Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer

Yuening Dai , Xueqi Tian , Xuanting Ye , Yabin Gong , Ling Xu , Lijing Jiao

Cancer Drug Resistance ›› 2024, Vol. 7 : 52

PDF
Cancer Drug Resistance ›› 2024, Vol. 7 :52 DOI: 10.20517/cdr.2024.166
review-article

Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer

Author information +
History +
PDF

Abstract

Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to “cold” or “hot” tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.

Keywords

Lung cancer / tumor microenvironment / immune checkpoint blockade / resistance / mechanism

Cite this article

Download citation ▾
Yuening Dai, Xueqi Tian, Xuanting Ye, Yabin Gong, Ling Xu, Lijing Jiao. Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer. Cancer Drug Resistance, 2024, 7: 52 DOI:10.20517/cdr.2024.166

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL,Wagle NS.Cancer statistics, 2023.CA Cancer J Clin2023;73:17-48

[2]

Zhou K,Zhao Y.Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer.Front Immunol2023;14:1127071 PMCID:PMC9944349

[3]

Miller M.Advances in systemic therapy for non-small cell lung cancer.BMJ2021;375:n2363

[4]

Doroshow DB,Hastings K.Immunotherapy in non-small cell lung cancer: facts and hopes.Clin Cancer Res2019;25:4592-602 PMCID:PMC6679805

[5]

Felip E, Altorki N, Zhou C, et al; IMpower010 Investigators. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet 2021;398:1344-57.

[6]

O’Brien M, Paz-Ares L, Marreaud S, et al; EORTC-1416-LCG/ETOP 8-15 - PEARLS/KEYNOTE-091 Investigators. Pembrolizumab versus placebo as adjuvant therapy for completely resected stage IB-IIIA non-small-cell lung cancer (PEARLS/KEYNOTE-091): an interim analysis of a randomised, triple-blind, phase 3 trial. Lancet Oncol 2022;23:1274-86.

[7]

Forde PM, Spicer J, Lu S, et al; CheckMate 816 Investigators. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med 2022;386:1973-85. PMCID:PMC9844511

[8]

Antonia SJ, Villegas A, Daniel D, et al; PACIFIC Investigators. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N Engl J Med 2018;379:2342-50.

[9]

Antonia SJ, Villegas A, Daniel D, et al; PACIFIC Investigators. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 2017;377:1919-29.

[10]

Hellmann MD,Bernabe Caro R.Nivolumab plus ipilimumab in advanced non-small-cell lung cancer.N Engl J Med2019;381:2020-31

[11]

Paz-Ares L,Cobo M.First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial.Lancet Oncol2021;22:198-211

[12]

Herbst RS,Barlesi F.COAST: an open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer.J Clin Oncol2022;40:3383-93

[13]

Girard N,Paz-ares L.LBA53 nivolumab (NIVO) plus relatlimab with platinum-doublet chemotherapy (PDCT) vs NIVO + PDCT as first-line (1L) treatment (tx) for stage IV or recurrent NSCLC: Results from the randomized phase II RELATIVITY-104 study.Ann Oncol2024;35:S1243-4

[14]

Onoi K,Uchino J.Immune checkpoint inhibitors for lung cancer treatment: a review.J Clin Med2020;9:1362 PMCID:PMC7290914

[15]

Akbar S,Mohsin R.Circulating exosomal immuno-oncological checkpoints and cytokines are potential biomarkers to monitor tumor response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer patients.Front Immunol2022;13:1097117 PMCID:PMC9890181

[16]

Bilger G,Doubre H.Discontinuation of immune checkpoint inhibitor (ICI) above 18 months of treatment in real-life patients with advanced non-small cell lung cancer (NSCLC): INTEPI, a multicentric retrospective study.Cancer Immunol Immunother2022;71:1719-31 PMCID:PMC10992312

[17]

Sharma P,Wargo JA.Primary, adaptive, and acquired resistance to cancer immunotherapy.Cell2017;168:707-23 PMCID:PMC5391692

[18]

Kluger HM,Ascierto ML.Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce.J Immunother Cancer2020;8:e000398 PMCID:PMC7174063

[19]

