Acquired resistance to molecularly targeted therapies for cancer

Nolan M. Stubbs , Tyler J. Roady , Maximilian P. Schwermann , Elias O. Eteshola , William J. MacDonald , Connor Purcell , Dinara Ryspayeva , Nataliia Verovkina , Vida Tajiknia , Maryam Ghandali , Viva Voong , Alexis J. Lannigan , Alexander G. Raufi , Sean Lawler , Sheldon L. Holder , Benedito A. Carneiro , Liang Cheng , Howard P. Safran , Stephanie L. Graff , Don S. Dizon , Sendurai A. Mani , Attila A. Seyhan , Robert W. Sobol , Eric T. Wong , Clark C. Chen , Ziya Gokaslan , Martin S. Taylor , Brian M. Rivers , Wafik S. El-Deiry

Cancer Drug Resistance ›› 2025, Vol. 8 : 27

PDF
Cancer Drug Resistance ›› 2025, Vol. 8 :27 DOI: 10.20517/cdr.2024.189
review-article

Acquired resistance to molecularly targeted therapies for cancer

Author information +
History +
PDF

Abstract

Acquired resistance to molecularly targeted therapies remains a formidable challenge in the treatment of cancer, despite significant advancements over the last several decades. We critically evaluate the evolving landscape of resistance mechanisms to targeted cancer therapies, with a focus on the genetic, molecular, and environmental contributors across a variety of malignancies. Intrinsic mechanisms such as mutations, drug and drug target modifications, and, notably, the activation of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt pathways are mechanisms different malignancies use to combat therapeutic effectiveness. Furthermore, extrinsic alterations to the tumor microenvironment contribute to therapeutic resistance. We highlight similarities and differences in mechanisms across a wide spectrum of cancers including hematologic malignancies, non-small cell lung cancer, gastrointestinal, breast, and prostate cancers, pancreatic, ovarian, endometrial, and intracranial gliomas. Emerging strategies to overcome resistance, including multi-targeted approaches, combination therapies, and exploitation of synthetic lethality, are all critically discussed. We advocate for a nuanced understanding of resistance mechanisms as a cornerstone for developing future therapeutic strategies, emphasizing the necessity for integrated approaches that encompass genomic insights and precision medicine to outpace the dynamic and complex nature of cancer evolution and therapy resistance.

Keywords

Molecular targeted therapies / acquired resistance / cancer treatment strategies / precision medicine

Cite this article

Download citation ▾
Nolan M. Stubbs, Tyler J. Roady, Maximilian P. Schwermann, Elias O. Eteshola, William J. MacDonald, Connor Purcell, Dinara Ryspayeva, Nataliia Verovkina, Vida Tajiknia, Maryam Ghandali, Viva Voong, Alexis J. Lannigan, Alexander G. Raufi, Sean Lawler, Sheldon L. Holder, Benedito A. Carneiro, Liang Cheng, Howard P. Safran, Stephanie L. Graff, Don S. Dizon, Sendurai A. Mani, Attila A. Seyhan, Robert W. Sobol, Eric T. Wong, Clark C. Chen, Ziya Gokaslan, Martin S. Taylor, Brian M. Rivers, Wafik S. El-Deiry. Acquired resistance to molecularly targeted therapies for cancer. Cancer Drug Resistance, 2025, 8: 27 DOI:10.20517/cdr.2024.189

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H,Siegel RL.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin2021;71:209-49

[2]

Wild CP,Stewart BW. World Cancer Report: cancer research for cancer prevention. Available from: https://publications.iarc.fr/586. [Last accessed on 26 May 2025]

[3]

Joko-Fru WY,Soerjomataram I.Breast cancer survival in sub-Saharan Africa by age, stage at diagnosis and human development index: a population-based registry study.Int J Cancer2020;146:1208-18 PMCID:PMC7079125

[4]

Prager GW,Bystricky B.Global cancer control: responding to the growing burden, rising costs and inequalities in access.ESMO Open2018;3:e000285 PMCID:PMC5812392

[5]

Zhong L,Xiong L.Small molecules in targeted cancer therapy: advances, challenges, and future perspectives.Signal Transduct Target Ther2021;6:201 PMCID:PMC8165101

[6]

Housman G,Heerboth S.Drug resistance in cancer: an overview.Cancers2014;6:1769-92 PMCID:PMC4190567

[7]

Luqmani YA.Mechanisms of drug resistance in cancer chemotherapy.Med Princ Pract2005;14 Suppl 1:35-48

[8]

Marusyk A.Tumor heterogeneity: causes and consequences.Biochim Biophys Acta2010;1805:105-17 PMCID:PMC2814927

[9]

Bray F,Weiderpass E.The ever-increasing importance of cancer as a leading cause of premature death worldwide.Cancer2021;127:3029-30

[10]

Sebolt-Leopold JS.Targeting the mitogen-activated protein kinase cascade to treat cancer.Nat Rev Cancer2004;4:937-47

[11]

