Recent advanced lipid-based nanomedicines for overcoming cancer resistance

Piroonrat Dechbumroong , Runjing Hu , Wisawat Keaswejjareansuk , Katawut Namdee , Xing-Jie Liang

Cancer Drug Resistance ›› 2024, Vol. 7 : 24

PDF
Cancer Drug Resistance ›› 2024, Vol. 7 :24 DOI: 10.20517/cdr.2024.19
review-article

Recent advanced lipid-based nanomedicines for overcoming cancer resistance

Author information +
History +
PDF

Abstract

The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.

Keywords

Cancer resistance / lipid-based nanomaterials / nanomedicines / drug delivery

Cite this article

Download citation ▾
Piroonrat Dechbumroong, Runjing Hu, Wisawat Keaswejjareansuk, Katawut Namdee, Xing-Jie Liang. Recent advanced lipid-based nanomedicines for overcoming cancer resistance. Cancer Drug Resistance, 2024, 7: 24 DOI:10.20517/cdr.2024.19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

American Cancer Society. Cancer Statistics Center. Available from: https://cancerstatisticscenter.cancer.org/module/BmVYeqHT. [Last accessed on 19 Jun 2024]

[2]

Luque-Bolivar A,Villegas VE.Resistance and overcoming resistance in breast cancer.Breast Cancer2020;12:211-29 PMCID:PMC7666993

[3]

Ji X,Tian H,Wei M.Chemoresistance mechanisms of breast cancer and their countermeasures.Biomed Pharmacother2019;114:108800

[4]

MacDonagh L,Breen E.Lung cancer stem cells: the root of resistance.Cancer Lett2016;372:147-56

[5]

Hu T,Gao CY.Mechanisms of drug resistance in colon cancer and its therapeutic strategies.World J Gastroenterol2016;22:6876-89 PMCID:PMC4974586

[6]

Nakazawa M,Kyprianou N.Mechanisms of therapeutic resistance in prostate cancer.Curr Oncol Rep2017;19:13 PMCID:PMC5812366

[7]

Cai M,Li XA.Current therapy and drug resistance in metastatic castration-resistant prostate cancer.Drug Resist Updat2023;68:100962

[8]

Vasan N,Hyman DM.A view on drug resistance in cancer.Nature2019;575:299-309 PMCID:PMC8008476

[9]

Sarmento-Ribeiro AB,Gonçalves AC,Trougakos IP.The emergence of drug resistance to targeted cancer therapies: clinical evidence.Drug Resist Updat2019;47:100646

[10]

Housman G,Heerboth S.Drug resistance in cancer: an overview.Cancers2014;6:1769-92 PMCID:PMC4190567

[11]

Holohan C,Longley DB.Cancer drug resistance: an evolving paradigm.Nat Rev Cancer2013;13:714-26

[12]

Gottesman MM,Ambudkar SV.New mechanisms of multidrug resistance: an introduction to the Cancer Drug Resistance special collection.Cancer Drug Resist2023;6:590-5 PMCID:PMC10571052

[13]

Haider T,Banjare N,Soni V.Drug resistance in cancer: mechanisms and tackling strategies.Pharmacol Rep2020;72:1125-51

[14]

Peltomäki P.Mutations and epimutations in the origin of cancer.Exp Cell Res2012;318:299-310

[15]

Gottesman MM.Mechanisms of cancer drug resistance.Annu Rev Med2002;53:615-27

[16]

Goldie JH.Drug resistance in cancer: a perspective.Cancer Metastasis Rev2001;20:63-8

[17]

Zahreddine H.Mechanisms and insights into drug resistance in cancer.Front Pharmacol2013;4:28 PMCID:PMC3596793

[18]

Nikolaou M,Georgakilas AG.The challenge of drug resistance in cancer treatment: a current overview.Clin Exp Metastasis2018;35:309-18

[19]

Aleksakhina SN,Imyanitov EN.Mechanisms of acquired tumor drug resistance.Biochim Biophys Acta Rev Cancer2019;1872:188310