Rizvi N,Cao ZA.Society for immunotherapy of cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors with chemotherapy.J Immunother Cancer2023;11:e005920 PMCID:PMC10016262

[20]

Dunn GP,Schreiber RD.The three Es of cancer immunoediting.Annu Rev Immunol2004;22:329-60

[21]

Carbone DP, Reck M, Paz-Ares L, et al; CheckMate 026 Investigators. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med 2017;376:2415-26. PMCID:PMC6487310

[22]

de Castro G,Wu YL.363 KEYNOTE-042 5-year survival update: pembrolizumab versus chemotherapy in patients with previously untreated, PD-L1-positive, locally advanced or metastatic non-small-cell lung cancer.J Immunother Cancer2021;9:A390

[23]

Reck M, Rodríguez-Abreu D, Robinson AG, et al; KEYNOTE-024 Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016;375:1823-33.

[24]

Mok TSK, Wu YL, Kudaba I, et al; KEYNOTE-042 Investigators. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 2019;393:1819-30.

[25]

de Castro G Jr,Wu YL.Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and programmed death ligand-1 tumor proportion score ≥ 1% in the KEYNOTE-042 study.J Clin Oncol2023;41:1986-91 PMCID:PMC10082298

[26]

Langer CJ, Gadgeel SM, Borghaei H, et al; KEYNOTE-021 investigators. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016;17:1497-508. PMCID:PMC6886237

[27]

Awad MM,Borghaei H.Long-term overall survival from KEYNOTE-021 cohort G: pemetrexed and carboplatin with or without pembrolizumab as first-line therapy for advanced nonsquamous NSCLC.J Thorac Oncol2021;16:162-8

[28]

Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al; KEYNOTE-189 Investigators. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018;378:2078-92.

[29]

Paz-Ares L, Luft A, Vicente D, et al; KEYNOTE-407 Investigators. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 2018;379:2040-51.

[30]

Boyer M, Şendur MAN, Rodríguez-Abreu D, et al; KEYNOTE-598 Investigators. Pembrolizumab plus ipilimumab or placebo for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥ 50%: randomized, double-blind phase III KEYNOTE-598 study. J Clin Oncol 2021;39:2327-38.

[31]

Lu S,Yu Y.Tislelizumab plus chemotherapy as first-line treatment for locally advanced or metastatic nonsquamous NSCLC (RATIONALE 304): a randomized phase 3 trial.J Thorac Oncol2021;16:1512-22

[32]

Zhou C,Fan Y.Sintilimab plus platinum and gemcitabine as first-line treatment for advanced or metastatic squamous NSCLC: results from a randomized, double-blind, phase 3 trial (ORIENT-12).J Thorac Oncol2021;16:1501-11

[33]

Wu YL,Cheng Y.Nivolumab versus docetaxel in a predominantly chinese patient population with previously treated advanced NSCLC: checkmate 078 randomized phase III clinical trial.J Thorac Oncol2019;14:867-75

[34]

Brahmer J,Baas P.Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer.N Engl J Med2015;373:123-35 PMCID:PMC4681400

[35]

Borghaei H,Horn L.Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer.N Engl J Med2015;373:1627-39 PMCID:PMC5705936

[36]

Zhou C,Fan Y.Tislelizumab versus docetaxel in patients with previously treated advanced NSCLC (RATIONALE-303): a phase 3, open-label, randomized controlled trial.J Thorac Oncol2023;18:93-105

[37]

Shi Y,Yu X.Sintilimab versus docetaxel as second-line treatment in advanced or metastatic squamous non-small-cell lung cancer: an open-label, randomized controlled phase 3 trial (ORIENT-3).Cancer Commun2022;42:1314-30 PMCID:PMC9759762

[38]

Rittmeyer A, Barlesi F, Waterkamp D, et al; OAK Study Group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 2017;389:255-65. PMCID:PMC6886121

[39]

Garon EB, Rizvi NA, Hui R, et al; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372:2018-28.

