Mechanisms of resistance to NAMPT inhibitors in cancer

Jansen Redler , Ariana E. Nelson , Christine M. Heske

Cancer Drug Resistance ›› 2025, Vol. 8 : 18

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :18 DOI: 10.20517/cdr.2024.216
review-article

Mechanisms of resistance to NAMPT inhibitors in cancer

Author information +
History +
PDF

Abstract

A common barrier to the development of effective anticancer agents is the development of drug resistance. This obstacle remains a challenge to successful clinical translation, particularly for targeted agents. Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors represent a clinically applicable drug class that exploits the increased dependence of cancer cells on nicotinamide adenine dinucleotide (NAD+), a coenzyme essential to metabolism and other cellular functions. NAMPT catalyzes the rate-limiting step in the NAD+ salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. Preclinical research has demonstrated that pharmacological targeting of NAMPT may be an effective strategy against certain cancers, and while several early-phase clinical trials testing NAMPT inhibitors in refractory cancers have been completed, drug resistance is a concern. Preclinical work in a variety of cancer models has demonstrated the emergence of resistance to multiple NAMPT inhibitors through several recurrent mechanisms. This review represents the first article summarizing the current state of knowledge regarding the mechanisms of acquired drug resistance to NAMPT inhibitors with a particular focus on upregulation of the compensatory NAD+ production enzymes nicotinate phosphoribosyltransferase (NAPRT) and quinolinate phosphoribosyltransferase (QPRT), acquired mutations in NAMPT, metabolic reprogramming, and altered expression of the ATP-binding cassette (ABC) efflux transporter ABCB1. An understanding of how these mechanisms interact with the biology of each given cancer cell type to predispose to the acquisition of NAMPT inhibitor resistance will be necessary to develop strategies to optimize the use of these agents moving forward.

Keywords

Nicotinamide phosphoribosyltransferase / inhibitor / resistance / cancer

Cite this article

Download citation ▾
Jansen Redler, Ariana E. Nelson, Christine M. Heske. Mechanisms of resistance to NAMPT inhibitors in cancer. Cancer Drug Resistance, 2025, 8: 18 DOI:10.20517/cdr.2024.216

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burgos ES.NAMPT in regulated NAD biosynthesis and its pivotal role in human metabolism.Curr Med Chem2011;18:1947-61

[2]

Preiss J.Enzymatic synthesis of nicotinamide mononucleotide.J Biol Chem1957;225:759-70Available from: https://www.researchgate.net/profile/Jack-Preiss/publication/10150760_Enzymatic_synthesis_of_nicotinamide_mononucleotide/links/0deec517ad1fc60e06000000/Enzymatic-synthesis-of-nicotinamide-mononucleotide.pdf. [Last accessed on 15 Apr 2025]

[3]

Bogan KL.Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition.Annu Rev Nutr2008;28:115-30

[4]

Sampath D,Misner DL,Dragovich PS.Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer.Pharmacol Ther2015;151:16-31

[5]

Peng A,Xing J,Niu X.The function of nicotinamide phosphoribosyl transferase (NAMPT) and its role in diseases.Front Mol Biosci2024;11:1480617 PMCID:PMC11540786

[6]

Audrito V,Deaglio S.NAMPT and NAPRT: two metabolic enzymes with key roles in inflammation.Front Oncol2020;10:358 PMCID:PMC7096376

[7]

Shackelford RE,Maxwell NM,Coppola D.Nicotinamide phosphoribosyltransferase in malignancy: a review.Genes Cancer2013;4:447-56 PMCID:PMC3877665

[8]

Tang H,Wang T.Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery.Eur J Med Chem2023;258:115607

[9]

Galli U,Massarotti A.Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors.J Med Chem2013;56:6279-96

[10]

Wei Y,Zhang W.Review of various NAMPT inhibitors for the treatment of cancer.Front Pharmacol2022;13:970553 PMCID:PMC9490061

[11]

Heske CM.Beyond energy metabolism: exploiting the additional roles of NAMPT for cancer therapy.Front Oncol2019;9:1514 PMCID:PMC6978772

[12]

Tan B,Lu ZH.Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications.J Biol Chem2013;288:3500-11 PMCID:PMC3561569

[13]

Menssen A,Kapelle K.The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop.Proc Natl Acad Sci U S A2012;109:E187-96 PMCID:PMC3268300

[14]

Tarrado-Castellarnau M,Cascante M.Oncogenic regulation of tumor metabolic reprogramming.Oncotarget2016;7:62726-53 PMCID:PMC5308762

[15]

Mutz CN,Aryee DNT.EWS-FLI1 confers exquisite sensitivity to NAMPT inhibition in Ewing sarcoma cells.Oncotarget2017;8:24679-93 PMCID:PMC5421879

[16]