Kovalski JR,Zehnder AM.The functional proximal proteome of oncogenic ras includes mTORC2.Mol Cell2019;73:830-44.e12 PMCID:PMC6386588

[12]

Rizos H,Pupo GM.BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact.Clin Cancer Res2014;20:1965-77

[13]

Montagut C,Shioda T.Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma.Cancer Res2008;68:4853-61 PMCID:PMC2692356

[14]

Johannessen CM,Kim SY.COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.Nature2010;468:968-72 PMCID:PMC3058384

[15]

Shi H,Kong X.Melanoma whole-exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance.Nat Commun2012;3:724 PMCID:PMC3530385

[16]

Corcoran RB,Bergethon K,Settleman J.BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation.Sci Signal2010;3:ra84 PMCID:PMC3372405

[17]

Ligresti G,Steelman LS.PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches.Cell Cycle2009;8:1352-8 PMCID:PMC3781181

[18]

Manning BD.AKT/PKB signaling: navigating the network.Cell2017;169:381-405 PMCID:PMC5546324

[19]

Fruman DA,Hopkins BD,Cantley LC.The PI3K pathway in human disease.Cell2017;170:605-35 PMCID:PMC5726441

[20]

Candido S,Piccinin S,Libra M.The PIK3CA H1047R mutation confers resistance to BRAF and MEK inhibitors in A375 melanoma cells through the cross-activation of MAPK and PI3K-Akt pathways.Pharmaceutics2022;14:590 PMCID:PMC8950976

[21]

Shi H,Kong X.Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy.Cancer Discov2014;4:80-93 PMCID:PMC3936420

[22]

Muñoz-Couselo E,Ortiz C,Perez-Garcia J.NRAS-mutant melanoma: current challenges and future prospect.Onco Targets Ther2017;10:3941-7 PMCID:PMC5558581

[23]

Hodis E,Kryukov GV.A landscape of driver mutations in melanoma.Cell2012;150:251-63 PMCID:PMC3600117

[24]

Mandalà M,Massi D.Nras in melanoma: targeting the undruggable target.Crit Rev Oncol Hematol2014;92:107-22

[25]

Abel EV,Kugel CH 3rd.Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3.J Clin Invest2013;123:2155-68 PMCID:PMC3635724

[26]

Kun E,Ng CW,Wong KK.MEK inhibitor resistance mechanisms and recent developments in combination trials.Cancer Treat Rev2021;92:102137

[27]

Wagle N,Treacy DJ.MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition.Cancer Discov2014;4:61-8 PMCID:PMC3947296

[28]

Oda K,Funahashi A.A comprehensive pathway map of epidermal growth factor receptor signaling.Mol Syst Biol2005;1:2005.0010 PMCID:PMC1681468

[29]

Song MS,Pandolfi PP.The functions and regulation of the PTEN tumour suppressor.Nat Rev Mol Cell Biol2012;13:283-96

[30]

Pollak M.The insulin and insulin-like growth factor receptor family in neoplasia: an update.Nat Rev Cancer2012;12:159-69

[31]

Gallagher EJ.The proliferating role of insulin and insulin-like growth factors in cancer.Trends Endocrinol Metab2010;21:610-8 PMCID:PMC2949481

[32]

Zhao S,Hao CL,Zheng HC.BTG1 overexpression might promote invasion and metastasis of colorectal cancer via decreasing adhesion and inducing epithelial-mesenchymal transition.Front Oncol2020;10:598192 PMCID:PMC7729016

[33]

Correia AL.The tumor microenvironment is a dominant force in multidrug resistance.Drug Resist Updat2012;15:39-49 PMCID:PMC3658318

[34]

Son B,Youn H,Kim W.The role of tumor microenvironment in therapeutic resistance.Oncotarget2017;8:3933-45 PMCID:PMC5354804

[35]

Ge R,Cheng L.Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance.NPJ Precis Oncol2022;6:31 PMCID:PMC9068628

[36]

Murdoch C,Coffelt SB.The role of myeloid cells in the promotion of tumour angiogenesis.Nat Rev Cancer2008;8:618-31

[37]

Santoni M,Amantini C.Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma.Cancer Immunol Immunother2013;62:1757-68 PMCID:PMC11029754

[38]

Mani SA,Liao MJ.The epithelial-mesenchymal transition generates cells with properties of stem cells.Cell2008;133:704-15 PMCID:PMC2728032

[39]

Kuburich NA,Demestichas BR,den Hollander P.Proactive and reactive roles of TGF-β in cancer.Semin Cancer Biol2023;95:120-39 PMCID:PMC10530624

[40]

Gabrilovich DI,Bronte V.Coordinated regulation of myeloid cells by tumours.Nat Rev Immunol2012;12:253-68 PMCID:PMC3587148

[41]

Beury DW,Nyandjo M,Carter KA.Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors.J Leukoc Biol2014;96:1109-18 PMCID:PMC4226789

[42]