[40]

Herbst RS,Kim DW.Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial.Lancet2016;387:1540-50

[41]

Chan TA,Jaffee E.Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic.Ann Oncol2019;30:44-56 PMCID:PMC6336005

[42]

Galvano A,Malapelle U.The prognostic impact of tumor mutational burden (TMB) in the first-line management of advanced non-oncogene addicted non-small-cell lung cancer (NSCLC): a systematic review and meta-analysis of randomized controlled trials.ESMO Open2021;6:100124 PMCID:PMC8111593

[43]

da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer.Annu Rev Pathol2011;6:49-69

[44]

Laudadio E,Minnelli C.Chemical scaffolds for the clinical development of mutant-selective and reversible fourth-generation EGFR-TKIs in NSCLC.ACS Chem Biol2024;19:839-54

[45]

Camidge DR,Kerr KM.Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC.Nat Rev Clin Oncol2019;16:341-55

[46]

Lee CK,Lord S.Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis.J Thorac Oncol2017;12:403-7

[47]

Lee CK,Lord S.Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis.JAMA Oncol2018;4:210-6 PMCID:PMC5838598

[48]

Brindel A,Barritault M.Uncommon EGFR mutations in lung adenocarcinoma: features and response to tyrosine kinase inhibitors.J Thorac Dis2020;12:4643-50 PMCID:PMC7578497

[49]

Hastings K,Wei W.EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer.Ann Oncol2019;30:1311-20 PMCID:PMC6683857

[50]

Zhou J,Hou L.Epidermal growth factor receptor tyrosine kinase inhibitor remodels tumor microenvironment by upregulating LAG-3 in advanced non-small-cell lung cancer.Lung Cancer2021;153:143-9

[51]

Tu E,Wang J.Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFR-mutated NSCLC.JCI Insight2022;7:e142843 PMCID:PMC8855814

[52]

Molina-Arcas M.Exploiting the therapeutic implications of KRAS inhibition on tumor immunity.Cancer Cell2024;42:338-57

[53]

AACR Project GENIE Consortium. AACR Project GENIE: powering precision medicine through an international consortium.Cancer Discov2017;7:818-31 PMCID:PMC5611790

[54]

Hong L,Li S.Efficacy and clinicogenomic correlates of response to immune checkpoint inhibitors alone or with chemotherapy in non-small cell lung cancer.Nat Commun2023;14:695 PMCID:PMC9908867

[55]

Ceddia S,Cappuzzo F.KRAS-mutant non-small-cell lung cancer: from past efforts to future challenges.Int J Mol Sci2022;23:9391 PMCID:PMC9408881

[56]

Koyama S,Li YY.STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment.Cancer Res2016;76:999-1008 PMCID:PMC4775354

[57]

Liu C,Wang Z.KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer.Cancer Commun2022;42:828-47 PMCID:PMC9456691

[58]

Negri F,de’Angelis GL.KRAS: a druggable target in colon cancer patients.Int J Mol Sci2022;23:4120 PMCID:PMC9027058

[59]

Mugarza E,Boumelha J.Therapeutic KRASG12C inhibition drives effective interferon-mediated antitumor immunity in immunogenic lung cancers.Sci Adv2022;8:eabm8780 PMCID:PMC9299537

[60]

Zhang Z,Ongpipattanakul C.A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy.Cancer Cell2022;40:1060-9.e7 PMCID:PMC10393267

[61]

Han G,Hao D.9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy.Nat Commun2021;12:5606 PMCID:PMC8460828

[62]

Alessi JV,Elkrief A.Impact of aneuploidy and chromosome 9p loss on tumor immune microenvironment and immune checkpoint inhibitor efficacy in NSCLC.J Thorac Oncol2023;18:1524-37 PMCID:PMC10913104

[63]

Hong W,Jiang J,Gao X.Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC).J Exp Clin Cancer Res2020;39:149 PMCID:PMC7397626

[64]

Hays E.YY1 regulates cancer cell immune resistance by modulating PD-L1 expression.Drug Resist Updat2019;43:10-28

[65]

Dillen A,Jung M,Zaravinos A.Regulation of PD-L1 expression by YY1 in cancer: therapeutic efficacy of targeting YY1.Cancers2024;16:1237 PMCID:PMC10968822

[66]