Grolla AA,Gnemmi I.Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is a tumoural cytokine released from melanoma.Pigment Cell Melanoma Res2015;28:718-29

[17]

Hjarnaa PJ,Latini S.CHS 828, a novel pyridyl cyanoguanidine with potent antitumor activity in vitro and in vivo.Cancer Res1999;59:5751-7

[18]

Binderup E,Hjarnaa PV.EB1627: a soluble prodrug of the potent anticancer cyanoguanidine CHS828.Bioorg Med Chem Lett2005;15:2491-4

[19]

Beauparlant P,Bernier C.Preclinical development of the nicotinamide phosphoribosyl transferase inhibitor prodrug GMX1777.Anticancer Drugs2009;20:346-54

[20]

Hasmann M.FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis.Cancer Res2003;63:7436-42

[21]

Zheng X,Baumeister T.Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (nampt) inhibitors.J Med Chem2013;56:6413-33

[22]

Wilsbacher JL,Cheng D.Discovery and characterization of novel nonsubstrate and substrate NAMPT inhibitors.Mol Cancer Ther2017;16:1236-45

[23]

Guo J,Longenecker KL.Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD+ biosynthesis pathway and NAMPT mutation.Biochem Biophys Res Commun2017;491:681-6

[24]

Abu Aboud O, Chen CH, Senapedis W, Baloglu E, Argueta C, Weiss RH. Dual and specific inhibition of NAMPT and PAK4 by KPT-9274 decreases kidney cancer growth.Mol Cancer Ther2016;15:2119-29 PMCID:PMC5010932

[25]

Somers K,Cheung L.Effective targeting of NAMPT in patient-derived xenograft models of high-risk pediatric acute lymphoblastic leukemia.Leukemia2020;34:1524-39 PMCID:PMC9110273

[26]

Hovstadius P,Jonsson E.A Phase I study of CHS 828 in patients with solid tumor malignancy.Clin Cancer Res2002;8:2843-50

[27]

Ravaud A,Terret C.Phase I study and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3 weeks in solid tumours: an ECSG/EORTC study.Eur J Cancer2005;41:702-7

[28]

von Heideman A, Berglund A, Larsson R, Nygren P. Safety and efficacy of NAD depleting cancer drugs: results of a phase I clinical trial of CHS 828 and overview of published data.Cancer Chemother Pharmacol2010;65:1165-72

[29]

Holen K,Hollywood E,Hanauske AR.The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor.Invest New Drugs2008;26:45-51

[30]

Goldinger SM,Fink-Puches R.Efficacy and safety of APO866 in patients with refractory or relapsed cutaneous T-cell lymphoma: a phase 2 clinical trial.JAMA Dermatol2016;152:837-9

[31]

Pishvaian MJ,Hwang JJ.A phase I trial of GMX1777, an inhibitor of nicotinamide phosphoribosyl transferase (NAMPRT), given as a 24-hour infusion.J Clin Oncol2009;27:3581

[32]

Naing A,Pishvaian MJ.374PD - A first in human phase 1 study of KPT-9274, a first in class dual inhibitor of PAK4 and NAMPT, in patients with advanced solid malignancies or NHL.Ann Oncol2017;28:v125

[33]

Kannampuzha S.Cancer chemoresistance and its mechanisms: associated molecular factors and its regulatory role.Med Oncol2023;40:264

[34]

Mansoori B,Davudian S,Baradaran B.The different mechanisms of cancer drug resistance: a brief review.Adv Pharm Bull2017;7:339-48 PMCID:PMC5651054

[35]

Ramos A,Tabatabaeian H.Battling chemoresistance in cancer: root causes and strategies to uproot them.Int J Mol Sci2021;22:9451 PMCID:PMC8430957

[36]

Ishidoh K,Imagawa T,Sakurai J.Quinolinate phosphoribosyl transferase, a key enzyme in de novo NAD+ synthesis, suppresses spontaneous cell death by inhibiting overproduction of active-caspase-3.Biochim Biophys Acta2010;1803:527-33

[37]

Chiarugi A,Felici R.The NAD metabolome - a key determinant of cancer cell biology.Nat Rev Cancer2012;12:741-52

[38]

Chowdhry S,Rajkumar U.NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling.Nature2019;569:570-5 PMCID:PMC7138021

[39]

Piacente F,Ravera S.Nicotinic acid phosphoribosyltransferase regulates cancer cell metabolism, susceptibility to NAMPT inhibitors, and DNA repair.Cancer Res2017;77:3857-69

[40]

Gaut ZN.Uptake and metabolism of nicotinic acid by human blood platelets. Effects of structure analogs and metabolic inhibitors.Biochim Biophys Acta1970;201:316-22

[41]

Gaut ZN.Inhibition of nicotinate phosphoribosyltransferase in human platelet lysate by nicotinic acid analogs.Biochem Pharmacol1971;20:2903-6