[20]

Bukowski K,Kontek R.Mechanisms of multidrug resistance in cancer chemotherapy.Int J Mol Sci2020;21:3233 PMCID:PMC7247559

[21]

Wang X,Chen X.Drug resistance and combating drug resistance in cancer.Cancer Drug Resist2019;2:141-60 PMCID:PMC8315569

[22]

Su Z,Zhao SC.Novel nanomedicines to overcome cancer multidrug resistance.Drug Resist Updat2021;58:100777

[23]

Anselmo AC.Nanoparticles in the clinic: an update.Bioeng Transl Med2019;4:e10143 PMCID:PMC6764803

[24]

Shan X,Li J,Li Y.Current approaches of nanomedicines in the market and various stage of clinical translation.Acta Pharm Sin B2022;12:3028-48 PMCID:PMC9293719

[25]

Wolfram J.Clinical cancer nanomedicine.Nano Today2019;25:85-98 PMCID:PMC6662733

[26]

Namiot ED,Chubarev VN,Schiöth HB.Nanoparticles in clinical trials: analysis of clinical trials, FDA approvals and use for COVID-19 vaccines.Int J Mol Sci2023;24:787 PMCID:PMC9821409

[27]

Ashique S,Hussain A,Kumar P.Nanodelivery systems: an efficient and target-specific approach for drug-resistant cancers.Cancer Med2023;12:18797-825 PMCID:PMC10557914

[28]

Patel KD,Kim HW.Carbon-based nanomaterials as an emerging platform for theranostics.Mater Horiz2019;6:434-69

[29]

Tan C,Jafari SM.Cubosomes and hexosomes as novel nanocarriers for bioactive compounds.J Agric Food Chem2022;70:1423-37

[30]

Mendes LP,Luther E,Torchilin VP.Surface-engineered polyethyleneimine-modified liposomes as novel carrier of siRNA and chemotherapeutics for combination treatment of drug-resistant cancers.Drug Deliv2019;26:443-58 PMCID:PMC6450504

[31]

Quick J,Cheng MHY.Lipid nanoparticles to silence androgen receptor variants for prostate cancer therapy.J Control Release2022;349:174-83

[32]

Tan T,Wang W.Cabazitaxel-loaded human serum albumin nanoparticles combined with TGFβ-1 siRNA lipid nanoparticles for the treatment of paclitaxel-resistant non-small cell lung cancer.Cancer Nano2023;14:70

[33]

Younis MA,Abd Elwakil MM.A multifunctional lipid-based nanodevice for the highly specific codelivery of sorafenib and midkine siRNA to hepatic cancer cells.Mol Pharm2019;16:4031-44

[34]

Chen Q,Wang Y.Penetrating micelle for reversing immunosuppression and drug resistance in pancreatic cancer treatment.Small2022;18:e2107712

[35]

Joshi U,Khan MM,Torchilin V.Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells.Int J Pharm2020;590:119915

[36]

Lasa-Saracibar B,Guada M,Blanco-Prieto MJ.Lipid nanoparticles for cancer therapy: state of the art and future prospects.Expert Opin Drug Deliv2012;9:1245-61

[37]

Markman JL,Holler E.Nanomedicine therapeutic approaches to overcome cancer drug resistance.Adv Drug Deliv Rev2013;65:1866-79 PMCID:PMC5812459

[38]

Majidinia M,Rahimi M.Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons.IUBMB Life2020;72:855-71

[39]

Sonju JJ,Singh SS.Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment.J Control Release2021;329:624-44 PMCID:PMC8082750

[40]

Ventola CL.Progress in nanomedicine: approved and investigational nanodrugs.P T2017;42:742-55 PMCID:PMC5720487

[41]

Sainz V,Matos AI.Regulatory aspects on nanomedicines.Biochem Biophys Res Commun2015;468:504-10

[42]

Bobo D,Islam J,Corrie SR.Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date.Pharm Res2016;33:2373-87