Lu Z,Yu P.Tumor factors stimulate lysosomal degradation of tumor antigens and undermine their cross-presentation in lung cancer.Nat Commun2022;13:6623 PMCID:PMC9636202

[67]

Trono P,Palermo B.hMENA isoforms regulate cancer intrinsic type I IFN signaling and extrinsic mechanisms of resistance to immune checkpoint blockade in NSCLC.J Immunother Cancer2023;11:e006913 PMCID:PMC10450042

[68]

Spranger S,Gajewski TF.Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity.Nature2015;523:231-5

[69]

Wang B,Kalland KH,Qu Y.Targeting wnt/β-catenin signaling for cancer immunotherapy.Trends Pharmacol Sci2018;39:648-58

[70]

Herzog BH,Borcherding N.Tumor-associated fibrosis impairs immune surveillance and response to immune checkpoint blockade in non-small cell lung cancer.Sci Transl Med2023;15:eadh8005

[71]

Wu AA,Huang HS,Zheng L.Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells.Oncoimmunology2015;4:e1016700 PMCID:PMC4485788

[72]

Fisher DT,Evans SS.The two faces of IL-6 in the tumor microenvironment.Semin Immunol2014;26:38-47 PMCID:PMC3970580

[73]

Li J,Dhanota N.Metastasis and immune evasion from extracellular cGAMP hydrolysis.Cancer Discov2021;11:1212-27 PMCID:PMC8102348

[74]

Paganelli F,Aliouane S.Plasma A2AR measurement can help physicians identify patients suspected of coronary chronic syndrome: a pilot study.Biomedicines2022;10:1849 PMCID:PMC9405059

[75]

Xu Q,Lin H.Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors.Wiley Interdiscip Rev Nanomed Nanobiotechnol2023;15:e1842

[76]

Otegui N,Arozarena I.Cancer cell-intrinsic alterations associated with an immunosuppressive tumor microenvironment and resistance to immunotherapy in lung cancer.Cancers2023;15:3076 PMCID:PMC10295869

[77]

Madeddu C,Liscia N,Scartozzi M.EGFR-mutated non-small cell lung cancer and resistance to immunotherapy: role of the tumor microenvironment.Int J Mol Sci2022;23:6489 PMCID:PMC9224267

[78]

Chen N,Zhan J.Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation.J Thorac Oncol2015;10:910-23

[79]

Zhang N,Du W.The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer.Int J Oncol2016;49:1360-8

[80]

Dong ZY,Liu SY.EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer.Oncoimmunology2017;6:e1356145 PMCID:PMC5674946

[81]

Chen X,Zhang F.ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.Theranostics2021;11:3392-416 PMCID:PMC7847666

[82]

Peng Y,Zhou C,Zeng C.PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway?.Front Oncol2022;12:819128 PMCID:PMC8987494

[83]

Kim EH.Role of PI3K/Akt signaling in memory CD8 T cell differentiation.Front Immunol2013;4:20 PMCID:PMC3561661

[84]

Skoulidis F,Greenawalt DM.STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma.Cancer Discov2018;8:822-35 PMCID:PMC6030433

[85]

Ricciuti B,Lin JJ.Diminished efficacy of programmed death-(Ligand)1 inhibition in STK11- and KEAP1-mutant lung adenocarcinoma is affected by KRAS mutation status.J Thorac Oncol2022;17:399-410 PMCID:PMC10980559

[86]

Bai X,Zhang YP.CDK4/6 inhibition triggers ICAM1-driven immune response and sensitizes LKB1 mutant lung cancer to immunotherapy.Nat Commun2023;14:1247 PMCID:PMC9985635

[87]

Kist de Ruijter L,Hooiveld-Noeken JS.Whole-body CD8+ T cell visualization before and during cancer immunotherapy: a phase 1/2 trial.Nat Med2022;28:2601-10 PMCID:PMC9800278

[88]

Spiliopoulou P,Hammett T,Lahn M.Targeting T regulatory (Treg) cells in immunotherapy-resistant cancers.Cancer Drug Resist2024;7:2 PMCID:PMC10838381

[89]

Opitz CA,Mohapatra SR.The therapeutic potential of targeting tryptophan catabolism in cancer.Br J Cancer2020;122:30-44 PMCID:PMC6964670

