Drug Resistance ›› 2024, Vol. 7 : 26

PDF
Cancer Drug Resistance ›› 2024, Vol. 7 :26 DOI: 10.20517/cdr.2024.39
review-article

Unraveling the complexity of drug resistance mechanisms to SINE, T cell-engaging therapies and CELMoDs in multiple myeloma: a comprehensive review

Author information +
History +
PDF

Abstract

Despite significant advances in the understanding of multiple myeloma (MM) biology and the development of novel treatment strategies in the last two decades, MM is still an incurable disease. Novel drugs with alternative mechanisms of action, such as selective inhibitors of nuclear export (SINE), modulators of the ubiquitin pathway [cereblon E3 ligase modulatory drugs (CELMoDs)], and T cell redirecting (TCR) therapy, have led to significant improvement in patient outcomes. However, resistance still emerges, posing a major problem for the treatment of myeloma patients. This review summarizes current data on treatment with SINE, TCR therapy, and CELMoDs and explores their mechanism of resistance. Understanding these resistance mechanisms is critical for developing strategies to overcome treatment failure and improve therapeutic outcomes.

Keywords

Multiple myeloma / SINE / selinexor / CELMoD / bispecific antibodies / CAR-T cells / mechanism of resistance

Cite this article

Download citation ▾
Jacqueline Schütt, Kerstin Brinkert, Andrzej Plis, Tino Schenk, Annamaria Brioli. Unraveling the complexity of drug resistance mechanisms to SINE, T cell-engaging therapies and CELMoDs in multiple myeloma: a comprehensive review. Cancer Drug Resistance, 2024, 7: 26 DOI:10.20517/cdr.2024.39

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gatopoulou X,Van Hoorenbeeck S.Treatment patterns of relapsed and refractory multiple myeloma in Europe (EU-28).Value Health2016;19:A715-6

[2]

Chari A,Berdeja JG.Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma.N Engl J Med2022;387:2232-44

[3]

Moreau P,van de Donk NWCJ.Teclistamab in relapsed or refractory multiple myeloma.N Engl J Med2022;387:495-505 PMCID:PMC10587778

[4]

Berdeja JG,Usmani SZ.Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study.Lancet2021;398:314-24

[5]

Munshi NC,Shah N.Idecabtagene vicleucel in relapsed and refractory multiple myeloma.N Engl J Med2021;384:705-16

[6]

Chari A,Gavriatopoulou M.Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N Engl J Med 2019;381:727-38.

[7]

Lonial S,Hulin C.Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial.Lancet Haematol2022;9:e822-32

[8]

Lesokhin AM,Arnulf B.Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results.Nat Med2023;29:2259-67 PMCID:PMC10504075

[9]

Gandhi UH,Lakshman A.Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy.Leukemia2019;33:2266-75 PMCID:PMC6820050

[10]

Mateos MV,De Stefano V.LocoMMotion: a prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma.Leukemia2022;36:1371-6 PMCID:PMC9061296

[11]

Rodriguez-Otero P,Arnulf B.Ide-cel or standard regimens in relapsed and refractory multiple myeloma.N Engl J Med2023;388:1002-14

[12]

San-Miguel J,Yong K.Cilta-cel or standard care in lenalidomide-refractory multiple myeloma.N Engl J Med2023;389:335-47

[13]

Solimando AG,Leone P.Drug resistance in multiple myeloma: soldiers and weapons in the bone marrow niche.Front Oncol2022;12:973836 PMCID:PMC9533079

[14]

Abe M.Targeting the interplay between myeloma cells and the bone marrow microenvironment in myeloma.Int J Hematol2011;94:334-43

[15]

Ferrucci A,Frassanito MA.A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target.Clin Cancer Res2014;20:5796-807

[16]

Gnoni A,Longo V.Immune system and bone microenvironment: rationale for targeted cancer therapies.Oncotarget2020;11:480-7 PMCID:PMC6996902

[17]

Solimando AG,Ribatti D.A comprehensive biological and clinical perspective can drive a patient-tailored approach to multiple myeloma: bridging the gaps between the plasma cell and the neoplastic niche.J Oncol2020;2020:6820241 PMCID:PMC7251466

[18]

Harmer D,Reagan MR.Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma.Front Endocrinol2018;9:788 PMCID:PMC6333051

[19]

Vacca A,Ribatti D.A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma.Haematologica2003;88:176-85

[20]