Shiga K,Nagasaki T,Takahashi H.Cancer-associated fibroblasts: their characteristics and their roles in tumor growth.Cancers2015;7:2443-58 PMCID:PMC4695902

[43]

Kaur A,Marchbank K.sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance.Nature2016;532:250-4 PMCID:PMC4833579

[44]

Wu F,Liu J.Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer.Signal Transduct Target Ther2021;6:218 PMCID:PMC8190181

[45]

Knowles MA.Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity.Nat Rev Cancer2015;15:25-41

[46]

Paraiso KH.Fibroblast-mediated drug resistance in cancer.Biochem Pharmacol2013;85:1033-41

[47]

Xavier CPR,Barbosa MAG,Guimarães JE.The role of extracellular vesicles in the hallmarks of cancer and drug resistance.Cells2020;9:1141 PMCID:PMC7290603

[48]

Becker A,Weiss JM,Peinado H.Extracellular vesicles in cancer: cell-to-cell mediators of metastasis.Cancer Cell2016;30:836-48 PMCID:PMC5157696

[49]

Maleki S,Garnis C.The role of extracellular vesicles in mediating resistance to anticancer therapies.Int J Mol Sci2021;22:4166

[50]

Kalluri R.The biology, function, and biomedical applications of exosomes.Science2020;367:eaau6977 PMCID:PMC7717626

[51]

Rowley JD.Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.Nature1973;243:290-3

[52]

Deininger MW,Altman JK.Chronic myeloid leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology.J Natl Compr Canc Netw2020;18:1385-415

[53]

Hochhaus A,Silver RT.European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia.Leukemia2020;34:966-84 PMCID:PMC7214240

[54]

Arber DA,Hasserjian RP.International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data.Blood2022;140:1200-28 PMCID:PMC9479031

[55]

Berman E.How I treat chronic-phase chronic myelogenous leukemia.Blood2022;139:3138-47

[56]

Bower H,Dickman PW,Lambert PC.Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population.J Clin Oncol2016;34:2851-7

[57]

Radich JP,Abboud CN.Chronic myeloid leukemia, Version 1.2019, NCCN Clinical Practice Guidelines in Oncology.J Natl Compr Canc Netw2018;16:1108-35

[58]

Hughes T,Branford S.Impact of baseline BCR-ABL mutations on response to nilotinib in patients with chronic myeloid leukemia in chronic phase.J Clin Oncol2009;27:4204-10 PMCID:PMC4979230

[59]

Mead AJ.Single cell genomics in chronic myeloid leukemia.HemaSphere2018;2:54-5

[60]

Wylie AA,Jahnke W.The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1.Nature2017;543:733-7

[61]

Neviani P,Oaks JJ.PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells.J Clin Invest2013;123:4144-57 PMCID:PMC3784537

[62]

Ma L,Bai R.A therapeutically targetable mechanism of BCR-ABL-independent imatinib resistance in chronic myeloid leukemia.Sci Transl Med2014;6:252ra121 PMCID:PMC4162097

[63]

Mitchell R,Baquero P.Targeting BCR-ABL-independent TKI resistance in chronic myeloid leukemia by mTOR and autophagy inhibition.J Natl Cancer Inst2018;110:467-78 PMCID:PMC5946859

[64]

Terwilliger T.Acute lymphoblastic leukemia: a comprehensive review and 2017 update.Blood Cancer J2017;7:e577 PMCID:PMC5520400

[65]

Mullighan CG,Radtke I.Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia.Nature2007;446:758-64

[66]

Ottmann OG,Sawyers CL.A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias.Blood2002;100:1965-71

[67]

Druker BJ,Kantarjian H.Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome.N Engl J Med2001;344:1038-42

[68]

Jones CL,Fosmire S.MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia.Blood2015;126:2202-12 PMCID:PMC4635116

[69]

Verrills NM,Cobon GS,Kavallaris M.Proteome analysis of vinca alkaloid response and resistance in acute lymphoblastic leukemia reveals novel cytoskeletal alterations.J Biol Chem2003;278:45082-93

[70]

Jabbour E,Jain N.Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial.Lancet Haematol2023;10:E24-34

[71]

Cortes JE, Kim DW, Pinilla-Ibarz J, et al; PACE Investigators. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783-96. PMCID:PMC3886799

[72]

Lipton JH,Guerci-Bresler A.Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial.Lancet Oncol2016;17:612-21

[73]

Alves R,Rutella S.Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia - from molecular mechanisms to clinical relevance.Cancers2021;13:4820

[74]

Advani AS,Rowe JM.The role of ponatinib in Ph+ ALL: new strategies and future directions.Blood Adv2023;7:2412-21

[75]

Rousselot P,Gokbuget N.Combining ponatinib with blinatumomab: a chemotherapy-free strategy for Ph+ ALL.Haematologica2022;107:1394-403

[76]

Cerovska E,Kundrat D.ABC transporters are predictors of treatment failure in acute myeloid leukaemia.Biomed Pharmacother2024;170:115930