[90]

Théate I,Pilotte L.Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues.Cancer Immunol Res2015;3:161-72

[91]

Zagorulya M,Morgan DM.Tissue-specific abundance of interferon-gamma drives regulatory T cells to restrain DC1-mediated priming of cytotoxic T cells against lung cancer.Immunity2023;56:386-405.e10 PMCID:PMC10880816

[92]

van Gulijk M,Schetters S.PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance.Sci Immunol2023;8:eabn6173

[93]

Chow A,Liu M.The ectonucleotidase CD39 identifies tumor-reactive CD8+ T cells predictive of immune checkpoint blockade efficacy in human lung cancer.Immunity2023;56:93-106.e6 PMCID:PMC9887636

[94]

Shien K,Ruder D.JAK1/STAT3 activation through a proinflammatory cytokine pathway leads to resistance to molecularly targeted therapy in non-small cell lung cancer.Mol Cancer Ther2017;16:2234-45 PMCID:PMC5628136

[95]

Liu C,Xu H.Systematic analysis of IL-6 as a predictive biomarker and desensitizer of immunotherapy responses in patients with non-small cell lung cancer.BMC Med2022;20:187 PMCID:PMC9102328

[96]

Naqash AR,Mi E.Increased interleukin-6/C-reactive protein levels are associated with the upregulation of the adenosine pathway and serve as potential markers of therapeutic resistance to immune checkpoint inhibitor-based therapies in non-small cell lung cancer.J Immunother Cancer2023;11:e007310 PMCID:PMC10603340

[97]

Hiam-Galvez KJ,Spitzer MH.Systemic immunity in cancer.Nat Rev Cancer2021;21:345-59 PMCID:PMC8034277

[98]

Nakamura K.Myeloid immunosuppression and immune checkpoints in the tumor microenvironment.Cell Mol Immunol2020;17:1-12 PMCID:PMC6952382

[99]

Ancel J,Raby BN.Soluble biomarkers to predict clinical outcomes in non-small cell lung cancer treated by immune checkpoints inhibitors.Front Immunol2023;14:1171649 PMCID:PMC10239865

[100]

Larroquette M,Besse B.Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies.J Immunother Cancer2022;10:e003890 PMCID:PMC9125754

[101]

Qu X,Lin K.M2-like tumor-associated macrophage-related biomarkers to construct a novel prognostic signature, reveal the immune landscape, and screen drugs in hepatocellular carcinoma.Front Immunol2022;13:994019 PMCID:PMC9513313

[102]

Petty AJ.Tumor-associated macrophages: implications in cancer immunotherapy.Immunotherapy2017;9:289-302 PMCID:PMC5619052

[103]

Chávez-Galán L,Vesin D.Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages.Front Immunol2015;6:263 PMCID:PMC4443739

[104]

Tang B,Xu W.Macrophage xCT deficiency drives immune activation and boosts responses to immune checkpoint blockade in lung cancer.Cancer Lett2023;554:216021

[105]

Mao X,Wang W.Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives.Mol Cancer2021;20:131

[106]

He D,Xu J,Bai H.Research advances in mechanism of antiangiogenic therapy combined with immune checkpoint inhibitors for treatment of non-small cell lung cancer.Front Immunol2023;14:1265865 PMCID:PMC10618022

[107]

Bouzin C,De Vriese J,Feron O.Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy.J Immunol2007;178:1505-11

[108]

Fukumura D,Amoozgar Z,Jain RK.Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges.Nat Rev Clin Oncol2018;15:325-40 PMCID:PMC5921900

[109]

Shi L,Zhong D.Clinicopathological and predictive value of MAIT cells in non-small cell lung cancer for immunotherapy.J Immunother Cancer2023;11:e005902 PMCID:PMC9853268

[110]

Ouyang L,Zhao J.Mucosal-associated invariant T cells reduce and display tissue-resident phenotype with elevated IL-17 producing capacity in non-small cell lung cancer.Int Immunopharmacol2022;113:109461

[111]

Duan M,Shi JY.Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma.Clin Cancer Res2019;25:3304-16

[112]