Papa S,Bubici C.The ERK and JNK pathways in the regulation of metabolic reprogramming.Oncogene2019;38:2223-40 PMCID:PMC6398583

[21]

Ikeda S,Matsuda Y,Takahashi N.Hypoxia-inducible hexokinase-2 enhances anti-apoptotic function via activating autophagy in multiple myeloma.Cancer Sci2020;111:4088-101 PMCID:PMC7648043

[22]

Maiso P,Moschetta M.Metabolic signature identifies novel targets for drug resistance in multiple myeloma.Cancer Res2015;75:2071-82 PMCID:PMC4433568

[23]

Bailur JK,Doxie DB.Early alterations in stem-like/resident T cells, innate and myeloid cells in the bone marrow in preneoplastic gammopathy.JCI Insight2019;5:e127807 PMCID:PMC6629164

[24]

Giallongo C,Parrinello NL.Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC).Oncotarget2016;7:85764-75 PMCID:PMC5349872

[25]

Gabrilovich DI.Myeloid-derived suppressor cells as regulators of the immune system.Nat Rev Immunol2009;9:162-74 PMCID:PMC2828349

[26]

Gavalas NG,Tsitsilonis O.VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2.Br J Cancer2012;107:1869-75 PMCID:PMC3504940

[27]

Lee H,Maity R.Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma.Nat Med2023;29:2295-306 PMCID:PMC10504087

[28]

Turner JG,Sullivan DM.Nuclear export of proteins and drug resistance in cancer.Biochem Pharmacol2012;83:1021-32 PMCID:PMC4521586

[29]

Theodoropoulos N,Chari A.Targeting nuclear export proteins in multiple myeloma therapy.Target Oncol2020;15:697-708 PMCID:PMC7570401

[30]

Arnaoutov A,Ribbeck K.Crm1 is a mitotic effector of Ran-GTP in somatic cells.Nat Cell Biol2005;7:626-32

[31]

Vogt PK,Aoki M.Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins.Cell Cycle2005;4:908-13

[32]

Pichler A.Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport.Traffic2002;3:381-7

[33]

Kojima K,Ruvolo V.Prognostic impact and targeting of CRM1 in acute myeloid leukemia.Blood2013;121:4166-74 PMCID:PMC3656451

[34]

Zhou F,Yao R.CRM1 is a novel independent prognostic factor for the poor prognosis of gastric carcinomas.Med Oncol2013;30:726

[35]

Kandarpa M,Maxwell SP.CRM1 is highly expressed in myeloma plasma cells and its inhibition by KPT-SINE induces cytotoxicity by increasing p53 in the nucleus of multiple myeloma (MM) cells.Blood2011;118:1852

[36]

Camus V,Taly A,Jardin F.XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy.J Hematol Oncol2017;10:47 PMCID:PMC5307790

[37]

Fung HYJ,Chook YM.An update to the CRM1 cargo/NES database NESdb.Mol Biol Cell2021;32:467-9 PMCID:PMC8101443

[38]

Huang ZL,Li QY.Induction of apoptosis by directing oncogenic Bcr-Abl into the nucleus.Oncotarget2013;4:2249-60 PMCID:PMC3926824

[39]

Culjkovic-Kraljacic B,Volpon L,Borden KL.The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation.Cell Rep2012;2:207-15 PMCID:PMC3463940

[40]

Nikolaev AY,Puskas N,Gu W.Parc: a cytoplasmic anchor for p53.Cell2003;112:29-40

[41]

Zhang Y.A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation.Science2001;292:1910-5

[42]

O’Brate A.The importance of p53 location: nuclear or cytoplasmic zip code?.Drug Resist Updat2003;6:313-22

[43]

Rodríguez JA.Identification of a functional nuclear export sequence in BRCA1.J Biol Chem2000;275:38589-96

[44]

Volpon L,Sohn HS,Osborne MJ.A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery.RNA2017;23:927-37 PMCID:PMC5435865

[45]

Culjkovic-Kraljacic B,Marullo R.Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas.Blood2016;127:858-68 PMCID:PMC4760090

[46]

Tai YT,Acharya C.CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications.Leukemia2014;28:155-65 PMCID:PMC3883926

[47]

Zheng Y,Sun H,Kauffman M.KPT-330 inhibitor of XPO1-mediated nuclear export has anti-proliferative activity in hepatocellular carcinoma.Cancer Chemother Pharmacol2014;74:487-95 PMCID:PMC4146741