[42]

Ghanem MS,Del Rio A.Identification of NAPRT inhibitors with anti-cancer properties by in silico drug discovery.Pharmaceuticals2022;15:848 PMCID:PMC9318686

[43]

Franco J,Walter M.Structure-based identification and biological characterization of new NAPRT inhibitors.Pharmaceuticals2022;15:855 PMCID:PMC9320560

[44]

Ghanem MS,Monacelli F.Inhibitors of NAD+ production in cancer treatment: state of the art and perspectives.Int J Mol Sci2024;25:2092 PMCID:PMC10889166

[45]

Thongon N,D’Agostino VG.Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA.Cancer Metab2018;6:1 PMCID:PMC5844108

[46]

Ogino Y,Uchiumi F.Genomic and tumor biological aspects of the anticancer nicotinamide phosphoribosyltransferase inhibitor FK866 in resistant human colorectal cancer cells.Genomics2019;111:1889-95

[47]

Olesen UH,Garten A.Target enzyme mutations are the molecular basis for resistance towards pharmacological inhibition of nicotinamide phosphoribosyltransferase.BMC Cancer2010;10:677 PMCID:PMC3019212

[48]

Ogino Y,Uchiumi F.Cross resistance to diverse anticancer nicotinamide phosphoribosyltransferase inhibitors induced by FK866 treatment.Oncotarget2018;9:16451-61 PMCID:PMC5893253

[49]

Wang W,Oh A.Structural basis for resistance to diverse classes of NAMPT inhibitors.PLoS One2014;9:e109366 PMCID:PMC4186856

[50]

Watson M,Bélec L.The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors.Mol Cell Biol2009;29:5872-88 PMCID:PMC2772749

[51]

Khan JA,Tong L.Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents.Nat Struct Mol Biol2006;13:582-8

[52]

Cerami E,Dogrusoz U.The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.Cancer Discov2012;2:401-4 PMCID:PMC3956037

[53]

Gao J,Dogrusoz U.Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.Sci Signal2013;6:pl1 PMCID:PMC4160307

[54]

de Bruijn I, Kundra R, Mastrogiacomo B, et al; AACR Project GENIE BPC Core Team, AACR Project GENIE Consortium. Analysis and visualization of longitudinal genomic and clinical data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023;83:3861-7. PMCID:PMC10690089

[55]

Weinstein JN, Collisson EA, Mills GB, et al; Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113-20. PMCID:PMC3919969

[56]

Goldman MJ,Hastie M.Visualizing and interpreting cancer genomics data via the Xena platform.Nat Biotechnol2020;38:675-8 PMCID:PMC7386072

[57]

Chen L,Xue R.Deep whole-genome analysis of 494 hepatocellular carcinomas.Nature2024;627:586-93

[58]

Jin P,Zhou L.Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management.J Hematol Oncol2022;15:97 PMCID:PMC9290242

[59]

Le A,Gouw AM.Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression.Proc Natl Acad Sci U S A2010;107:2037-42 PMCID:PMC2836706

[60]

Carreira ASA,Zucal C.Mitochondrial rewiring drives metabolic adaptation to NAD(H) shortage in triple negative breast cancer cells.Neoplasia2023;41:100903 PMCID:PMC10192916

[61]

Lee KM,Balko JM.MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation.Cell Metab2017;26:633-47.e7 PMCID:PMC5650077

[62]

Choi YH.ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development.Curr Pharm Des2014;20:793-807 PMCID:PMC6341993

[63]

Robey RW,Hall MD,Bates SE.Revisiting the role of ABC transporters in multidrug-resistant cancer.Nat Rev Cancer2018;18:452-64 PMCID:PMC6622180

[64]

Liu X.ABC family transporters. In: Liu X, Pan G, editors. Drug transporters in drug disposition, effects and toxicity. Singapore: Springer; 2019. pp. 13-100.

[65]

Lee WK.Teaching an old dog new tricks: reactivated developmental signaling pathways regulate ABCB1 and chemoresistance in cancer.Cancer Drug Resist2021;4:424-52 PMCID:PMC9019277

[66]

Cagnetta A,Acharya C.APO866 increases antitumor activity of cyclosporin-A by inducing mitochondrial and endoplasmic reticulum stress in leukemia cells.Clin Cancer Res2015;21:3934-45

[67]

Ogino Y,Kawano Y,Uchiumi F.Association of ABC transporter with resistance to FK866, a NAMPT inhibitor, in human colorectal cancer cells.Anticancer Res2019;39:6457-62

[68]

Tian Y,Wang Y,Wang J.Mechanism of multidrug resistance to chemotherapy mediated by P-glycoprotein (Review).Int J Oncol2023;63:119 PMCID:PMC10546381

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/