[43]

U.S. Food & Drug Administration. Considerations for drug products that contain nanomaterials. Available from: https://www.fda.gov/drugs/cder-small-business-industry-assistance-sbia/considerations-drug-products-contain-nanomaterials. [Last accessed on 19 Jun 2024]

[44]

Jeevanandam J,Chan YS,Danquah MK.Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations.Beilstein J Nanotechnol2018;9:1050-74 PMCID:PMC5905289

[45]

DeFrates K,Gallo P.Protein polymer-based nanoparticles: fabrication and medical applications.Int J Mol Sci2018;19:1717 PMCID:PMC6032199

[46]

Barenholz Y.Doxil® - the first FDA-approved nano-drug: lessons learned.J Control Release2012;160:117-34

[47]

Choi YH.Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics.J Pharm Investig2019;48:43-60 PMCID:PMC6244736

[48]

D’Mello SR,Chen ML,Lee SL.The evolving landscape of drug products containing nanomaterials in the United States.Nat Nanotechnol2017;12:523-9

[49]

Banala VT,Mahajan S.Chapter 20 - Current status of FDA-approved marketed nano drug products: regulatory considerations. In: Multifunctional Nanocarriers. Elsevier; 2022. pp. 501-21.

[50]

Farjadian F,Gohari O,Karimi M.Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities.Nanomedicine2019;14:93-126 PMCID:PMC6391637

[51]

National Cancer Institute. Cancer nano-therapies in the clinic and clinical trials. Available from: https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments. [Last accessed on 19 Jun 2024]

[52]

Jia Y,He Y.Approved nanomedicine against diseases.Pharmaceutics2023;15:774 PMCID:PMC10059816

[53]

Rodríguez F,De la Fuente N.Nano-based approved pharmaceuticals for cancer treatment: present and future challenges.Biomolecules2022;12:784 PMCID:PMC9221343

[54]

Halwani AA.Development of pharmaceutical nanomedicines: from the bench to the market.Pharmaceutics2022;14:106 PMCID:PMC8777701

[55]

Fraguas-Sanchez AI,Fernandez-Carballido A.Chapter 4 - Current status of nanomedicine for breast cancer treatment. In: Targeted Nanomedicine for Breast Cancer Therapy. 2022. pp. 65-110.

[56]

Fraguas-Sánchez AI,Torres-Suárez AI.Actively targeted nanomedicines in breast cancer: from pre-clinal investigation to clinic.Cancers2022;14:1198 PMCID:PMC8909490

[57]

Crommelin DJA,Storm G.The role of liposomes in clinical nanomedicine development. What now? Now what?.J Control Release2020;318:256-63

[58]

Madaan A,Awasthi A.Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, Nanoxel(TM).Clin Transl Oncol2013;15:26-32

[59]

Sofias AM,Storm G.The battle of “nano” paclitaxel.Adv Drug Deliv Rev2017;122:20-30

[60]

Tenchov R,Curtze AE.Lipid nanoparticles - from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano2021;15:16982-7015

[61]

Mehta M,Yang X,Goldys EM.Lipid-based nanoparticles for drug/gene delivery: an overview of the production techniques and difficulties encountered in their industrial development.ACS Mater Au2023;3:600-19 PMCID:PMC10636777

[62]

Zhai J,Tran N.Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine.ACS Nano2019;13:6178-206

[63]

Fornasier M.Non-lamellar lipid liquid crystalline nanoparticles: a smart platform for nanomedicine applications.Front Soft Matter2023;3:1109508

[64]

Lancelot A,Serrano JL.Nanostructured liquid-crystalline particles for drug delivery.Expert Opin Drug Deliv2014;11:547-64

[65]

Mahmoud K,El-Nabarawi M.Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances.J Nanobiotechnol2022;20:109 PMCID:PMC8898455

[66]

Kumar R,Kumari R.Lipid based nanocarriers: production techniques, concepts, and commercialization aspect.J Drug Deliv Sci Tec2022;74:103526