[48]

Liu Y,Dou Y,Li Y.Simultaneous targeting of XPO1 and BCL2 as an effective treatment strategy for double-hit lymphoma.J Hematol Oncol2019;12:119 PMCID:PMC6868798

[49]

Wang JC.Cellular roles of DNA topoisomerases: a molecular perspective.Nat Rev Mol Cell Biol2002;3:430-40

[50]

Turner JG,Derderian JA,Sullivan DM.Human topoisomerase IIalpha nuclear export is mediated by two CRM-1-dependent nuclear export signals.J Cell Sci2004;117:3061-71

[51]

Engel R,Gump JL,Dalton WS.The cytoplasmic trafficking of DNA topoisomerase IIalpha correlates with etoposide resistance in human myeloma cells.Exp Cell Res2004;295:421-31

[52]

Turner JG,Emmons MF.CRM1 inhibition sensitizes drug resistant human myeloma cells to topoisomerase II and proteasome inhibitors both in vitro and ex vivo.J Cancer2013;4:614-25 PMCID:PMC3805989

[53]

Gandhi UH,Baloglu E.Clinical implications of targeting XPO1-mediated nuclear export in multiple myeloma.Clin Lymphoma Myeloma Leuk2018;18:335-45

[54]

Rosebeck S,Kandarpa M.Synergistic myeloma cell death via novel intracellular activation of caspase-10-dependent apoptosis by carfilzomib and selinexor.Mol Cancer Ther2016;15:60-71

[55]

Turner JG,Dawson JL.XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma.Oncotarget2016;7:78896-909 PMCID:PMC5340237

[56]

Gasparetto C,Tuchman SA.Once weekly selinexor, carfilzomib and dexamethasone in carfilzomib non-refractory multiple myeloma patients.Br J Cancer2022;126:718-25 PMCID:PMC8605887

[57]

Bahlis NJ,White D.Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma.Blood2018;132:2546-54 PMCID:PMC6302280

[58]

Grosicki S,Spicka I.Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial.Lancet2020;396:1563-73

[59]

Crochiere M,Kalid O.Deciphering mechanisms of drug sensitivity and resistance to selective inhibitor of nuclear export (SINE) compounds.BMC Cancer2015;15:910 PMCID:PMC4647283

[60]

Jardin F,Pelletier L.Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma.Am J Hematol2016;91:923-30

[61]

Walker JS,Harrington B.Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia.J Hematol Oncol2021;14:17 PMCID:PMC7809770

[62]

Neggers JE,Jacquemyn M.Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing.Chem Biol2015;22:107-16

[63]

Neggers JE,Baloglu E,Landesman Y.Heterozygous mutation of cysteine528 in XPO1 is sufficient for resistance to selective inhibitors of nuclear export.Oncotarget2016;7:68842-50 PMCID:PMC5356594

[64]

Kashyap T,Aboukameel A.Selinexor, a selective inhibitor of nuclear export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death.Oncotarget2016;7:78883-95 PMCID:PMC5346685

[65]

Miyake TM,Bayraktar E.NRG1/ERBB3 pathway activation induces acquired resistance to XPO1 inhibitors.Mol Cancer Ther2020;19:1727-35 PMCID:PMC7415525

[66]

Sun Z,Li Y,Qu X.Dynamic single-cell RNA-seq reveals mechanism of selinexor-resistance in chronic myeloid leukemia.Blood2023;142:1801

[67]

Lagana A,Edwards D.E2F1 is a biomarker of selinexor resistance in relapsed/refractory multiple myeloma patients.Blood2018;132:3216

[68]

Lagana A,Aleman A.A machine learning approach identifies a 30-gene model that predicts sensitivity to selinexor in multiple myeloma.Blood2019;134:3101

[69]

Chari A,Dhadwal A.A phase 2 study of panobinostat with lenalidomide and weekly dexamethasone in myeloma.Blood Adv2017;1:1575-83 PMCID:PMC5728465

[70]

Cho HJ,Tung K.MAGE-A3 promotes chemotherapy resistance and proliferation in multiple myeloma through regulation of BIM and p21Cip1.Blood2018;132:4464

[71]

Restrepo P,Ghodke-Puranik Y.A three-gene signature predicts response to selinexor in multiple myeloma.JCO Precis Oncol2022;6:e2200147 PMCID:PMC10530420