[77]

van Galen JC,van Emst L.BTG1 regulates glucocorticoid receptor autoinduction in acute lymphoblastic leukemia.Blood2010;115:4810-9

[78]

Hogan LE,Yang J.Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies.Blood2011;118:5218-26 PMCID:PMC3217405

[79]

Nokin MJ,Nadal E.Targeting infrequent driver alterations in non-small cell lung cancer.Trends Cancer2021;7:410-29

[80]

Chevallier M,Addeo A.Oncogenic driver mutations in non-small cell lung cancer: past, present and future.World J Clin Oncol2021;12:217-37 PMCID:PMC8085514

[81]

Johnson M,Mok T.Treatment strategies and outcomes for patients with EGFR-mutant non-small cell lung cancer resistant to EGFR tyrosine kinase inhibitors: focus on novel therapies.Lung Cancer2022;170:41-51

[82]

Cross DA,Ghiorghiu S.AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer.Cancer Discov2014;4:1046-61 PMCID:PMC4315625

[83]

Choi YL, Soda M, Yamashita Y, et al; ALK Lung Cancer Study Group. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363:1734-9.

[84]

Yang H,Zhao C.EGFR amplification is a putative resistance mechanism for NSCLC-LM patients with TKI therapy and is associated with poor outcome.Front Oncol2022;12:902664 PMCID:PMC9376465

[85]

Katayama R,Khan TM.Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers.Sci Transl Med2012;4:120ra17 PMCID:PMC3385512

[86]

Turke AB,Wu YL.Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC.Cancer Cell2010;17:77-88 PMCID:PMC2980857

[87]

Sethy C.5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition.Biomed Pharmacother2021;137:111285

[88]

Das D,Mohapatra P.5-Fluorouracil mediated anti-cancer activity in colon cancer cells is through the induction of Adenomatous Polyposis Coli: implication of the long-patch base excision repair pathway.DNA Repair2014;24:15-25 PMCID:PMC4830146

[89]

Toriumi F,Saikawa Y.Thymidylate synthetase (TS) genotype and TS/dihydropyrimidine dehydrogenase mRNA level as an indicator in determining chemosensitivity to 5-fluorouracil in advanced gastric carcinoma.Anticancer Res2004;24:2455-63

[90]

Peters GJ,Freemantle S.Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism.Biochim Biophys Acta2002;1587:194-205

[91]

Verma H,Narendra G,Singh PK.Energy decomposition and waterswapping analysis to investigate the SNP associated DPD mediated 5-FU resistance.SAR QSAR Environ Res2023;34:39-64

[92]

Verma H,Raju B,Silakari O.Dihydropyrimidine dehydrogenase-mediated resistance to 5-fluorouracil: mechanistic investigation and solution.ACS Pharmacol Transl Sci2022;5:1017-33 PMCID:PMC9667542

[93]

Wang WB,Zhao YP,Liao Q.Recent studies of 5-fluorouracil resistance in pancreatic cancer.World J Gastroenterol2014;20:15682-90 PMCID:PMC4229533

[94]

He L,Zhou S.Wnt pathway is involved in 5-FU drug resistance of colorectal cancer cells.Exp Mol Med2018;50:1-12 PMCID:PMC6093888

[95]

Shi Z,Yuan M.Activation of the PERK-ATF4 pathway promotes chemo-resistance in colon cancer cells.Sci Rep2019;9:3210 PMCID:PMC6397152

[96]

Dong S,Cheng Z.ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer.J Exp Clin Cancer Res2022;41:15 PMCID:PMC8742403

[97]

Long S,Weng F.ECM1 regulates the resistance of colorectal cancer to 5-FU treatment by modulating apoptotic cell death and epithelial-mesenchymal transition induction.Front Pharmacol2022;13:1005915 PMCID:PMC9666402

[98]

Ghosh S,Vanwinkle ZM.Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis.Theranostics2022;12:5574-95 PMCID:PMC9330515

[99]

Escalante PI,Contreras HR.Epithelial-mesenchymal transition and microRNAs in colorectal cancer chemoresistance to FOLFOX.Pharmaceutics2021;13:75 PMCID:PMC7827270

[100]

Kim BH,Kim K.Evaluation of the benefit of radiotherapy in patients with occult breast cancer: a population-based analysis of the SEER database.Cancer Res Treat2018;50:551-61 PMCID:PMC5912134

[101]

Yarden Y.Untangling the ErbB signalling network.Nat Rev Mol Cell Biol2001;2:127-37

[102]

Martínez-Sáez O.Current and future management of HER2-positive metastatic breast cancer.JCO Oncol Pract2021;17:594-604

[103]

Rexer BN.Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications.Crit Rev Oncog2012;17:1-16 PMCID:PMC3394454

[104]

Patel A,Peng Y.The changing paradigm for the treatment of HER2-positive breast cancer.Cancers2020;12:2081 PMCID:PMC7464074

[105]

Swain SM,Hamilton E.Targeting HER2-positive breast cancer: advances and future directions.Nat Rev Drug Discov2023;22:101-26 PMCID:PMC9640784