[67]

Chaudhuri A,Shaik RA.Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy.Int J Mol Sci2022;23:10068 PMCID:PMC9456313

[68]

Jia Y,Li L,Zhang J.Lipid nanoparticles optimized for targeting and release of nucleic acid.Adv Mater2024;36:e2305300

[69]

Xu L,Liu Y,Falconer RJ.Lipid nanoparticles for drug delivery.Adv NanoBiomed Res2022;2:2100109

[70]

Varghese R,Sood P,Kumar D.Cubosomes in cancer drug delivery: a review.Colloid Interfac Sci2022;46:100561

[71]

Zhang Z,Hu Y,Lee RJ.Application of lipid-based nanoparticles in cancer immunotherapy.Front Immunol2022;13:967505 PMCID:PMC9393708

[72]

Hussain Z,Imran M,Shah SWA.PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution.Drug Deliv Transl Res2019;9:721-34

[73]

Anarjan F. Active targeting drug delivery nanocarriers: ligands.Nano Struc Nano Objects2019;19:100370

[74]

Alshaer W,Fattal E.Aptamer-guided nanomedicines for anticancer drug delivery.Adv Drug Deliv Rev2018;134:122-37

[75]

Guo Y,Shi X.Engineered cancer cell membranes: an emerging agent for efficient cancer theranostics.Exploration2022;2:20210171 PMCID:PMC10190949

[76]

Wang J,Nie G.Multifunctional biomolecule nanostructures for cancer therapy.Nat Rev Mater2021;6:766-83 PMCID:PMC8132739

[77]

García-Pinel B,Ortega-Rodríguez A.Lipid-based nanoparticles: application and recent advances in cancer treatment.Nanomaterials2019;9:638 PMCID:PMC6523119

[78]

Dilliard SA.Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs.Nat Rev Mater2023;8:282-300 PMCID:PMC9850348

[79]

Xue X,Li Y.Stimuli-responsive crosslinked nanomedicine for cancer treatment.Exploration2022;2:20210134 PMCID:PMC10190936

[80]

Bangham AD,Watkins JC.Diffusion of univalent ions across the lamellae of swollen phospholipids.J Mol Biol1965;13:238-52

[81]

Akbarzadeh A,Davaran S.Liposome: classification, preparation, and applications.Nanoscale Res Lett2013;8:102 PMCID:PMC3599573

[82]

Chen Y,Zhao P.Co-delivery of doxorubicin and imatinib by pH sensitive cleavable PEGylated nanoliposomes with folate-mediated targeting to overcome multidrug resistance.Int J Pharm2018;542:266-79

[83]

Yue G,Liu B.Liposomes co-delivery system of doxorubicin and astragaloside IV co-modified by folate ligand and octa-arginine polypeptide for anti-breast cancer.RSC Adv2020;10:11573-81 PMCID:PMC9050494

[84]

Gladkikh DV,Chernikov IV.Folate-equipped cationic liposomes deliver anti-MDR1-siRNA to the tumor and increase the efficiency of chemotherapy.Pharmaceutics2021;13:1252 PMCID:PMC8399439

[85]

Sriraman SK,Sarisozen C.Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid.Eur J Pharm Biopharm2016;105:40-9 PMCID:PMC4931959

[86]

Fu J,Xin X,Hu H.Transferrin-modified nanoliposome codelivery strategies for enhancing the cancer therapy.J Pharm Sci2020;109:2426-36

[87]

Wang Y,Qiu L.Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells.Biomaterials2014;35:4297-309

[88]

Cui S,Zhao Y.Epidermal growth factor receptor-targeted immunomagnetic liposomes for circulating tumor cell enumeration in non-small cell lung cancer treated with epidermal growth factor receptor-tyrosine kinase inhibitors.Lung Cancer2019;132:45-53

[89]

Burande AS,Jha A.EGFR targeted paclitaxel and piperine co-loaded liposomes for the treatment of triple negative breast cancer.AAPS PharmSciTech2020;21:151