Ling L,Zheng W.Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients.Sci Rep2016;6:20358 PMCID:PMC4738248

[113]

Zhang Q,Zhou W,Wang J.Participation of increased circulating MAIT cells in lung cancer: a pilot study.J Cancer2022;13:1623-9 PMCID:PMC8965108

[114]

Saleh R.Acquired resistance to cancer immunotherapy: role of tumor-mediated immunosuppression.Semin Cancer Biol2020;65:13-27

[115]

Mathew AA,Ashokan A.5-FU mediated depletion of myeloid suppressor cells enhances T-cell infiltration and anti-tumor response in immunotherapy-resistant lung tumor.Int Immunopharmacol2023;120:110129

[116]

Memon D,Ye D.Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer.Cancer Cell2024;42:209-24.e9

[117]

Castro F,Gonçalves RM,Oliveira MJ.Interferon-gamma at the crossroads of tumor immune surveillance or evasion.Front Immunol2018;9:847 PMCID:PMC5945880

[118]

Simón L,Gaete-Ramírez B,Quest AFG.Role of the pro-inflammatory tumor microenvironment in extracellular vesicle-mediated transfer of therapy resistance.Front Oncol2022;12:897205 PMCID:PMC9130576

[119]

Théry C,Aikawa E.Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J Extracell Vesicles2018;7:1535750 PMCID:PMC6322352

[120]

Tai YL,Hsieh JT.Exosomes in cancer development and clinical applications.Cancer Sci2018;109:2364-74 PMCID:PMC6113508

[121]

de Miguel-Perez D,Gunasekaran M.Baseline extracellular vesicle TGF-β is a predictive biomarker for response to immune checkpoint inhibitors and survival in non-small cell lung cancer.Cancer2023;129:521-30

[122]

Kuo CL,Lin YC.Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend?.J Biomed Sci2022;29:74 PMCID:PMC9511749

[123]

Li X,Mu W.Reactive oxygen species reprogram macrophages to suppress antitumor immune response through the exosomal miR-155-5p/PD-L1 pathway.J Exp Clin Cancer Res2022;41:41 PMCID:PMC8793215

[124]

Long Y,Cai C.The influence of STK11 mutation on acquired resistance to immunotherapy in advanced non-small cell lung cancer with Lynch syndrome: a case report and literature review.Ann Palliat Med2021;10:7088-94

[125]

Waggoner SN.Circadian rhythms in immunity.Curr Allergy Asthma Rep2020;20:2 PMCID:PMC7357859

[126]

Roberts NT,Mohammadpour H,Repasky EA.Circadian rhythm disruption increases tumor growth rate and accumulation of myeloid-derived suppressor cells.Adv Biol2022;6:e2200031 PMCID:PMC9474681

[127]

He L,Zhang Y.Single-cell transcriptomic analysis reveals circadian rhythm disruption associated with poor prognosis and drug-resistance in lung adenocarcinoma.J Pineal Res2022;73:e12803

[128]

Gettinger S,Hastings K.Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer.Cancer Discov2017;7:1420-35 PMCID:PMC5718941

[129]

Jhunjhunwala S,Delamarre L.Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion.Nat Rev Cancer2021;21:298-312

[130]

Minnar CM,Horn LA.Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies.J Immunother Cancer2022;10:e004561 PMCID:PMC9240938

[131]

Paulson KG,McAfee MS.Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA.Nat Commun2018;9:3868 PMCID:PMC6155241

[132]

Jing X,Shao C.Role of hypoxia in cancer therapy by regulating the tumor microenvironment.Mol Cancer2019;18:157 PMCID:PMC6844052

[133]

Bao MH.Hypoxia, metabolic reprogramming, and drug resistance in liver cancer.Cells2021;10:1715 PMCID:PMC8304710

[134]

Abou Khouzam R,Brodaczewska K.The effect of hypoxia and hypoxia-associated pathways in the regulation of antitumor response: friends or foes?.Front Immunol2022;13:828875 PMCID:PMC8861358

[135]

Boedtkjer E.The acidic tumor microenvironment as a driver of cancer.Annu Rev Physiol2020;82:103-26

[136]

Huber V,Berzi A.Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation.Semin Cancer Biol2017;43:74-89

[137]

Cheng W,Zhao A.Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer.J Hematol Oncol2024;17:54 PMCID:PMC11283714

[138]

Li Y.Immune checkpoint PD-1-based mechanisms of tumor immune resistance and strategies for re-treatment after drug resistance Cancer Res Prev Treat 2022;49:546-51.