[106]

Slamon DJ,Shak S.Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.N Engl J Med2001;344:783-92

[107]

Rimawi MF,Osborne CK.Targeting HER2 for the treatment of breast cancer.Annu Rev Med2015;66:111-28

[108]

Vivekanandhan S.Resistance to trastuzumab.Cancers2022;14:5115 PMCID:PMC9600208

[109]

Greenblatt K. Trastuzumab. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532246/. [Last accessed on 26 May 2025]

[110]

Arribas J,Pedersen K.p95HER2 and breast cancer.Cancer Res2011;71:1515-9

[111]

Scaltriti M,Ocaña A.Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer.J Natl Cancer Inst2007;99:628-38

[112]

Miricescu D,Stanescu-Spinu II,Stefani C.PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects.Int J Mol Sci2020;22:173 PMCID:PMC7796017

[113]

Pohlmann PR,Mernaugh R.Resistance to trastuzumab in breast cancer.Clin Cancer Res2009;15:7479-91 PMCID:PMC3471537

[114]

Dave A,He Z.12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis.Plant Cell2011;23:583-99 PMCID:PMC3077774

[115]

Jensen MB, Ejlertsen B, Mouridsen HT, Christiansen P; Danish Breast Cancer Cooperative Group. Improvements in breast cancer survival between 1995 and 2012 in Denmark: the importance of earlier diagnosis and adjuvant treatment. Acta Oncol. 2016;55 Suppl 2:24-35.

[116]

Nagata Y,Zhou X.PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients.Cancer Cell2004;6:117-27

[117]

Elshazly AM.An overview of resistance to Human epidermal growth factor receptor 2 (Her2) targeted therapies in breast cancer.Cancer Drug Resist2022;5:472-86 PMCID:PMC9255238

[118]

Berns K,Hennessy BT.A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer.Cancer Cell2007;12:395-402

[119]

Okkenhaug K.PI3K in lymphocyte development, differentiation and activation.Nat Rev Immunol2003;3:317-30

[120]

Miller TW,Arteaga CL.Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer.J Clin Oncol2011;29:4452-61 PMCID:PMC3221526

[121]

Bosch A,Bergamaschi A.PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer.Sci Transl Med2015;7:283ra51 PMCID:PMC4433148

[122]

Juric D,Rodón J.Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial.JAMA Oncol2019;5:e184475 PMCID:PMC6439561

[123]

Freedland SJ,Epstein AJ,Ivanova JI.Real-world treatment patterns and overall survival among men with Metastatic Castration-Resistant Prostate Cancer (mCRPC) in the US Medicare population.Prostate Cancer Prostatic Dis2024;27:327-33 PMCID:PMC11096091

[124]

Rebello RJ,Knudsen KE.Prostate cancer.Nat Rev Dis Primers2021;7:9

[125]

Gao X.Targeting androgen receptor mutations in metastatic castration-resistant prostate cancer with a novel androgen biosynthesis inhibitor.NEJM Evid2024;3:EVIDe2300298

[126]

Goncharov AP,Kharaishvili G.Epithelial-mesenchymal transition: a fundamental cellular and microenvironmental process in benign and malignant prostate pathologies.Biomedicines2024;12:418 PMCID:PMC10886988

[127]

Li X,Mou X.Androgen receptor cofactors: a potential role in understanding prostate cancer.Biomed Pharmacother2024;173:116338

[128]

Zengin ZB,Park JJ.Clinical implications of AR alterations in advanced prostate cancer: a multi-institutional collaboration. Prostate Cancer Prostatic Dis. 2024.

[129]

Wang L,Zhang S.Increased androgen receptor gene copy number is associated with TMPRSS2-ERG rearrangement in prostatic small cell carcinoma.Mol Carcinog2015;54:900-7

[130]

Helminen L,Tulonen M.Chromatin accessibility and pioneer factor FOXA1 restrict glucocorticoid receptor action in prostate cancer.Nucleic Acids Res2024;52:625-42 PMCID:PMC10810216

[131]

Quigley DA,Zhao SG.Genomic hallmarks and structural variation in metastatic prostate cancer.Cell2018;174:758-69.e9 PMCID:PMC6425931

[132]

Van-Duyne G,Sprenger C,Plymate S.The androgen receptor. Vitam Horm 2023;123:439-81.