[90]

Liu Y,Pen R.Targeted delivery of irinotecan to colon cancer cells using epidermal growth factor receptor-conjugated liposomes.Biomed Eng Online2022;21:53 PMCID:PMC9344698

[91]

Pereira SGT,Kreft ME,Stuart MCA.Intracellular activation of a prostate specific antigen-cleavable doxorubicin prodrug: a key feature toward prodrug-nanomedicine design.Mol Pharm2019;16:1573-85

[92]

Mizutani K,Fujita Y.Gene therapy of prostate cancer using liposomes containing perforin expression vector driven by the promoter of prostate-specific antigen gene.Sci Rep2022;12:1442 PMCID:PMC8795355

[93]

Ghandhariyoun N,Nikoofal-Sahlabadi S,Moosavian SA.Reducing Doxorubicin resistance in breast cancer by liposomal FOXM1 aptamer: in vitro and in vivo.Life Sci2020;262:118520

[94]

de Freitas CF, Montanha MC, Pellosi DS, Kimura E, Caetano W, Hioka N. “Biotin-targeted mixed liposomes: a smart strategy for selective release of a photosensitizer agent in cancer cells”.Mater Sci Eng C Mater Biol Appl2019;104:109923

[95]

Lu R,Yue Q.Liposomes modified with double-branched biotin: a novel and effective way to promote breast cancer targeting.Bioorg Med Chem2019;27:3115-27

[96]

Li R,Pu Y.Fructose and biotin co-modified liposomes for dual-targeting breast cancer.J Liposome Res2022;32:119-28

[97]

Singh P,Mishra N.Functionalized bosutinib liposomes for target specific delivery in management of estrogen-positive cancer.Colloids Surf B Biointerfaces2022;218:112763

[98]

Matusewicz L,Sikorski AF.Immunoliposomes with simvastatin as a potential therapeutic in treatment of breast cancer cells overexpressing HER2 - an in vitro study.Cancers2018;10:418 PMCID:PMC6266203

[99]

Kim B,Wu J.Engineering peptide-targeted liposomal nanoparticles optimized for improved selectivity for HER2-positive breast cancer cells to achieve enhanced in vivo efficacy.J Control Release2020;322:530-41 PMCID:PMC7932755

[100]

Chen IJ,Ho KW.Bispecific antibody (HER2 × mPEG) enhances anti-cancer effects by precise targeting and accumulation of mPEGylated liposomes.Acta Biomater2020;111:386-97

[101]

Li L,Guo Q.Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer.J Nanobiotechnology2022;20:50 PMCID:PMC8787930

[102]

Zhang J,Pan S.Overcoming multidrug resistance by codelivery of MDR1-targeting siRNA and doxorubicin using EphA10-mediated pH-sensitive lipoplexes: in vitro and in vivo evaluation.ACS Appl Mater Interfaces2018;10:21590-600

[103]

Liu C,Gao R.Matrix metalloproteinase-2-responsive surface-changeable liposomes decorated by multifunctional peptides to overcome the drug resistance of triple-negative breast cancer through enhanced targeting and penetrability.ACS Biomater Sci Eng2022;8:2979-94

[104]

Wang P,Xia X,Yan D.Redox-responsive drug-inhibitor conjugate encapsulated in DSPE-PEG2k micelles for overcoming multidrug resistance to chemotherapy.Biomater Sci2023;11:4335-45

[105]

Zhu Y,Li M,Huang J.Ultrasound-augmented phase transition nanobubbles for targeted treatment of paclitaxel-resistant cancer.Bioconjug Chem2020;31:2008-20

[106]

Chen J,Chang C.Ultrasound-propelled liposome circumvention and siRNA silencing reverse BRAF mutation-arised cancer resistance to trametinib.Colloids Surf B Biointerfaces2024;234:113710

[107]

Li X,Yang H,Ye Z.A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer.Biomed Pharmacother2019;117:109072

[108]