[72]

Cohen YC,Wang S.Single cell RNA sequencing in patients enrolled in a selinexor clinical trial reveals overexpression of alternative nuclear export pathways associated with resistance to selinexor in refractory multiple myeloma.Blood2021;138:2725

[73]

Wang X,Li Q.RNA-binding protein hnRNPU regulates multiple myeloma resistance to selinexor.Cancer Lett2024;580:216486

[74]

Krecic AM.hnRNP complexes: composition, structure, and function.Curr Opin Cell Biol1999;11:363-71

[75]

Zhu ZC,Yang C,Xiong ZQ.XPO1 inhibitor KPT-330 synergizes with Bcl-xL inhibitor to induce cancer cell apoptosis by perturbing rRNA processing and Mcl-1 protein synthesis.Cell Death Dis2019;10:395 PMCID:PMC6529444

[76]

Hu F,Li XP.Drug resistance biomarker ABCC4 of selinexor and immune feature in multiple myeloma.Int Immunopharmacol2022;108:108722

[77]

Li S,Walker CJ.Dual targeting of protein translation and nuclear protein export results in enhanced antimyeloma effects.Blood Adv2023;7:2926-37 PMCID:PMC10333745

[78]

Liao Y,Deng T.The second-generation XPO1 inhibitor eltanexor inhibits human cytomegalovirus (HCMV) replication and promotes type I interferon response.Front Microbiol2021;12:675112 PMCID:PMC8126617

[79]

Lancman G,Cho HJ.Bispecific antibodies in multiple myeloma: present and future.Blood Cancer Discov2021;2:423-33 PMCID:PMC8510808

[80]

Kontermann RE.Bispecific antibodies.Drug Discov Today2015;20:838-47

[81]

Rodríguez-Lobato LG,Fernández de Larrea C,Einsele H.CAR T-cells in multiple myeloma: state of the art and future directions.Front Oncol2020;10:1243 PMCID:PMC7399644

[82]

Martin T,Berdeja JG.Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up.J Clin Oncol2023;41:1265-74 PMCID:PMC9937098

[83]

Rodríguez Otero P,Arnulf B.Idecabtagene vicleucel (ide-cel) versus standard (std) regimens in patients (pts) with triple-class-exposed (TCE) relapsed and refractory multiple myeloma (RRMM): updated analysis from KarMMa-3.Blood2023;142:1028

[84]

Ali SA,Maric I.T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma.Blood2016;128:1688-700 PMCID:PMC5043125

[85]

Brudno JN,Hartman SD.T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma.J Clin Oncol2018;36:2267-80 PMCID:PMC6067798

[86]

Samur MK,Aktas Samur A.Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma.Nat Commun2021;12:868 PMCID:PMC7870932

[87]

Da Vià MC,Truger M.Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma.Nat Med2021;27:616-9

[88]

Mailankody S,Landa J.GPRC5D-targeted CAR T cells for myeloma.N Engl J Med2022;387:1196-206 PMCID:PMC10309537

[89]

Brioli A,Cavo M.The impact of intra-clonal heterogeneity on the treatment of multiple myeloma.Br J Haematol2014;165:441-54

[90]

Eckmann J,Stefanie L,Klein C.Early intervention with celmods, but not imids, prevents relapse to forimtamig driven by GPRC5D-negative myeloma cells.Blood2023;142:4659

[91]

Hamieh M,Cabriolu A.CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape.Nature2019;568:112-6 PMCID:PMC6707377

[92]

van de Donk NWCJ, Themeli M, Usmani SZ. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma.Blood Cancer Discov2021;2:302-18 PMCID:PMC8357299

[93]

Long AH,Shern JF.4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors.Nat Med2015;21:581-90 PMCID:PMC4458184

[94]

Meermeier EW,Sharik ME.Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy.Blood Cancer Discov2021;2:354-69 PMCID:PMC8266040

[95]

Philipp N,Nicholls A.T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals.Blood2022;140:1104-18 PMCID:PMC10652962

[96]

Cohen AD,Cohen YC.Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents.Blood2023;141:219-30 PMCID:PMC10562529

[97]

Lee H,Bahlis NJ.Current use of bispecific antibodies to treat multiple myeloma.Hematology Am Soc Hematol Educ Program2023;2023:332-9 PMCID:PMC10727080

[98]