[133]

Saranyutanon S,Pai S,Singh AP.Therapies targeted to androgen receptor signaling axis in prostate cancer: progress, challenges, and hope.Cancers2019;12:51 PMCID:PMC7016833

[134]

Le TK,Baylot V.Castration-resistant prostate cancer: from uncovered resistance mechanisms to current treatments.Cancers2023;15:5047 PMCID:PMC10605314

[135]

Sun R,Li H.Androgen receptor variants confer castration resistance in prostate cancer by counteracting antiandrogen-induced ferroptosis.Cancer Res2023;83:3192-204 PMCID:PMC10543964

[136]

Tilki D,Evans CP.Understanding mechanisms of resistance in metastatic castration-resistant prostate cancer: the role of the androgen receptor.Eur Urol Focus2016;2:499-505

[137]

Li Y,Brand LJ,Silverstein KA.Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines.Cancer Res2013;73:483-9 PMCID:PMC3549016

[138]

Karantanos T,Thompson TC.Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches.Oncogene2013;32:5501-11 PMCID:PMC3908870

[139]

Khan A,Tahreem S,Wang Y.Structural and molecular insights into the mechanism of resistance to enzalutamide by the clinical mutants in androgen receptor (AR) in castration-resistant prostate cancer (CRPC) patients.Int J Biol Macromol2022;218:856-65

[140]

Daniels VA,Paller CJ.Therapeutic approaches to targeting androgen receptor splice variants.Cells2024;13:104 PMCID:PMC10778271

[141]

Bailey P, Chang DK, Nones K, et al; Australian Pancreatic Cancer Genome Initiative. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016;531:47-52.

[142]

Luo J.KRAS mutation in pancreatic cancer.Semin Oncol2021;48:10-8 PMCID:PMC8380752

[143]

Huang L,Wang F.KRAS mutation: from undruggable to druggable in cancer.Signal Transduct Target Ther2021;6:386 PMCID:PMC8591115

[144]

Gu M,Chang P.KRAS mutation dictates the cancer immune environment in pancreatic ductal adenocarcinoma and other adenocarcinomas.Cancers2021;13:2429 PMCID:PMC8157241

[145]

Genovese G,Tepper J.Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer.Nature2017;542:362-6 PMCID:PMC7609022

[146]

Ryan DP,Bardeesy N.Pancreatic adenocarcinoma.N Engl J Med2014;371:1039-49

[147]

Pratilas CA.Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response.Clin Cancer Res2010;16:3329-34 PMCID:PMC2912210

[148]

Kandalaft LE,Coukos G.Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation.Nat Rev Cancer2022;22:640-56

[149]

Veneziani AC,Alqaisi H.Heterogeneity and treatment landscape of ovarian carcinoma.Nat Rev Clin Oncol2023;20:820-42

[150]

Havasi A,Havasi AT.Ovarian cancer-insights into platinum resistance and overcoming it.Medicina2023;59:544 PMCID:PMC10057458

[151]

Webb PM.Global epidemiology of epithelial ovarian cancer.Nat Rev Clin Oncol2024;21:389-400

[152]

McCluggage WG,Gilks CB.Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020).Histopathology2022;80:762-78

[153]

Shih IM,Wang TL.The origin of ovarian cancer species and precancerous landscape.Am J Pathol2021;191:26-39 PMCID:PMC7786078

[154]

Mitri Z,Mills G.Strategies for the prevention or reversal of PARP inhibitor resistance.Expert Rev Anticancer Ther2024;24:959-75

[155]

Prados-Carvajal R,Lukashchuk N.Preventing and overcoming resistance to PARP inhibitors: a focus on the clinical landscape.Cancers2021;14:44 PMCID:PMC8750220

[156]

Dias MP,Ganesan S.Understanding and overcoming resistance to PARP inhibitors in cancer therapy.Nat Rev Clin Oncol2021;18:773-91

[157]

Bhamidipati D,Yap TA.PARP inhibitors: enhancing efficacy through rational combinations.Br J Cancer2023;129:904-16 PMCID:PMC10491787

[158]

Gourley C,Ledermann JA.Moving from poly (ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy.J Clin Oncol2019;37:2257-69

[159]

Klotz DM.Overcoming PARP inhibitor resistance in ovarian cancer: what are the most promising strategies?.Arch Gynecol Obstet2020;302:1087-102 PMCID:PMC7524817

[160]

Topatana W,Li S.Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation.J Hematol Oncol2020;13:118 PMCID:PMC7470446

[161]

Miller RE,Lee JY.PARP inhibitors in ovarian cancer: overcoming resistance with combination strategies.J Gynecol Oncol2022;33:e44 PMCID:PMC9024188

[162]

Alatise KL,Alexander-Bryant A.Mechanisms of drug resistance in ovarian cancer and associated gene targets.Cancers2022;14:6246 PMCID:PMC9777152

[163]

Dean M,Allikmets R.The human ATP-binding cassette (ABC) transporter superfamily.Genome Res2001;11:1156-66

[164]

Gallyas F Jr,Szabo C.Role of Akt activation in PARP inhibitor resistance in cancer.Cancers2020;12:532 PMCID:PMC7139751

[165]

Janku F,Meric-Bernstam F.Targeting the PI3K pathway in cancer: are we making headway?.Nat Rev Clin Oncol2018;15:273-91

[166]

Bedard PL,Janku F.A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors.Clin Cancer Res2015;21:730-8

[167]

Farley J,Vathipadiekal V.Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study.Lancet Oncol2013;14:134-40 PMCID:PMC3627419

[168]