Haggag Y,El-Tanani Y.Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells.Expert Opin Drug Deliv2020;17:1655-69

[109]

Li Y,Liu X.Enhanced anticancer effect of doxorubicin by TPGS-coated liposomes with Bcl-2 siRNA-corona for dual suppression of drug resistance.Asian J Pharm Sci2020;15:646-60 PMCID:PMC7610212

[110]

Shen Q,Jin F,Ying XY.Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy.J Liposome Res2020;30:12-20

[111]

Yin W,Kang X.BBB-penetrating codelivery liposomes treat brain metastasis of non-small cell lung cancer with EGFRT790M mutation.Theranostics2020;10:6122-35 PMCID:PMC7255027

[112]

Sun M,Zhang W.Bioinspired lipoproteins of furoxans-gemcitabine preferentially targets glioblastoma and overcomes radiotherapy resistance.Adv Sci2024;11:e2306190 PMCID:PMC10853724

[113]

Wang Y,Jia F.CXCR4-guided liposomes regulating hypoxic and immunosuppressive microenvironment for sorafenib-resistant tumor treatment.Bioact Mater2022;17:147-61

[114]

Zhu Y,Zhang S.Paclitaxel-loaded ginsenoside Rg3 liposomes for drug-resistant cancer therapy by dual targeting of the tumor microenvironment and cancer cells.J Adv Res2023;49:159-73 PMCID:PMC10334248

[115]

Zhu YX,Duan QY.Photosensitizer-doped and plasma membrane-responsive liposomes for nuclear drug delivery and multidrug resistance reversal.ACS Appl Mater Interfaces2020;12:36882-94

[116]

Wu J,Dong J.Therapeutic response of multifunctional lipid and micelle formulation in hepatocellular carcinoma.ACS Appl Mater Interfaces2022;14:45110-23

[117]

Bai F,Chen T.Development of liposomal pemetrexed for enhanced therapy against multidrug resistance mediated by ABCC5 in breast cancer.Int J Nanomedicine2018;13:1327-39 PMCID:PMC5846754

[118]

Baglo Y,Robey RW,Gottesman MM.Porphyrin-lipid assemblies and nanovesicles overcome ABC transporter-mediated photodynamic therapy resistance in cancer cells.Cancer Lett2019;457:110-8 PMCID:PMC6690745

[119]

Saw PE,Jon S.A drug-delivery strategy for overcoming drug resistance in breast cancer through targeting of oncofetal fibronectin.Nanomedicine2017;13:713-22

[120]

Subhan MA,Torchilin VP.Advances in siRNA delivery strategies for the treatment of MDR cancer.Life Sci2021;274:119337

[121]

Wilson E, Goswami J, Baqui AH, et al; ConquerRSV Study Group. Efficacy and safety of an mRNA-based RSV PreF vaccine in older adults. N Engl J Med 2023;389:2233-44.

[122]

Moderna Inc. Moderna Receives U.S. FDA approval for RSV vaccine mRESVIA(R). 2024. Available from: https://investors.modernatx.com/news/news-details/2024/Moderna-Receives-U.S.-FDA-Approval-for-RSV-Vaccine-mRESVIAR/default.aspx. [Last accessed on 19 Jun 2024]

[123]

Zhou F,Li S.From structural design to delivery: mRNA therapeutics for cancer immunotherapy.Exploration2024;4:20210146

[124]

Kubiatowicz LJ,Krishnan N,Zhang L.mRNA nanomedicine: design and recent applications.Exploration2022;2:20210217 PMCID:PMC9539018

[125]

El Moukhtari SH,Amundarain A.Lipid nanoparticles for siRNA delivery in cancer treatment.J Controll Release2023;361:130-46

[126]

Pandey PR,Kumar D.RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics.Mol Cancer2022;21:58 PMCID:PMC8860277

[127]

Makita Y,Murata S,Matsumoto S.Antitumor activity of kinetochore-associated protein 2 siRNA against lung cancer patient-derived tumor xenografts.Oncol Lett2018;15:4676-82 PMCID:PMC5835869