Cortes-selva D,Vishwamitra D.Teclistamab, a B-cell maturation antigen (BCMA) × CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): correlative analyses from majesTEC-1.Blood2022;140:241-3

[99]

Ahn S,Neri P.Understanding the mechanisms of resistance to T cell-based immunotherapies to develop more favorable strategies in multiple myeloma.Hemasphere2021;5:e575 PMCID:PMC8171358

[100]

Leblay N,Hasan F.Deregulation of adaptive T cell immunity in multiple myeloma: insights into mechanisms and therapeutic opportunities.Front Oncol2020;10:636 PMCID:PMC7214816

[101]

Vishwamitra D,Cortes D.Mechanisms of resistance and relapse with talquetamab in patients with relapsed/refractory multiple myeloma from the phase 1/2 monumenTAL-1 study.Blood2023;142:1933

[102]

Friedrich MJ,Kehl N.The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients.Cancer Cell2023;41:711-25.e6

[103]

Thakurta A,Amatangelo MD,Agarwal A.Developing next generation immunomodulatory drugs and their combinations in multiple myeloma.Oncotarget2021;12:1555-63 PMCID:PMC8310669

[104]

Ruchelman AL,Zhang W.Isosteric analogs of lenalidomide and pomalidomide: synthesis and biological activity.Bioorg Med Chem Lett2013;23:360-5

[105]

Chamberlain PP,Miller K.Structure of the human cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs.Nat Struct Mol Biol2014;21:803-9

[106]

Matyskiela ME,Man HW.A cereblon modulator (CC-220) with improved degradation of ikaros and aiolos.J Med Chem2018;61:535-42

[107]

Hansen JD,Nagy MA.Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma.J Med Chem2020;63:6648-76

[108]

Bjorklund CC,Amatangelo M.Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN.Leukemia2020;34:1197-201 PMCID:PMC7214241

[109]

Amatangelo M,Ma P.Preclinical and translational data support development of iberdomide in combination with CD38- and SLAMF7-directed monoclonal antibodies: evidence for rational combinations.Blood2020;136:9-10

[110]

Van Oekelen O,Guo M.Large-scale mass cytometry reveals significant activation of innate and adaptive immunity in bone marrow tumor microenvironment of iberdomide-treated myeloma patients.Blood2021;138:730

[111]

Ma P,Wollerman K.Iberdomide enhances dara mediated cytotoxicity through upregulation of CDC activity and elevated NK cell mediated ADCC.Blood2023;142:3289

[112]

van de Donk NWCJ, Popat R, Larsen J, et al. First results of iberdomide (IBER; CC-220) in combination with dexamethasone (DEX) and daratumumab (DARA) or bortezomib (BORT) in patients with relapsed/refractory multiple myeloma (RRMM).Blood2020;136:16-7

[113]

van de Donk NW,Terpos E.Iberdomide maintenance after autologous stem-cell transplantation in newly diagnosed MM: first results of the phase 2 EMN26 study.Blood2023;142:208

[114]

Lonial S,Anwer F.Iberdomide (IBER) in combination with dexamethasone (DEX) in relapsed/refractory multiple myeloma (RRMM): results from the anti-B-cell maturation antigen (BCMA)-exposed cohort of the CC-220-MM-001 trial.Blood2022;140:4398-400

[115]

Richardson PG,Quach H.Mezigdomide (CC-92480), a potent, novel cereblon E3 ligase modulator (CELMoD), combined with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): preliminary results from the dose-expansion phase of the CC-92480-MM-001 trial.Blood2022;140:1366-8

[116]

Richardson PG,Hofmeister CC.Mezigdomide (MEZI) plus dexamethasone (DEX) and daratumumab (DARA) or elotuzumab (ELO) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from the CC-92480-MM-002 trial.Blood2023;142:1013

[117]

Bird S.IMiD resistance in multiple myeloma: current understanding of the underpinning biology and clinical impact.Blood2023;142:131-40

[118]

Bohl SR,Bauhuf I.Comprehensive CRISPR-Cas9 screens identify genetic determinants of drug responsiveness in multiple myeloma.Blood Adv2021;5:2391-402 PMCID:PMC8114551

[119]

Kortüm KM,Hanafiah NH.Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes.Blood2016;128:1226-33 PMCID:PMC5524534

[120]

Gooding S,Towfic F.Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma.Blood2021;137:232-7 PMCID:PMC7893409

[121]