Soberanis Pina P, Lheureux S. Overcoming PARP inhibitor resistance in ovarian cancer.Int J Gynecol Cancer2023;33:364-76

[169]

Ang JE,Powell CB.Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study.Clin Cancer Res2013;19:5485-93

[170]

Cecere SC,Salutari V.Olaparib as maintenance therapy in patients with BRCA 1-2 mutated recurrent platinum sensitive ovarian cancer: real world data and post progression outcome.Gynecol Oncol2020;156:38-44

[171]

Ngoi NY,Tan DS.Exploiting replicative stress in gynecological cancers as a therapeutic strategy.Int J Gynecol Cancer2020;30:1224-38 PMCID:PMC7418601

[172]

Wethington SL,Martin L.Combination ATR (ceralasertib) and PARP (olaparib) inhibitor (CAPRI) trial in acquired PARP inhibitor-resistant homologous recombination-deficient ovarian cancer.Clin Cancer Res2023;29:2800-7 PMCID:PMC11934101

[173]

Konstantinopoulos PA,Wahner Hendrickson AE.Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial.Lancet Oncol2020;21:957-68 PMCID:PMC8023719

[174]

Westin SN,Litton JK.Phase Ib dose expansion and translational analyses of olaparib in combination with capivasertib in recurrent endometrial, triple-negative breast, and ovarian cancer.Clin Cancer Res2021;27:6354-65 PMCID:PMC8639651

[175]

Yap TA,Michalarea V.Phase I trial of the PARP inhibitor olaparib and AKT inhibitor capivasertib in patients with BRCA1/2- and non-BRCA1/2-mutant cancers.Cancer Discov2020;10:1528-43 PMCID:PMC7611385

[176]

Cristea MC,Synold T.A phase I study of Mirvetuximab Soravtansine and gemcitabine in patients with FRα-positive recurrent ovarian, primary peritoneal, fallopian tube, or endometrial cancer, or triple negative breast cancer.Gynecol Oncol2024;182:124-31

[177]

Zhou J,Pantelidou C.A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors.Nat Cancer2021;2:598-610 PMCID:PMC8224818

[178]

Zatreanu D,Alkhatib O.Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance.Nat Commun2021;12:3636 PMCID:PMC8211653

[179]

Zhang M,Guo Y,Zhang L.Activation of PI3K/AKT/mTOR signaling axis by UBE2S inhibits autophagy leading to cisplatin resistance in ovarian cancer.J Ovarian Res2023;16:240 PMCID:PMC10729389

[180]

Hanif F,Perveen K,Simjee SU.Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment.Asian Pac J Cancer Prev2017;18:3-9 PMCID:PMC5563115

[181]

Ballabh P,Nedergaard M.The blood-brain barrier: an overview: structure, regulation, and clinical implications.Neurobiol Dis2004;16:1-13

[182]

Cheng L,Zhou W.Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth.Cell2013;153:139-52 PMCID:PMC3638263

[183]

Ueda K,Gottesman MM.The mdr1 gene, responsible for multidrug-resistance, codes for P-glycoprotein.Biochem Biophys Res Commun1986;141:956-62

[184]

Cole SP,Gerlach JH.Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line.Science1992;258:1650-4

[185]

Tsuji A,Takabatake Y.P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells.Life Sci1992;51:1427-37

[186]

Desjardins A,Herndon JE 2nd.Recurrent glioblastoma treated with recombinant poliovirus.N Engl J Med2018;379:150-61 PMCID:PMC6065102

[187]

Chen KT,Chai WY.Neuronavigation-guided focused ultrasound (NaviFUS) for transcranial blood-brain barrier opening in recurrent glioblastoma patients: clinical trial protocol.Ann Transl Med2020;8:673 PMCID:PMC7327352

[188]

Thomas E,Gries M.Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma.Int J Nanomedicine2017;12:7075-88 PMCID:PMC5627731

[189]

Pandey V,Chandak AR,Banerjee S.Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: development, characterization, in-vitro studies.Int J Biol Macromol2020;164:2018-27

[190]

Yang Z,Dai X.C8-substituted imidazotetrazine analogs overcome temozolomide resistance by inducing DNA adducts and DNA damage.Front Oncol2019;9:485 PMCID:PMC6584802

[191]

Thon N,Kreth FW.Personalized treatment strategies in glioblastoma: MGMT promoter methylation status.Onco Targets Ther2013;6:1363-72 PMCID:PMC3792931

[192]

Cabrini G,Lo Nigro C,Gambari R.Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review).Int J Oncol2015;47:417-28 PMCID:PMC4501657

[193]

Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways.Nature2008;455:1061-8 PMCID:PMC2671642

[194]

Weller M, Butowski N, Tran DD, et al; ACT IV trial investigators. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373-85.