[128]

Fattore L,Di Martile M.Oncosuppressive miRNAs loaded in lipid nanoparticles potentiate targeted therapies in BRAF-mutant melanoma by inhibiting core escape pathways of resistance.Oncogene2023;42:293-307 PMCID:PMC9684877

[129]

Younis MA,Elewa YH,Harashima H.Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo.J Controll Release2021;331:335-49

[130]

Li C,Huang L,Zhu G.Self-assembled lipid nanoparticles for ratiometric codelivery of cisplatin and siRNA targeting XPF to combat drug resistance in lung cancer.Chem Asian J2019;14:1570-6

[131]

Rosenblum D,Kedmi R.CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy.Sci Adv2020;6:eabc9450 PMCID:PMC7673804

[132]

Chatterjee S,Hazan-Halevy I.Therapeutic gene silencing of CKAP5 leads to lethality in genetically unstable cancer cells.Sci Adv2023;9:eade4800 PMCID:PMC10075965

[133]

Ehexige E,Bazarjav P.Silencing of STAT3 via peptidomimetic LNP-mediated systemic delivery of RNAi downregulates PD-L1 and inhibits melanoma growth.Biomolecules2020;10:285 PMCID:PMC7072202

[134]

Nakamura T,Endo R.STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation.J Immunother Cancer2021;9:e002852 PMCID:PMC8256839

[135]

Cho R,Jones HS,Hisaka A.Silencing of VEGFR2 by RGD-modified lipid nanoparticles enhanced the efficacy of anti-PD-1 antibody by accelerating vascular normalization and infiltration of T cells in tumors.Cancers2020;12:3630 PMCID:PMC7761875

[136]

Bose A,Sikdar B.Nanomicelles: types, properties and applications in drug delivery.IET Nanobiotechnology2021;15:19-27 PMCID:PMC8675821

[137]

Gao W,Duan X,Yang VC.Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer.Int J Nanomedicine2017;12:1047-64 PMCID:PMC5304995

[138]

Chen R,Chen W,Feng J.Improved anti-triple negative breast cancer effects of docetaxel by RGD-modified lipid-core micelles.Int J Nanomedicine2021;16:5265-79 PMCID:PMC8349197

[139]

Colombo S,Bøtker JP,Rantanen J.Transforming nanomedicine manufacturing toward Quality by Design and microfluidics.Adv Drug Deliv Rev2018;128:115-31

[140]

Fornaguera C.Personalized nanomedicine: a revolution at the nanoscale.J Pers Med2017;7:12

[141]

Persano F,Leporatti S.Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions.Nano Ex2021;2:012006

[142]

Alavi M.Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: recent advances and challenges.Drug Discov Today2022;27:576-84

[143]

Chavda VP,Mehta B.Phytochemical-loaded liposomes for anticancer therapy: an updated review.Nanomedicine2022;17:547-68

[144]

Xia Y,Huang H.Drug repurposing for cancer therapy.Signal Transduct Target Ther2024;9:92 PMCID:PMC11026526

[145]

Bukhari SI,Ahmad MZ.Recent progress in lipid nanoparticles for cancer theranostics: opportunity and challenges.Pharmaceutics2021;13:840 PMCID:PMC8226834

[146]

Zhang P,Liu C.Molecular imaging of tumour-associated pathological biomarkers with smart nanoprobe: from “Seeing” to “Measuring”.Exploration2023;3:20230070 PMCID:PMC10742208

[147]

Xin J,Zheng M.A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance.Chin Chem Lett2024;35:109165

[148]

Craig MA,Namgung B,Goldman A.Engineering in medicine to address the challenge of cancer drug resistance: from micro- and nanotechnologies to computational and mathematical modeling.Chem Rev2021;121:3352-89

[149]

Stillman NR,Tsompanas M.Evolutionary computational platform for the automatic discovery of nanocarriers for cancer treatment.npj Comput Mater2021;7:150

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/