[139]

Tu J,Li C.The application and research progress of anti-angiogenesis therapy in tumor immunotherapy.Front Immunol2023;14:1198972 PMCID:PMC10272381

[140]

Socinski MA, Jotte RM, Cappuzzo F, et al; IMpower150 Study Group. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018;378:2288-301.

[141]

Lin MJ,Lubitz GS.Cancer vaccines: the next immunotherapy frontier.Nat Cancer2022;3:911-26

[142]

Wang H,Zeng Z.Tumor cell vaccine combined with Newcastle disease virus promote immunotherapy of lung cancer.J Med Virol2023;95:e28554

[143]

Sun L,Almeida AS.Activating a collaborative innate-adaptive immune response to control metastasis.Cancer Cell2021;39:1361-74.e9 PMCID:PMC8981964

[144]

Ma S,Mai Y,Zuo W.Immunotherapeutic treatment of lung cancer and bone metastasis with a mPLA/mRNA tumor vaccine.Acta Biomater2023;169:489-99

[145]

Lin CY,Kao SH.Small-molecule PIK-93 modulates the tumor microenvironment to improve immune checkpoint blockade response.Sci Adv2023;9:eade9944 PMCID:PMC10081850

[146]

Pilié PG,Mills GB.State-of-the-art strategies for targeting the DNA damage response in cancer.Nat Rev Clin Oncol2019;16:81-104 PMCID:PMC8327299

[147]

Roulston A,Papp R.RP-3500: a novel, potent, and selective ATR inhibitor that is effective in preclinical models as a monotherapy and in combination with PARP inhibitors.Mol Cancer Ther2022;21:245-56 PMCID:PMC9398170

[148]

Besse B,Park K.Biomarker-directed targeted therapy plus durvalumab in advanced non-small-cell lung cancer: a phase 2 umbrella trial.Nat Med2024;30:716-29 PMCID:PMC10957481

[149]

Zhang X,Hou L,Liu Y.Nanoparticles overcome adaptive immune resistance and enhance immunotherapy via targeting tumor microenvironment in lung cancer.Front Pharmacol2023;14:1130937 PMCID:PMC10080031

[150]

Toyokawa G,Tagawa T.A positive correlation between the EZH2 and PD-L1 expression in resected lung adenocarcinomas.Ann Thorac Surg2019;107:393-400

[151]

Anobile DP,Tabbò F.Autocrine 17-β-estradiol/estrogen receptor-α loop determines the response to immune checkpoint inhibitors in non-small cell lung cancer.Clin Cancer Res2023;29:3958-73

[152]

Aldea M,Marabelle A,Barlesi F.Overcoming resistance to tumor-targeted and immune-targeted therapies.Cancer Discov2021;11:874-99

[153]

Kroeze SGC,Stellamans K.Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium.Lancet Oncol2023;24:e121-32

[154]

Miao K,Xu J,Zhang Q.Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy.Front Immunol2023;14:1277243 PMCID:PMC10684919

[155]

Munn DH.IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance.Trends Immunol2016;37:193-207 PMCID:PMC4916957

[156]

Chauvin JM.TIGIT in cancer immunotherapy.J Immunother Cancer2020;8:e000957 PMCID:PMC7477968

[157]

Kelderman S,Haanen JB.Acquired and intrinsic resistance in cancer immunotherapy.Mol Oncol2014;8:1132-9 PMCID:PMC5528612

[158]

Kim TK,Chen L.Defining and understanding adaptive resistance in cancer immunotherapy.Trends Immunol2018;39:624-31 PMCID:PMC6066429

[159]

Petitprez F,de Reyniès A,Fridman WH.The tumor microenvironment in the response to immune checkpoint blockade therapies.Front Immunol2020;11:784 PMCID:PMC7221158

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/