[195]

Hasselbalch B,Hansen S.Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial.Neuro Oncol2010;12:508-16 PMCID:PMC2940618

[196]

Schreck KC,Pratilas CA.BRAF mutations and the utility of RAF and MEK inhibitors in primary brain tumors.Cancers2019;11:1262 PMCID:PMC6769482

[197]

Wesolowski JR,Mukherji SK.Temozolomide (Temodar).AJNR Am J Neuroradiol2010;31:1383-4 PMCID:PMC7966084

[198]

Verbeek B,Gilham DE.O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy.Br Med Bull2008;85:17-33

[199]

Erasimus H,Niclou S.DNA repair mechanisms and their clinical impact in glioblastoma.Mutat Res Rev Mutat Res2016;769:19-35

[200]

Stritzelberger J,Buslei R,Putz F.Acquired temozolomide resistance in human glioblastoma cell line U251 is caused by mismatch repair deficiency and can be overcome by lomustine.Clin Transl Oncol2018;20:508-16

[201]

Fujii S,Fuchs RP.Double-strand breaks: when DNA repair events accidentally meet.DNA Repair2022;112:103303 PMCID:PMC8898275

[202]

Dirkse A,Buder T.Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment.Nat Commun2019;10:1787 PMCID:PMC6467886

[203]

Singh SK,Clarke ID.Identification of human brain tumour initiating cells.Nature2004;432:396-401

[204]

Bao S,McLendon RE.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.Nature2006;444:756-60

[205]

Uribe D,Rocha JD.Multidrug resistance in glioblastoma stem-like cells: role of the hypoxic microenvironment and adenosine signaling.Mol Aspects Med2017;55:140-51

[206]

Westover D.New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies.J Exp Clin Cancer Res2015;34:159 PMCID:PMC4696234

[207]

Walsh JC,Aten E,Marciano L.The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities.Antioxid Redox Signal2014;21:1516-54 PMCID:PMC4159937

[208]

Monteiro AR,Pilkington GJ.The role of hypoxia in glioblastoma invasion.Cells2017;6:45 PMCID:PMC5755503

[209]

Hu YL,Jahangiri A.Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma.Cancer Res2012;72:1773-83 PMCID:PMC3319869

[210]

Sotelo J,López-González MA.Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial.Ann Intern Med2006;144:337-43

[211]

Nijman SM.Synthetic lethality: general principles, utility and detection using genetic screens in human cells.FEBS Lett2011;585:1-6 PMCID:PMC3018572

[212]

Sudo M,Madan V,Leong G.Short-hairpin RNA library: identification of therapeutic partners for gefitinib-resistant non-small cell lung cancer.Oncotarget2015;6:814-24 PMCID:PMC4359257

[213]

Blakely CM,Olivas V.NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer.Cell Rep2015;11:98-110 PMCID:PMC4394036

[214]

Zahir N,Gallahan D,Curtis C.Characterizing the ecological and evolutionary dynamics of cancer.Nat Genet2020;52:759-67

[215]

Wang L,Bernards R.Exploiting senescence for the treatment of cancer.Nat Rev Cancer2022;22:340-55

[216]

Schmitt CA,Demaria M.Senescence and cancer - role and therapeutic opportunities.Nat Rev Clin Oncol2022;19:619-36 PMCID:PMC9428886

[217]

Gatenby RA,Gillies RJ.Adaptive therapy.Cancer Res2009;69:4894-903 PMCID:PMC3728826

[218]

Gatenby RA.Integrating evolutionary dynamics into cancer therapy.Nat Rev Clin Oncol2020;17:675-86

[219]

Kalluri R.The biology and function of fibroblasts in cancer.Nat Rev Cancer2016;16:582-98

[220]

De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies.Cancer Cell2013;23:277-86

[221]

Isaacs JT,Dalrymple SL.Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment.Cancer Res2013;73:1386-99

[222]

Lord CJ.PARP inhibitors: synthetic lethality in the clinic.Science2017;355:1152-8 PMCID:PMC6175050

[223]

O’Sullivan CC,Kohn EC.Beyond breast and ovarian cancers: PARP inhibitors for BRCA mutation-associated and BRCA-like solid tumors.Front Oncol2014;4:42

[224]

Rimkus TK,Qasem S,Lo HW.Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors.Cancers2016;8:22 PMCID:PMC4773745

[225]

Ngoi NYL,Torrado C,Durocher D.Synthetic lethal strategies for the development of cancer therapeutics.Nat Rev Clin Oncol2025;22:46-64

[226]

Junttila MR.Influence of tumour micro-environment heterogeneity on therapeutic response.Nature2013;501:346-54

[227]

McGranahan N.Clonal heterogeneity and tumor evolution: past, present, and the future.Cell2017;168:613-28

[228]

Sullivan R,Anderson BO.Global cancer surgery: delivering safe, affordable, and timely cancer surgery.Lancet Oncol2015;16:1193-224

[229]

Bedard PL,Ratain MJ.Tumour heterogeneity in the clinic.Nature2013;501:355-64 PMCID:PMC5224525

[230]

Garraway LA.Circumventing cancer drug resistance in the era of personalized medicine.Cancer Discov2012;2:214-26

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/