Chrisochoidou Y,Morales S.Investigating the functional impact of CRBN mutations on response to IMiD/celmod agents in myeloma.Blood2023;142:753

[122]

Tilmont R,Leblay N.CRBN structural changes, copy number changes and COP9 signalosome subunits gene expression mediate sensitivity to new celmod compound CC-92480 in multiple myeloma patients.Blood2022;140:9964-5

[123]

Haertle L,Munawar U.Cereblon enhancer methylation and IMiD resistance in multiple myeloma.Blood2021;138:1721-6 PMCID:PMC8569411

[124]

Dimopoulos K,Fibiger Munch-Petersen H.Dual inhibition of DNMTs and EZH2 can overcome both intrinsic and acquired resistance of myeloma cells to IMiDs in a cereblon-independent manner.Mol Oncol2018;12:180-95 PMCID:PMC5792743

[125]

Bird SA,Sialana FJ.Multiomics analysis of IMiD/CELMoD resistant multiple myeloma models uncovers novel and targetable vulnerabilities in the SREBP lipid synthesis pathway.Blood2022;140:600-1

[126]

Barrio S,Zhu YX.IKZF1/3 and CRL4CRBN E3 ubiquitin ligase mutations and resistance to immunomodulatory drugs in multiple myeloma.Haematologica2020;105:e237-41 PMCID:PMC7193510

[127]

Chung DJ,Shyer JA.T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy.Cancer Immunol Res2016;4:61-71 PMCID:PMC4703436

[128]

Batorov EV,Sergeevicheva VV.Quantitative and functional characteristics of circulating and bone marrow PD-1- and TIM-3-positive T cells in treated multiple myeloma patients.Sci Rep2020;10:20846 PMCID:PMC7704628

[129]

Lucas F,Huang Y.T cell transcriptional profiling and immunophenotyping uncover LAG3 as a potential significant target of immune modulation in multiple myeloma.Biol Blood Marrow Transplant2020;26:7-15 PMCID:PMC6952061

[130]

Chen LY.Tumor and microenvironmental mechanisms of resistance to immunomodulatory drugs in multiple myeloma.Front Oncol2022;12:1038329 PMCID:PMC9682014

[131]

Biran N,Parmar H.A phase 2b study of selinexor in combination with carfilzomib, daratumumab, or pomalidomide in patients with multiple myeloma relapsing on current therapy.Blood2023;142:6714

[132]

Gasparetto C,Schiller G.Selinexor, daratumumab, and dexamethasone in patients with relapsed or refractory multiple myeloma.EJHaem2021;2:56-65 PMCID:PMC9176052

[133]

White DJ,Baljevic M.Once weekly oral selinexor, pomalidomide, and dexamethasone in relapsed refractory multiple myeloma.Blood2021;138:2748

[134]

White D,Madan S.Efficacy and safety of once weekly selinexor 40 mg versus 60 mg with pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma.Front Oncol2024;14:1352281 PMCID:PMC11140414

[135]

Mei H,Jiang H.A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma.J Hematol Oncol2021;14:161 PMCID:PMC8501733

[136]

Tang Y,Zhao X.High efficacy and safety of CD38 and BCMA bispecific CAR-T in relapsed or refractory multiple myeloma.J Exp Clin Cancer Res2022;41:2 PMCID:PMC8722124

[137]

Yan Z,Cheng H.A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial.Lancet Haematol2019;6:e521-9

[138]

Zhang X,Lan H,Xiao Y.CAR-T cell therapy in multiple myeloma: current limitations and potential strategies.Front Immunol2023;14:1101495 PMCID:PMC9986336

[139]

Zhang X,Qiao M.Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells.Cancer Cell2022;40:1407-22.e7

[140]

Zhang H,Shao M.Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion.J Hematol Oncol2021;14:113 PMCID:PMC8293573

[141]

Ali AI,von Scheidt B.A histone deacetylase inhibitor, panobinostat, enhances chimeric antigen receptor T-cell antitumor effect against pancreatic cancer.Clin Cancer Res2021;27:6222-34

[142]

Lesokhin AM,Trudel S.Enduring responses after 1-year, fixed-duration cevostamab therapy in patients with relapsed/refractory multiple myeloma: early experience from a phase I study.Blood2022;140:4415-7

[143]

Abecassis A,Fayon M.CAR-T cells derived from multiple myeloma patients at diagnosis have improved cytotoxic functions compared to those produced at relapse or following daratumumab treatment.EJHaem2022;3:970-4 PMCID:PMC9421998

[144]

Searle E,Wong SW.Teclistamab in combination with subcutaneous daratumumab and lenalidomide in patients with multiple myeloma: results from one cohort of majesTEC-2, a phase1b, multicohort study.Blood2022;140:394-6

[145]

Cohen YC,Gatt ME.First results from the RedirecTT-1 study with teclistamab (tec) + talquetamab (tal) simultaneously targeting BCMA and GPRC5D in patients (pts) with relapsed/refractory multiple myeloma (RRMM).J Clin Oncol2023;41:8002

[146]

Mateos M,Gatt M.S190: First results from the redirectt-1 study with teclistamab (TEC) + talquetamab (TAL) simultaneously targeting bcma and GPRC5D in patients (PTS) with relapsed/refractory multiple myeloma (RRMM).HemaSphere2023;7:e15362d7

[147]

Pillarisetti R,Yao J.Characterization of JNJ-79635322, a novel BCMAxGPRC5DxCD3 T-cell redirecting trispecific antibody, for the treatment of multiple myeloma.Blood2023;142:456

[148]

Lee H,Bahlis NJ.BCMA- or GPRC5D-targeting bispecific antibodies in multiple myeloma: efficacy, safety, and resistance mechanisms.Blood2024;143:1211-7

[149]

Chow TT,Ma P.Preclinical and translational biomarker analyses to inform clinical development of mezigdomide (CC-92480) in combination with dexamethasone and daratumumab in multiple myeloma.Blood2023;142:3318

[150]

Bjorklund CC,Kang J.CC-92480 enhances cell-autonomous cytotoxicity through blockade of G 2/M transition when combined with bortezomib/dexamethasone in pre-clinical multiple myeloma.Blood2021;138:2669

[151]

Amatangelo M,Hagner P.P-230: Preclinical and translational biomarker analysis to support further clinical development and dose optimization of mezigdomide (MEZI; CC-92480) in combination with either bortezomib or carfilzomib.Cl Lymph Myelom Leuk2022;22:S161-2

[152]

Paiva B,Burnett K.Synergistic antitumor activity of alnuctamab (ALNUC; BMS-986349; CC-93269), a BCMA 2+1 T cell engager (TCE), and celmod agents in multiple myeloma (MM) preclinical models.Blood2022;140:7054-5

[153]

Aleman A,Upadhyaya B.P-175 improving anti-BCMA CAR-T functionality with novel immunomodulatory agent iberdomide (CC220) in multiple myeloma.Cl Lymph Myelom Leuk2023;23:S131-2

[154]

Rodriguez Otero P,Reece D.S188: Teclistamab in combination with daratumumab, a novel, immunotherapy-based approach for the treatment of relapsed/refractory multiple myeloma: updated phase 1b results.HemaSphere2022;6:89-90

[155]

Matous J,Perrot A.Talquetamab + pomalidomide in patients with relapsed/refractory multiple myeloma: safety and preliminary efficacy results from the phase 1b monumenTAL-2 study.Blood2023;142:1014

[156]

Dholaria BR,Mateos M.Talquetamab (tal) + daratumumab (dara) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): updated TRIMM-2 results.J Clin Oncol2023;41:8003

[157]

Biran N,Parmar H.A phase 1/2 study of carfilzomib, iberdomide and dexamethasone (KID) in patients with newly diagnosed transplant-eligible multiple myeloma.Blood2023;142:2022

[158]

Lonial S,Popat R.OAB-013: iberdomide (IBER) in combination with dexamethasone (DEX) and daratumumab (DARA), bortezomib (BORT), or carfilzomib (CFZ) in patients (pts) with relapsed/refractory multiple myeloma (RRMM).Cl Lymph Myelom Leuk2021;21:S9

[159]

White D,Mesa MG.OA-41 Iberdomide, bortezomib, and dexamethasone (IberVd) in transplant-ineligible newly diagnosed multiple myeloma (NDMM): results from the CC-220-MM-001 trial.Cl Lymph Myelom Leuk2023;23:S25

[160]

Oriol A,Raab M.OA-49 Mezigdomide (MEZI) plus dexamethasone (DEX) and bortezomib (BORT) or carfilzomib (CFZ) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): results from the CC-92480-MM-002 trial.Cl Lymph Myelom Leuk2023;23:S31

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/